Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 379
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 622(7983): 528-536, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37853149

RESUMEN

Melting of the Greenland ice sheet (GrIS) in response to anthropogenic global warming poses a severe threat in terms of global sea-level rise (SLR)1. Modelling and palaeoclimate evidence suggest that rapidly increasing temperatures in the Arctic can trigger positive feedback mechanisms for the GrIS, leading to self-sustained melting2-4, and the GrIS has been shown to permit several stable states5. Critical transitions are expected when the global mean temperature (GMT) crosses specific thresholds, with substantial hysteresis between the stable states6. Here we use two independent ice-sheet models to investigate the impact of different overshoot scenarios with varying peak and convergence temperatures for a broad range of warming and subsequent cooling rates. Our results show that the maximum GMT and the time span of overshooting given GMT targets are critical in determining GrIS stability. We find a threshold GMT between 1.7 °C and 2.3 °C above preindustrial levels for an abrupt ice-sheet loss. GrIS loss can be substantially mitigated, even for maximum GMTs of 6 °C or more above preindustrial levels, if the GMT is subsequently reduced to less than 1.5 °C above preindustrial levels within a few centuries. However, our results also show that even temporarily overshooting the temperature threshold, without a transition to a new ice-sheet state, still leads to a peak in SLR of up to several metres.


Asunto(s)
Modelos Climáticos , Congelación , Calentamiento Global , Cubierta de Hielo , Elevación del Nivel del Mar , Temperatura , Calentamiento Global/estadística & datos numéricos , Groenlandia , Cubierta de Hielo/química , Factores de Tiempo
2.
Nature ; 590(7844): 97-102, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33536651

RESUMEN

Following early hypotheses about the possible existence of Arctic ice shelves in the past1-3, the observation of specific erosional features as deep as 1,000 metres below the current sea level confirmed the presence of a thick layer of ice on the Lomonosov Ridge in the central Arctic Ocean and elsewhere4-6. Recent modelling studies have addressed how an ice shelf may have built up in glacial periods, covering most of the Arctic Ocean7,8. So far, however, there is no irrefutable marine-sediment characterization of such an extensive ice shelf in the Arctic, raising doubt about the impact of glacial conditions on the Arctic Ocean. Here we provide evidence for at least two episodes during which the Arctic Ocean and the adjacent Nordic seas were not only covered by an extensive ice shelf, but also filled entirely with fresh water, causing a widespread absence of thorium-230 in marine sediments. We propose that these Arctic freshwater intervals occurred 70,000-62,000 years before present and approximately 150,000-131,000 years before present, corresponding to portions of marine isotope stages 4 and 6. Alternative interpretations of the first occurrence of the calcareous nannofossil Emiliania huxleyi in Arctic sedimentary records would suggest younger ages for the older interval. Our approach explains the unexpected minima in Arctic thorium-230 records9 that have led to divergent interpretations of sedimentation rates10,11 and hampered their use for dating purposes. About nine million cubic kilometres of fresh water is required to explain our isotopic interpretation, a calculation that we support with estimates of hydrological fluxes and altered boundary conditions. A freshwater mass of this size-stored in oceans, rather than land-suggests that a revision of sea-level reconstructions based on freshwater-sensitive stable oxygen isotopes may be required, and that large masses of fresh water could be delivered to the north Atlantic Ocean on very short timescales.


Asunto(s)
Agua Dulce/análisis , Cubierta de Hielo/química , Océanos y Mares , Regiones Árticas , Foraminíferos/aislamiento & purificación , Fósiles , Sedimentos Geológicos/química , Historia Antigua , Isótopos/análisis , Plancton/aislamiento & purificación , Protactinio/análisis , Torio/análisis , Factores de Tiempo
3.
Nature ; 592(7855): 517-523, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33883733

