Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 364
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(14): 3626-3642.e14, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34186018

RESUMEN

All cells fold their genomes, including bacterial cells, where the chromosome is compacted into a domain-organized meshwork called the nucleoid. How compaction and domain organization arise is not fully understood. Here, we describe a method to estimate the average mesh size of the nucleoid in Escherichia coli. Using nucleoid mesh size and DNA concentration estimates, we find that the cytoplasm behaves as a poor solvent for the chromosome when the cell is considered as a simple semidilute polymer solution. Monte Carlo simulations suggest that a poor solvent leads to chromosome compaction and DNA density heterogeneity (i.e., domain formation) at physiological DNA concentration. Fluorescence microscopy reveals that the heterogeneous DNA density negatively correlates with ribosome density within the nucleoid, consistent with cryoelectron tomography data. Drug experiments, together with past observations, suggest the hypothesis that RNAs contribute to the poor solvent effects, connecting chromosome compaction and domain formation to transcription and intracellular organization.


Asunto(s)
Cromosomas Bacterianos/química , Escherichia coli/metabolismo , Conformación de Ácido Nucleico , Solventes/química , Transcripción Genética , Aminoglicósidos/farmacología , Simulación por Computador , ADN Bacteriano/química , Difusión , Escherichia coli/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Tamaño de la Partícula , ARN Bacteriano/metabolismo , Ribosomas/metabolismo , Ribosomas/ultraestructura , Transcripción Genética/efectos de los fármacos
2.
Cell ; 180(4): 703-716.e18, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-32059782

RESUMEN

The three-dimensional structures of chromosomes are increasingly being recognized as playing a major role in cellular regulatory states. The efficiency and promiscuity of phage Mu transposition was exploited to directly measure in vivo interactions between genomic loci in E. coli. Two global organizing principles have emerged: first, the chromosome is well-mixed and uncompartmentalized, with transpositions occurring freely between all measured loci; second, several gene families/regions show "clustering": strong three-dimensional co-localization regardless of linear genomic distance. The activities of the SMC/condensin protein MukB and nucleoid-compacting protein subunit HU-α are essential for the well-mixed state; HU-α is also needed for clustering of 6/7 ribosomal RNA-encoding loci. The data are explained by a model in which the chromosomal structure is driven by dynamic competition between DNA replication and chromosomal relaxation, providing a foundation for determining how region-specific properties contribute to both chromosomal structure and gene regulation.


Asunto(s)
Bacteriófago mu/genética , Cromosomas Bacterianos/genética , Elementos Transponibles de ADN , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Bacterianos/química , ADN Bacteriano/química , ADN Bacteriano/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genoma Bacteriano , Conformación de Ácido Nucleico , Transposasas/genética , Transposasas/metabolismo
3.
Nucleic Acids Res ; 52(10): 5643-5657, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38716861

RESUMEN

Genomic mutations allow bacteria to adapt rapidly to adverse stress environments. The three-dimensional conformation of the genome may also play an important role in transcriptional regulation and environmental adaptation. Here, using chromosome conformation capture, we investigate the high-order architecture of the Zymomonas mobilis chromosome in response to genomic mutation and ambient stimuli (acetic acid and furfural, derived from lignocellulosic hydrolysate). We find that genomic mutation only influences the local chromosome contacts, whereas stress of acetic acid and furfural restrict the long-range contacts and significantly change the chromosome organization at domain scales. Further deciphering the domain feature unveils the important transcription factors, Ferric uptake regulator (Fur) proteins, which act as nucleoid-associated proteins to promote long-range (>200 kb) chromosomal communications and regulate the expression of genes involved in stress response. Our work suggests that ubiquitous transcription factors in prokaryotes mediate chromosome organization and regulate stress-resistance genes in bacterial adaptation.