RESUMEN

Palaeorecords suggest that the climate system has tipping points, where small changes in forcing cause substantial and irreversible alteration to Earth system components called tipping elements. As atmospheric greenhouse gas concentrations continue to rise as a result of fossil fuel burning, human activity could also trigger tipping, and the impacts would be difficult to adapt to. Previous studies report low global warming thresholds above pre-industrial conditions for key tipping elements such as ice-sheet melt. If so, high contemporary rates of warming imply that exceeding these thresholds is almost inevitable, which is widely assumed to mean that we are now committed to suffering these tipping events. Here we show that this assumption may be flawed, especially for slow-onset tipping elements (such as the collapse of the Atlantic Meridional Overturning Circulation) in our rapidly changing climate. Recently developed theory indicates that a threshold may be temporarily exceeded without prompting a change of system state, if the overshoot time is short compared to the effective timescale of the tipping element. To demonstrate this, we consider transparently simple models of tipping elements with prescribed thresholds, driven by global warming trajectories that peak before returning to stabilize at a global warming level of 1.5 degrees Celsius above the pre-industrial level. These results highlight the importance of accounting for timescales when assessing risks associated with overshooting tipping point thresholds.


Asunto(s)
Clima , Calentamiento Global/prevención & control , Modelos Teóricos , Animales , Actividades Humanas , Humanos , Cubierta de Hielo/química , Reproducibilidad de los Resultados , Medición de Riesgo , Factores de Tiempo , Movimientos del Agua
4.
Nature ; 584(7821): 393-397, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32814886

RESUMEN

The rate of global-mean sea-level rise since 1900 has varied over time, but the contributing factors are still poorly understood1. Previous assessments found that the summed contributions of ice-mass loss, terrestrial water storage and thermal expansion of the ocean could not be reconciled with observed changes in global-mean sea level, implying that changes in sea level or some contributions to those changes were poorly constrained2,3. Recent improvements to observational data, our understanding of the main contributing processes to sea-level change and methods for estimating the individual contributions, mean another attempt at reconciliation is warranted. Here we present a probabilistic framework to reconstruct sea level since 1900 using independent observations and their inherent uncertainties. The sum of the contributions to sea-level change from thermal expansion of the ocean, ice-mass loss and changes in terrestrial water storage is consistent with the trends and multidecadal variability in observed sea level on both global and basin scales, which we reconstruct from tide-gauge records. Ice-mass loss-predominantly from glaciers-has caused twice as much sea-level rise since 1900 as has thermal expansion. Mass loss from glaciers and the Greenland Ice Sheet explains the high rates of global sea-level rise during the 1940s, while a sharp increase in water impoundment by artificial reservoirs is the main cause of the lower-than-average rates during the 1970s. The acceleration in sea-level rise since the 1970s is caused by the combination of thermal expansion of the ocean and increased ice-mass loss from Greenland. Our results reconcile the magnitude of observed global-mean sea-level rise since 1900 with estimates based on the underlying processes, implying that no additional processes are required to explain the observed changes in sea level since 1900.


Asunto(s)
Calor , Cubierta de Hielo/química , Agua de Mar/análisis , Agua de Mar/química , Monitoreo del Ambiente , Calentamiento Global/estadística & datos numéricos , Groenlandia , Historia del Siglo XX , Historia del Siglo XXI , Probabilidad , Incertidumbre
5.
Nature ; 577(7792): 660-664, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31996820

RESUMEN

Sea-level histories during the two most recent deglacial-interglacial intervals show substantial differences1-3 despite both periods undergoing similar changes in global mean temperature4,5 and forcing from greenhouse gases6. Although the last interglaciation (LIG) experienced stronger boreal summer insolation forcing than the present interglaciation7, understanding why LIG global mean sea level may have been six to nine metres higher than today has proven particularly challenging2. Extensive areas of polar ice sheets were grounded below sea level during both glacial and interglacial periods, with grounding lines and fringing ice shelves extending onto continental shelves8. This suggests that oceanic forcing by subsurface warming may also have contributed to ice-sheet loss9-12 analogous to ongoing changes in the Antarctic13,14 and Greenland15 ice sheets. Such forcing would have been especially effective during glacial periods, when the Atlantic Meridional Overturning Circulation (AMOC) experienced large variations on millennial timescales16, with a reduction of the AMOC causing subsurface warming throughout much of the Atlantic basin9,12,17. Here we show that greater subsurface warming induced by the longer period of reduced AMOC during the penultimate deglaciation can explain the more-rapid sea-level rise compared with the last deglaciation. This greater forcing also contributed to excess loss from the Greenland and Antarctic ice sheets during the LIG, causing global mean sea level to rise at least four metres above modern levels. When accounting for the combined influences of penultimate and LIG deglaciation on glacial isostatic adjustment, this excess loss of polar ice during the LIG can explain much of the relative sea level recorded by fossil coral reefs and speleothems at intermediate- and far-field sites.