Asunto(s)
Adaptación Fisiológica , Proteínas Bacterianas , Cromosomas Bacterianos , Regulación Bacteriana de la Expresión Génica , Factores de Transcripción , Adaptación Fisiológica/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Cromosomas Bacterianos/química , Cromosomas Bacterianos/genética , Regulación Bacteriana de la Expresión Génica/genética , Mutación , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Zymomonas/genética , Zymomonas/metabolismo , Conformación de Ácido Nucleico
4.
Mol Cell ; 65(5): 861-872.e9, 2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28238653

RESUMEN

SMC proteins support vital cellular processes in all domains of life by organizing chromosomal DNA. They are composed of ATPase "head" and "hinge" dimerization domains and a connecting coiled-coil "arm." Binding to a kleisin subunit creates a closed tripartite ring, whose ∼47-nm-long SMC arms act as barrier for DNA entrapment. Here, we uncover another, more active function of the bacterial Smc arm. Using high-throughput genetic engineering, we resized the arm in the range of 6-60 nm and found that it was functional only in specific length regimes following a periodic pattern. Natural SMC sequences reflect these length constraints. Mutants with improper arm length or peptide insertions in the arm efficiently target chromosomal loading sites and hydrolyze ATP but fail to use ATP hydrolysis for relocation onto flanking DNA. We propose that SMC arms implement force transmission upon nucleotide hydrolysis to mediate DNA capture or loop extrusion.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromosomas Bacterianos/enzimología , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cromosomas Bacterianos/química , Cromosomas Bacterianos/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Ingeniería Genética/métodos , Ensayos Analíticos de Alto Rendimiento , Hidrólisis , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Mutación , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica en Hélice alfa , Relación Estructura-Actividad
5.
Mol Cell ; 64(3): 616-623, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27618488

RESUMEN

CRISPR-Cas systems defend prokaryotes against viruses and plasmids. Short DNA segments of the invader, known as spacers, are stored in the CRISPR array as immunological memories. New spacers are added invariably to the 5' end of the array; therefore, the first spacer matches the latest foreign threat. Whether this highly polarized order of spacer insertion influences CRISPR-Cas immunity has not been explored. Here we show that a conserved sequence located immediately upstream of the CRISPR array specifies the site of new spacer integration. Mutation of this sequence results in erroneous incorporation of new spacers into the middle of the array. We show that spacers added through polarized acquisition give rise to more robust CRISPR-Cas immunity than spacers added to the middle of the array. This study demonstrates that the CRISPR-Cas system specifies the site of spacer integration to optimize the immune response against the most immediate threat to the host.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas/inmunología , Endonucleasas/genética , Regulación Bacteriana de la Expresión Génica , Staphylococcus aureus/genética , Streptococcus pyogenes/genética , Regiones no Traducidas 5' , Proteínas Bacterianas/metabolismo , Bacteriófagos/inmunología , Secuencia de Bases , Proteína 9 Asociada a CRISPR , Proteínas Asociadas a CRISPR/inmunología , Cromosomas Bacterianos/química , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Endonucleasas/metabolismo , Sitios Genéticos , Staphylococcus aureus/inmunología , Staphylococcus aureus/virología , Streptococcus pyogenes/inmunología , Streptococcus pyogenes/virología
6.
Genes Dev ; 30(20): 2272-2285, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27898392

RESUMEN

The spatial organization of DNA within the bacterial nucleoid remains unclear. To investigate chromosome organization in Escherichia coli, we examined the relative positions of the ribosomal RNA (rRNA) operons in space. The seven rRNA operons are nearly identical and separated from each other by as much as 180° on the circular genetic map, a distance of ≥2 million base pairs. By inserting binding sites for fluorescent proteins adjacent to the rRNA operons and then examining their positions pairwise in live cells by epifluorescence microscopy, we found that all but rrnC are in close proximity. Colocalization of the rRNA operons required the rrn P1 promoter region but not the rrn P2 promoter or the rRNA structural genes and occurred with and without active transcription. Non-rRNA operon pairs did not colocalize, and the magnitude of their physical separation generally correlated with that of their genetic separation. Our results show that E. coli bacterial chromosome folding in three dimensions is not dictated entirely by genetic position but rather includes functionally related, genetically distant loci that come into close proximity, with rRNA operons forming a structure reminiscent of the eukaryotic nucleolus.


Asunto(s)
Cromosomas Bacterianos/genética , Escherichia coli/genética , Región Organizadora del Nucléolo , Cromosomas Bacterianos/química , Operón/genética , Regiones Promotoras Genéticas/genética , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Rec A Recombinasas/metabolismo
7.
Cell ; 135(3): 475-85, 2008 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-18984159

RESUMEN

The organization of the Escherichia coli chromosome into insulated macrodomains influences the segregation of sister chromatids and the mobility of chromosomal DNA. Here, we report that organization of the Terminus region (Ter) into a macrodomain relies on the presence of a 13 bp motif called matS repeated 23 times in the 800-kb-long domain. matS sites are the main targets in the E. coli chromosome of a newly identified protein designated MatP. MatP accumulates in the cell as a discrete focus that colocalizes with the Ter macrodomain. The effects of MatP inactivation reveal its role as main organizer of the Ter macrodomain: in the absence of MatP, DNA is less compacted, the mobility of markers is increased, and segregation of Ter macrodomain occurs early in the cell cycle. Our results indicate that a specific organizational system is required in the Terminus region for bacterial chromosome management during the cell cycle.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Bacterianos/química , Cromosomas Bacterianos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/citología , Escherichia coli/metabolismo , División Celular , Proteínas Cromosómicas no Histona/genética , ADN Bacteriano/química , ADN Bacteriano/metabolismo , Proteínas de Escherichia coli/genética
8.
Mol Cell ; 57(1): 138-49, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25498143

RESUMEN

In recent decades, the notorious pathogen Staphylococcus aureus has become progressively more contagious, more virulent, and more resistant to antibiotics. This implies a rather dynamic evolutionary capability, representing a remarkable level of genomic plasticity, most probably maintained by horizontal gene transfer. Here we report that the staphylococcal pathogenicity islands have a dual role in gene transfer: they not only mediate their own transfer, but they can independently direct the transfer of unlinked chromosomal segments containing virulence genes. While transfer of the island itself requires specific helper phages, transfer of unlinked chromosomal segments does not, so potentially any pac-type phage will serve. These results reveal that SaPIs can increase the horizontal exchange of accessory genes associated with disease and may shape pathogen genomes beyond the confines of their attachment sites.


Asunto(s)
Cromosomas Bacterianos/química , Transferencia de Gen Horizontal , Genes Bacterianos , Islas Genómicas , Staphylococcus aureus/genética , Secuencia de Bases , Humanos , Datos de Secuencia Molecular , Profagos/genética , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Infecciones Estafilocócicas/transmisión , Fagos de Staphylococcus/genética , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/virología , Virulencia
9.
Nucleic Acids Res ; 49(6): 3077-3091, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33660781

RESUMEN

The chromosome of Escherichia coli is riddled with multi-faceted complexity. The emergence of chromosome conformation capture techniques are providing newer ways to explore chromosome organization. Here we combine a beads-on-a-spring polymer-based framework with recently reported Hi-C data for E. coli chromosome, in rich growth condition, to develop a comprehensive model of its chromosome at 5 kb resolution. The investigation focuses on a range of diverse chromosome architectures of E. coli at various replication states corresponding to a collection of cells, individually present in different stages of cell cycle. The Hi-C data-integrated model captures the self-organization of E. coli chromosome into multiple macrodomains within a ring-like architecture. The model demonstrates that the position of oriC is dependent on architecture and replication state of chromosomes. The distance profiles extracted from the model reconcile fluorescence microscopy and DNA-recombination assay experiments. Investigations into writhe of the chromosome model reveal that it adopts helix-like conformation with no net chirality, earlier hypothesized in experiments. A genome-wide radius of gyration map captures multiple chromosomal interaction domains and identifies the precise locations of rrn operons in the chromosome. We show that a model devoid of Hi-C encoded information would fail to recapitulate most genomic features unique to E. coli.


Asunto(s)
Cromosomas Bacterianos/química , Replicación del ADN , Escherichia coli/genética , Microscopía Fluorescente , Modelos Genéticos , Recombinación Genética
10.
Nucleic Acids Res ; 49(19): 11119-11133, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34643717

RESUMEN

Vibrio cholerae, the pathogenic bacterium that causes cholera, has two chromosomes (Chr1, Chr2) that replicate in a well-orchestrated sequence. Chr2 initiation is triggered only after the replication of the crtS site on Chr1. The initiator of Chr2 replication, RctB, displays activities corresponding with its different binding sites: initiator at the iteron sites, repressor at the 39m sites, and trigger at the crtS site. The mechanism by which RctB relays the signal to initiate Chr2 replication from crtS is not well-understood. In this study, we provide new insights into how Chr2 replication initiation is regulated by crtS via RctB. We show that crtS (on Chr1) acts as an anti-inhibitory site by preventing 39m sites (on Chr2) from repressing initiation. The competition between these two sites for RctB binding is explained by the fact that RctB interacts with crtS and 39m via the same DNA-binding surface. We further show that the extreme C-terminal tail of RctB, essential for RctB self-interaction, is crucial for the control exerted by crtS. This subregion of RctB is conserved in all Vibrio, but absent in other Rep-like initiators. Hence, the coordinated replication of both chromosomes likely results from the acquisition of this unique domain by RctB.