Asunto(s)
Cubierta de Hielo , Elevación del Nivel del Mar/historia , Agua de Mar/análisis , Animales , Regiones Antárticas , Antozoos , Arrecifes de Coral , Foraminíferos , Fósiles , Groenlandia , Historia Antigua , Cubierta de Hielo/química , Modelos Teóricos , Temperatura
6.
Nature ; 578(7795): 409-412, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32076219

RESUMEN

Atmospheric methane (CH4) is a potent greenhouse gas, and its mole fraction has more than doubled since the preindustrial era1. Fossil fuel extraction and use are among the largest anthropogenic sources of CH4 emissions, but the precise magnitude of these contributions is a subject of debate2,3. Carbon-14 in CH4 (14CH4) can be used to distinguish between fossil (14C-free) CH4 emissions and contemporaneous biogenic sources; however, poorly constrained direct 14CH4 emissions from nuclear reactors have complicated this approach since the middle of the 20th century4,5. Moreover, the partitioning of total fossil CH4 emissions (presently 172 to 195 teragrams CH4 per year)2,3 between anthropogenic and natural geological sources (such as seeps and mud volcanoes) is under debate; emission inventories suggest that the latter account for about 40 to 60 teragrams CH4 per year6,7. Geological emissions were less than 15.4 teragrams CH4 per year at the end of the Pleistocene, about 11,600 years ago8, but that period is an imperfect analogue for present-day emissions owing to the large terrestrial ice sheet cover, lower sea level and extensive permafrost. Here we use preindustrial-era ice core 14CH4 measurements to show that natural geological CH4 emissions to the atmosphere were about 1.6 teragrams CH4 per year, with a maximum of 5.4 teragrams CH4 per year (95 per cent confidence limit)-an order of magnitude lower than the currently used estimates. This result indicates that anthropogenic fossil CH4 emissions are underestimated by about 38 to 58 teragrams CH4 per year, or about 25 to 40 per cent of recent estimates. Our record highlights the human impact on the atmosphere and climate, provides a firm target for inventories of the global CH4 budget, and will help to inform strategies for targeted emission reductions9,10.


Asunto(s)
Atmósfera/química , Combustibles Fósiles/historia , Combustibles Fósiles/provisión & distribución , Actividades Humanas/historia , Metano/análisis , Metano/historia , Biomasa , Radioisótopos de Carbono , Carbón Mineral/historia , Carbón Mineral/provisión & distribución , Calentamiento Global/prevención & control , Calentamiento Global/estadística & datos numéricos , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Cubierta de Hielo/química , Metano/química , Gas Natural/historia , Gas Natural/provisión & distribución , Petróleo/historia , Petróleo/provisión & distribución
7.
Nature ; 574(7777): 237-241, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31578526

RESUMEN

Earth is heading towards a climate that last existed more than three million years ago (Ma) during the 'mid-Pliocene warm period'1, when atmospheric carbon dioxide concentrations were about 400 parts per million, global sea level oscillated in response to orbital forcing2,3 and peak global-mean sea level (GMSL) may have reached about 20 metres above the present-day value4,5. For sea-level rise of this magnitude, extensive retreat or collapse of the Greenland, West Antarctic and marine-based sectors of the East Antarctic ice sheets is required. Yet the relative amplitude of sea-level variations within glacial-interglacial cycles remains poorly constrained. To address this, we calibrate a theoretical relationship between modern sediment transport by waves and water depth, and then apply the technique to grain size in a continuous 800-metre-thick Pliocene sequence of shallow-marine sediments from Whanganui Basin, New Zealand. Water-depth variations obtained in this way, after corrections for tectonic subsidence, yield cyclic relative sea-level (RSL) variations. Here we show that sea level varied on average by 13 ± 5 metres over glacial-interglacial cycles during the middle-to-late Pliocene (about 3.3-2.5 Ma). The resulting record is independent of the global ice volume proxy3 (as derived from the deep-ocean oxygen isotope record) and sea-level cycles are in phase with 20-thousand-year (kyr) periodic changes in insolation over Antarctica, paced by eccentricity-modulated orbital precession6 between 3.3 and 2.7 Ma. Thereafter, sea-level fluctuations are paced by the 41-kyr period of cycles in Earth's axial tilt as ice sheets stabilize on Antarctica and intensify in the Northern Hemisphere3,6. Strictly, we provide the amplitude of RSL change, rather than absolute GMSL change. However, simulations of RSL change based on glacio-isostatic adjustment show that our record approximates eustatic sea level, defined here as GMSL unregistered to the centre of the Earth. Nonetheless, under conservative assumptions, our estimates limit maximum Pliocene sea-level rise to less than 25 metres and provide new constraints on polar ice-volume variability under the climate conditions predicted for this century.