Asunto(s)
Proteínas Bacterianas/genética , Cromosomas Bacterianos/metabolismo , Replicación del ADN , ADN Bacteriano/genética , Vibrio cholerae/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Sitios de Unión , Unión Competitiva , Cromosomas Bacterianos/química , Clonación Molecular , ADN Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Origen de Réplica , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Vibrio cholerae/metabolismo
11.
Nucleic Acids Res ; 48(1): 249-263, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31667508

RESUMEN

Phage-inducible chromosomal island-like elements (PLEs) are bacteriophage satellites found in Vibrio cholerae. PLEs parasitize the lytic phage ICP1, excising from the bacterial chromosome, replicating, and mobilizing to new host cells following cell lysis. PLEs protect their host cell populations by completely restricting the production of ICP1 progeny. Previously, it was found that ICP1 replication was reduced during PLE(+) infection. Despite robust replication of the PLE genome, relatively few transducing units are produced. We investigated if PLE DNA replication itself is antagonistic to ICP1 replication. Here we identify key constituents of PLE replication and assess their role in interference of ICP1. PLE encodes a RepA_N initiation factor that is sufficient to drive replication from the PLE origin of replication during ICP1 infection. In contrast to previously characterized bacteriophage satellites, expression of the PLE initiation factor was not sufficient for PLE replication in the absence of phage. Replication of PLE was necessary for interference of ICP1 DNA replication, but replication of a minimalized PLE replicon was not sufficient for ICP1 DNA replication interference. Despite restoration of ICP1 DNA replication, non-replicating PLE remained broadly inhibitory against ICP1. These results suggest that PLE DNA replication is one of multiple mechanisms contributing to ICP1 restriction.


Asunto(s)
Bacteriófagos/genética , ADN Helicasas/genética , ADN Bacteriano/genética , Vibrio cholerae/genética , Replicación Viral/genética , Bacteriófagos/metabolismo , Cromosomas Bacterianos/química , Cromosomas Bacterianos/inmunología , Cromosomas Bacterianos/virología , ADN Helicasas/inmunología , Replicación del ADN , ADN Bacteriano/inmunología , Lisogenia/genética , Origen de Réplica , Vibrio cholerae/inmunología , Vibrio cholerae/virología
12.
Nucleic Acids Res ; 48(5): 2199-2208, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32009151

RESUMEN

Microorganisms use zinc-sensing regulators to alter gene expression in response to changes in the availability of zinc, an essential micronutrient. Under zinc-replete conditions, the Fur-family metalloregulator Zur binds to DNA tightly in its metallated repressor form to Zur box operator sites, repressing the transcription of zinc uptake transporters. Derepression comes from unbinding of the regulator, which, under zinc-starvation conditions, exists in its metal-deficient non-repressor forms having no significant affinity with Zur box. While the mechanism of transcription repression by Zur is well-studied, little is known on how derepression by Zur could be facilitated. Using single-molecule/single-cell measurements, we find that in live Escherichia coli cells, Zur's unbinding rate from DNA is sensitive to Zur protein concentration in a first-of-its-kind biphasic manner, initially impeded and then facilitated with increasing Zur concentration. These results challenge conventional models of protein unbinding being unimolecular processes and independent of protein concentration. The facilitated unbinding component likely occurs via a ternary complex formation mechanism. The impeded unbinding component likely results from Zur oligomerization on chromosome involving inter-protein salt-bridges. Unexpectedly, a non-repressor form of Zur is found to bind chromosome tightly, likely at non-consensus sequence sites. These unusual behaviors could provide functional advantages in Zur's facile switching between repression and derepression.


Asunto(s)
ADN Bacteriano/genética , Proteínas de Unión al ADN/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Transcripción Genética , Sitios de Unión , Cromosomas Bacterianos/química , Cromosomas Bacterianos/metabolismo , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Cinética , Unión Proteica , Multimerización de Proteína , Análisis de la Célula Individual , Zinc/metabolismo
13.
Nucleic Acids Res ; 48(1): 200-211, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31665475

RESUMEN

Escherichia coli replication initiator protein DnaA binds ATP with high affinity but the amount of ATP required to initiate replication greatly exceeds the amount required for binding. Previously, we showed that ATP-DnaA, not ADP-DnaA, undergoes a conformational change at the higher nucleotide concentration, which allows DnaA oligomerization at the replication origin but the association state remains unclear. Here, we used Small Angle X-ray Scattering (SAXS) to investigate oligomerization of DnaA in solution. Whereas ADP-DnaA was predominantly monomeric, AMP-PNP-DnaA (a non-hydrolysable ATP-analog bound-DnaA) was oligomeric, primarily dimeric. Functional studies using DnaA mutants revealed that DnaA(H136Q) is defective in initiating replication in vivo. The mutant retains high-affinity ATP binding, but was defective in producing replication-competent initiation complexes. Docking of ATP on a structure of E. coli DnaA, modeled upon the crystallographic structure of Aquifex aeolicus DnaA, predicts a hydrogen bond between ATP and imidazole ring of His136, which is disrupted when Gln is present at position 136. SAXS performed on AMP-PNP-DnaA (H136Q) indicates that the protein has lost its ability to form oligomers. These results show the importance of high ATP in DnaA oligomerization and its dependence on the His136 residue.


Asunto(s)
Adenosina Difosfato/química , Adenosina Trifosfato/química , Proteínas Bacterianas/química , Replicación del ADN , ADN Bacteriano/genética , Proteínas de Unión al ADN/química , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Adenilil Imidodifosfato/química , Adenilil Imidodifosfato/metabolismo , Aquifex , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cromosomas Bacterianos/química , Cromosomas Bacterianos/metabolismo , Cristalografía por Rayos X , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dimerización , Escherichia coli/metabolismo , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular , Mutación , Plásmidos/química , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Origen de Réplica , Termodinámica
14.
J Biol Chem ; 295(50): 17298-17309, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33055234

RESUMEN

The faithful segregation, or "partition," of many low-copy number bacterial plasmids is driven by plasmid-encoded ATPases that are represented by the P1 plasmid ParA protein. ParA binds to the bacterial nucleoid via an ATP-dependent nonspecific DNA (nsDNA)-binding activity, which is essential for partition. ParA also has a site-specific DNA-binding activity to the par operator (parOP), which requires either ATP or ADP, and which is essential for it to act as a transcriptional repressor but is dispensable for partition. Here we examine how DNA binding by ParA contributes to the relative distribution of its plasmid partition and repressor activities, using a ParA with an alanine substitution at Arg351, a residue previously predicted to participate in site-specific DNA binding. In vivo, the parAR351A allele is compromised for partition, but its repressor activity is dramatically improved so that it behaves as a "super-repressor." In vitro, ParAR351A binds and hydrolyzes ATP, and undergoes a specific conformational change required for nsDNA binding, but its nsDNA-binding activity is significantly damaged. This defect in turn significantly reduces the assembly and stability of partition complexes formed by the interaction of ParA with ParB, the centromere-binding protein, and DNA. In contrast, the R351A change shows only a mild defect in site-specific DNA binding. We conclude that the partition defect is due to altered nsDNA binding kinetics and affinity for the bacterial chromosome. Furthermore, the super-repressor phenotype is explained by an increased pool of non-nucleoid bound ParA that is competent to bind parOP and repress transcription.


Asunto(s)
Bacteriófago P1/metabolismo , Cromosomas Bacterianos/metabolismo , ADN Bacteriano/metabolismo , Escherichia coli/metabolismo , Proteínas Virales/metabolismo , Sustitución de Aminoácidos , Bacteriófago P1/química , Bacteriófago P1/genética , Cromosomas Bacterianos/química , Cromosomas Bacterianos/genética , ADN Primasa/química , ADN Primasa/genética , ADN Primasa/metabolismo , ADN Bacteriano/química , ADN Bacteriano/genética , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/virología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutación Missense , Regiones Operadoras Genéticas , Proteínas Virales/química , Proteínas Virales/genética
15.
Mol Microbiol ; 113(2): 338-355, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31715026