Asunto(s)
Agua de Mar/análisis , Dióxido de Carbono/análisis , Foraminíferos/química , Sedimentos Geológicos/química , Historia Antigua , Cubierta de Hielo/química , Nueva Zelanda , Océanos y Mares , Isótopos de Oxígeno/análisis , Presión Parcial
8.
Nature ; 574(7777): 233-236, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31471591

RESUMEN

Reconstructing the evolution of sea level during past warmer epochs such as the Pliocene provides insight into the response of sea level and ice sheets to prolonged warming1. Although estimates of the global mean sea level (GMSL) during this time do exist, they vary by several tens of metres2-4, hindering the assessment of past and future ice-sheet stability. Here we show that during the mid-Piacenzian Warm Period, which was on average two to three degrees Celsius warmer than the pre-industrial period5, the GMSL was about 16.2 metres higher than today owing to global ice-volume changes, and around 17.4 metres when thermal expansion of the oceans is included. During the even warmer Pliocene Climatic Optimum (about four degrees Celsius warmer than pre-industrial levels)6, our results show that the GMSL was 23.5 metres above the present level, with an additional 1.6 metres from thermal expansion. We provide six GMSL data points, ranging from 4.39 to 3.27 million years ago, that are based on phreatic overgrowths on speleothems from the western Mediterranean (Mallorca, Spain). This record is unique owing to its clear relationship to sea level, its reliable U-Pb ages and its long timespan, which allows us to quantify uncertainties on potential uplift. Our data indicate that ice sheets are very sensitive to warming and provide important calibration targets for future ice-sheet models7.


Asunto(s)
Cambio Climático/historia , Agua de Mar/análisis , Calibración , Dióxido de Carbono/análisis , Foraminíferos/química , Historia Antigua , Cubierta de Hielo/química , Islas , Mar Mediterráneo , Isótopos de Oxígeno/análisis , España , Incertidumbre
9.
Nature ; 569(7758): 649-654, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31142854

RESUMEN

About 800 million people depend in part on meltwater from the thousands of glaciers in the high mountains of Asia. Water stress makes this region vulnerable to drought, but glaciers are a uniquely drought-resilient source of water. Here I show that seasonal glacier meltwater is equivalent to the basic needs of 221 ± 59 million people, or most of the annual municipal and industrial needs of Pakistan, Afghanistan, Tajikistan, Turkmenistan, Uzbekistan and Kyrgyzstan. During drought summers, meltwater dominates water inputs to the upper Indus, Aral and Chu/Issyk-Kul river basins. This reduces the risk of social instability, conflict and sudden migrations triggered by water scarcity, which is already associated with the large, rapidly growing populations and hydro-economies of these basins. Regional meltwater production is, however, unsustainably high-at 1.6 times the balance rate-and is expected to increase in future decades before ultimately declining. These results update and reinforce a previous publication in Nature on this topic, which was retracted after an inadvertent error was discovered.