RESUMEN

The main roles of the DnaA protein are to bind the origin of chromosome replication (oriC), to unwind DNA and to provide a hub for the step-wise assembly of a replisome. DnaA is composed of four domains, with each playing a distinct functional role in the orisome assembly. Out of the four domains, the role of domain I is the least understood and appears to be the most species-specific. To better characterise Helicobacter pylori DnaA domain I, we have constructed a series of DnaA variants and studied their interactions with H. pylori bipartite oriC. We show that domain I is responsible for the stabilisation and organisation of DnaA-oriC complexes and provides cooperativity in DnaA-DNA interactions. Domain I mediates cross-interactions between oriC subcomplexes, which indicates that domain I is important for long-distance DnaA interactions and is essential for orisosme assembly on bipartite origins. HobA, which interacts with domain I, increases the DnaA binding to bipartite oriC; however, it does not stimulate but rather inhibits DNA unwinding. This suggests that HobA helps DnaA to bind oriC, but an unknown factor triggers DNA unwinding. Together, our results indicate that domain I self-interaction is important for the DnaA assembly on bipartite H. pylori oriC.


Asunto(s)
Proteínas Bacterianas , Cromosomas Bacterianos/metabolismo , Proteínas de Unión al ADN , Helicobacter pylori , Complejo de Reconocimiento del Origen/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos/química , Replicación del ADN , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Nucleoproteínas/química , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Unión Proteica , Origen de Réplica
16.
RNA Biol ; 18(8): 1152-1159, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33103602

RESUMEN

Bacterial small-RNA (sRNA) sequences are functional RNAs, which play an important role in regulating the expression of a diverse class of genes. It is thus critical to identify such sRNA sequences and their probable mRNA targets. Here, we discuss new procedures to identify and characterize sRNA and their targets via the introduction of an integrated online platform 'PresRAT'. PresRAT uses the primary and secondary structural attributes of sRNA sequences to predict sRNA from a given sequence or bacterial genome. PresRAT also finds probable target mRNAs of sRNA sequences from a given bacterial chromosome and further concentrates on the identification of the probable sRNA-mRNA binding regions. Using PresRAT, we have identified a total of 66,209 potential sRNA sequences from 292 bacterial genomes and 2247 potential targets from 13 bacterial genomes. We have also implemented a protocol to build and refine 3D models of sRNA and sRNA-mRNA duplex regions and generated 3D models of 50 known sRNAs and 81 sRNA-mRNA duplexes using this platform. Along with the server part, PresRAT also contains a database section, which enlists the predicted sRNA sequences, sRNA targets, and their corresponding 3D models with structural dynamics information.


Asunto(s)
Bacterias/genética , ARN Bacteriano/química , ARN Mensajero/química , ARN Citoplasmático Pequeño/química , ARN Nuclear Pequeño/química , Programas Informáticos , Bacterias/metabolismo , Emparejamiento Base , Benchmarking , Cromosomas Bacterianos/química , Bases de Datos de Ácidos Nucleicos , Conformación de Ácido Nucleico , Hibridación de Ácido Nucleico , ARN Bacteriano/clasificación , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/clasificación , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Citoplasmático Pequeño/genética , ARN Citoplasmático Pequeño/metabolismo , ARN Nuclear Pequeño/clasificación , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo
17.
J Chem Phys ; 155(5): 054902, 2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34364346

RESUMEN

Long chain molecules can be entropically compacted in a crowded medium. We study the compaction transition of a heterogeneous polymer with ring topology by crowding effects in a free or confined space. For this, we use molecular dynamics simulations in which the effects of crowders are taken into account through effective interactions between chain segments. Our parameter choices are inspired by the Escherichia coli chromosome. The polymer consists of small and big monomers; the big monomers dispersed along the backbone are to mimic the binding of RNA polymerases. Our results show that the compaction transition is a two-step process: initial compaction induced by the association (clustering) of big monomers followed by a gradual overall compaction. They also indicate that cylindrical confinement makes the initial transition more effective; for representative parameter choices, the initial compaction accounts for about 60% reduction in the chain size. Our simulation results support the view that crowding promotes clustering of active transcription units into transcription factories.