Asunto(s)
Sequías , Congelación , Cubierta de Hielo/química , Abastecimiento de Agua/estadística & datos numéricos , Aclimatación , Asia , Deshidratación/prevención & control , Ecosistema , Humanos , Política , Lluvia , Ríos , Estaciones del Año , Temperatura
10.
Nature ; 571(7763): 99-102, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31270485

RESUMEN

The long-term cooling, decline in the partial pressure of carbon dioxide, and the establishment of permanent polar ice sheets during the Neogene period1,2 have frequently been attributed to increased uplift and erosion of mountains and consequent increases in silicate weathering, which removes atmospheric carbon dioxide3,4. However, geological records of erosion rates are potentially subject to averaging biases5,6, and the magnitude of the increase in weathering fluxes-and even its existence-remain debated7-9. Moreover, an increase in weathering scaled to the proposed erosional increase would have removed nearly all carbon from the atmosphere10, which has led to suggestions of compensatory carbon fluxes11-13 in order to preserve mass balance in the carbon cycle. Alternatively, an increase in land surface reactivity-resulting from greater fresh-mineral surface area or an increase in the supply of reactive minerals-rather than an increase in the weathering flux, has been proposed to reconcile these disparate views8,9. Here we use a parsimonious carbon cycle model that tracks two weathering-sensitive isotopic tracers (stable 7Li/6Li and cosmogenic 10Be/9Be) to show that an increase in land surface reactivity is necessary to simultaneously decrease atmospheric carbon dioxide, increase seawater 7Li/6Li and retain constant seawater 10Be/9Be over the past 16 million years. We find that the global silicate weathering flux remained constant, even as the global silicate weathering intensity-the fraction of the total denudation flux that is derived from silicate weathering-decreased, sustained by an increase in erosion. Long-term cooling during the Neogene thus reflects a change in the partitioning of denudation into weathering and erosion. Variable partitioning of denudation and consequent changes in silicate weathering intensity reconcile marine isotope and erosion records with the need to maintain mass balance in the carbon cycle and without requiring increases in the silicate weathering flux.


Asunto(s)
Atmósfera/química , Ciclo del Carbono , Dióxido de Carbono/análisis , Dióxido de Carbono/historia , Frío , Sedimentos Geológicos/química , Geología/historia , Retroalimentación , Sedimentos Geológicos/análisis , Historia Antigua , Cubierta de Hielo/química , Modelos Teóricos , Ríos/química , Agua de Mar/química , Silicatos/análisis
11.
Proc Natl Acad Sci U S A ; 119(36): e2120770119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037334

RESUMEN

The last two decades have seen a dramatic decline and strong year-to-year variability in Arctic winter sea ice, especially in the Barents-Kara Sea (BKS), changes that have been linked to extreme midlatitude weather and climate. It has been suggested that these changes in winter sea ice arise largely from a combined effect of oceanic and atmospheric processes, but the relative importance of these processes is not well established. Here, we explore the role of atmospheric circulation patterns on BKS winter sea ice variability and trends using observations and climate model simulations. We find that BKS winter sea ice variability is primarily driven by a strong anticyclonic anomaly over the region, which explains more than 50% of the interannual variability in BKS sea-ice concentration (SIC). Recent intensification of the anticyclonic anomaly has warmed and moistened the lower atmosphere in the BKS by poleward transport of moist-static energy and local processes, resulting in an increase in downwelling longwave radiation. Our results demonstrate that the observed BKS winter sea-ice variability is primarily driven by atmospheric, rather than oceanic, processes and suggest a persistent role of atmospheric forcing in future Arctic winter sea ice loss.


Asunto(s)
Atmósfera , Cubierta de Hielo , Regiones Árticas , Clima , Cubierta de Hielo/química , Océanos y Mares , Estaciones del Año , Tiempo
12.
Proc Natl Acad Sci U S A ; 119(35): e2201871119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35994649

RESUMEN

The stability of widespread methane hydrates in shallow subsurface sediments of the marine continental margins is sensitive to temperature increases experienced by upper intermediate waters. Destabilization of methane hydrates and ensuing release of methane would produce climatic feedbacks amplifying and accelerating global warming. Hence, improved assessment of ongoing intermediate water warming is crucially important, especially that resulting from a weakening of Atlantic meridional overturning circulation (AMOC). Our study provides an independent paleoclimatic perspective by reconstructing the thermal structure and imprint of methane oxidation throughout a water column of 1,300 m. We studied a sediment sequence from the eastern equatorial Atlantic (Gulf of Guinea), a region containing abundant shallow subsurface methane hydrates. We focused on the early part of the penultimate interglacial and present a hitherto undocumented and remarkably large intermediate water warming of 6.8 °C in response to a brief episode of meltwater-induced, modest AMOC weakening centered at 126,000 to 125,000 y ago. The warming of intermediate waters to 14 °C significantly exceeds the stability field of methane hydrates. In conjunction with this warming, our study reveals an anomalously low δ13C spike throughout the entire water column, recorded as primary signatures in single and pooled shells of multitaxa foraminifers. This extremely negative δ13C excursion was almost certainly the result of massive destabilization of methane hydrates. This study documents and connects a sequence of climatic events and climatic feedback processes associated with and triggered by the penultimate climate warming that can serve as a paleoanalog for modern ongoing warming.


Asunto(s)
Calentamiento Global , Cubierta de Hielo , Metano , Cubierta de Hielo/química , Metano/química , Oxidación-Reducción , Agua/química
14.
Nature ; 564(7734): 53-58, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30455421

RESUMEN

Meltwater from the Antarctic Ice Sheet is projected to cause up to one metre of sea-level rise by 2100 under the highest greenhouse gas concentration trajectory (RCP8.5) considered by the Intergovernmental Panel on Climate Change (IPCC). However, the effects of meltwater from the ice sheets and ice shelves of Antarctica are not included in the widely used CMIP5 climate models, which introduces bias into IPCC climate projections. Here we assess a large ensemble simulation of the CMIP5 model 'GFDL ESM2M' that accounts for RCP8.5-projected Antarctic Ice Sheet meltwater. We find that, relative to the standard RCP8.5 scenario, accounting for meltwater delays the exceedance of the maximum global-mean atmospheric warming targets of 1.5 and 2 degrees Celsius by more than a decade, enhances drying of the Southern Hemisphere and reduces drying of the Northern Hemisphere, increases the formation of Antarctic sea ice (consistent with recent observations of increasing Antarctic sea-ice area) and warms the subsurface ocean around the Antarctic coast. Moreover, the meltwater-induced subsurface ocean warming could lead to further ice-sheet and ice-shelf melting through a positive feedback mechanism, highlighting the importance of including meltwater effects in simulations of future climate.


Asunto(s)
Congelación , Calentamiento Global/estadística & datos numéricos , Cubierta de Hielo/química , Agua de Mar/análisis , Aire , Regiones Antárticas , Atmósfera , Calor , Océanos y Mares , Lluvia
15.
Nature ; 559(7715): 603-607, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30046076

RESUMEN

The approximately 10,000-year-long Last Glacial Maximum, before the termination of the last ice age, was the coldest period in Earth's recent climate history1. Relative to the Holocene epoch, atmospheric carbon dioxide was about 100 parts per million lower and tropical sea surface temperatures were about 3 to 5 degrees Celsius lower2,3. The Last Glacial Maximum began when global mean sea level (GMSL) abruptly dropped by about 40 metres around 31,000 years ago4 and was followed by about 10,000 years of rapid deglaciation into the Holocene1. The masses of the melting polar ice sheets and the change in ocean volume, and hence in GMSL, are primary constraints for climate models constructed to describe the transition between the Last Glacial Maximum and the Holocene, and future changes; but the rate, timing and magnitude of this transition remain uncertain. Here we show that sea level at the shelf edge of the Great Barrier Reef dropped by around 20 metres between 21,900 and 20,500 years ago, to -118 metres relative to the modern level. Our findings are based on recovered and radiometrically dated fossil corals and coralline algae assemblages, and represent relative sea level at the Great Barrier Reef, rather than GMSL. Subsequently, relative sea level rose at a rate of about 3.5 millimetres per year for around 4,000 years. The rise is consistent with the warming previously observed at 19,000 years ago1,5, but we now show that it occurred just after the 20-metre drop in relative sea level and the related increase in global ice volumes. The detailed structure of our record is robust because the Great Barrier Reef is remote from former ice sheets and tectonic activity. Relative sea level can be influenced by Earth's response to regional changes in ice and water loadings and may differ greatly from GMSL. Consequently, we used glacio-isostatic models to derive GMSL, and find that the Last Glacial Maximum culminated 20,500 years ago in a GMSL low of about -125 to -130 metres.


Asunto(s)
Cubierta