Asunto(s)
Transición de Fase , Polímeros/química , Materiales Biomiméticos/química , Cromosomas Bacterianos/química , Entropía , Escherichia coli/química , Simulación de Dinámica Molecular , Presión Osmótica
18.
Nucleic Acids Res ; 47(16): 8874-8887, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31616952

RESUMEN

Localized arrays of proteins cooperatively assemble onto chromosomes to control DNA activity in many contexts. Binding cooperativity is often mediated by specific protein-protein interactions, but cooperativity through DNA structure is becoming increasingly recognized as an additional mechanism. During the site-specific DNA recombination reaction that excises phage λ from the chromosome, the bacterial DNA architectural protein Fis recruits multiple λ-encoded Xis proteins to the attR recombination site. Here, we report X-ray crystal structures of DNA complexes containing Fis + Xis, which show little, if any, contacts between the two proteins. Comparisons with structures of DNA complexes containing only Fis or Xis, together with mutant protein and DNA binding studies, support a mechanism for cooperative protein binding solely by DNA allostery. Fis binding both molds the minor groove to potentiate insertion of the Xis ß-hairpin wing motif and bends the DNA to facilitate Xis-DNA contacts within the major groove. The Fis-structured minor groove shape that is optimized for Xis binding requires a precisely positioned pyrimidine-purine base-pair step, whose location has been shown to modulate minor groove widths in Fis-bound complexes to different DNA targets.


Asunto(s)
Bacteriófago lambda/genética , Cromosomas Bacterianos/química , ADN Nucleotidiltransferasas/química , ADN Bacteriano/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Factor Proteico para Inverción de Estimulación/química , Proteínas Virales/química , Sitio Alostérico , Bacteriófago lambda/metabolismo , Secuencia de Bases , Sitios de Unión , Cromosomas Bacterianos/metabolismo , Clonación Molecular , Cristalografía por Rayos X , ADN Nucleotidiltransferasas/genética , ADN Nucleotidiltransferasas/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Factor Proteico para Inverción de Estimulación/genética , Factor Proteico para Inverción de Estimulación/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Cinética , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reparación del ADN por Recombinación , Alineación de Secuencia , Termodinámica , Proteínas Virales/genética , Proteínas Virales/metabolismo
19.
Crit Rev Biochem Mol Biol ; 53(1): 49-63, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29108427

RESUMEN

Synchronizing the convergence of the two-oppositely moving DNA replication machineries at specific termination sites is a tightly coordinated process in bacteria. In Escherichia coli, a "replication fork trap" - found within a chromosomal region where forks are allowed to enter but not leave - is set by the protein-DNA roadblock Tus-Ter. The exact sequence of events by which Tus-Ter blocks replisomes approaching from one direction but not the other has been the subject of controversy for many decades. Specific protein-protein interactions between the nonpermissive face of Tus and the approaching helicase were challenged by biochemical and structural studies. These studies show that it is the helicase-induced strand separation that triggers the formation of new Tus-Ter interactions at the nonpermissive face - interactions that result in a highly stable "locked" complex. This controversy recently gained renewed attention as three single-molecule-based studies scrutinized this elusive Tus-Ter mechanism - leading to new findings and refinement of existing models, but also generating new questions. Here, we discuss and compare the findings of each of the single-molecule studies to find their common ground, pinpoint the crucial differences that remain, and push the understanding of this bipartite DNA-protein system further.


Asunto(s)
Replicación del ADN , ADN Bacteriano/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Bacterias/química , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos/química , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismo , ADN Bacteriano/química , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Mapas de Interacción de Proteínas
20.
Microbiology (Reading) ; 166(2): 120-128, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31390324

RESUMEN

Topoisomerase I (TopA) is an essential enzyme that is required to remove excess negative supercoils from chromosomal DNA. Actinobacteria encode unusual TopA homologues with a unique C-terminal domain that contains lysine repeats and confers high enzyme processivity. Interestingly, the longest stretch of lysine repeats was identified in TopA from Streptomyces, environmental bacteria that undergo complex differentiation and produce a plethora of secondary metabolites. In this review, we aim to discuss potential advantages of the lysine repeats in Streptomyces TopA. We speculate that the chromosome organization, transcriptional regulation and lifestyle of these species demand a highly processive but also fine-tuneable relaxase. We hypothesize that the unique TopA provides flexible control of chromosomal topology and globally regulates gene expression.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , Streptomyces/enzimología , Actinobacteria/clasificación , Actinobacteria/enzimología , Actinobacteria/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cromosomas Bacterianos/química , ADN-Topoisomerasas de Tipo I/química , ADN-Topoisomerasas de Tipo I/genética , ADN Bacteriano/metabolismo , ADN Superhelicoidal/metabolismo , Regulación Bacteriana de la Expresión Génica , Lisina , Dominios Proteicos , Streptomyces/genética , Streptomyces/crecimiento & desarrollo , Streptomyces/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA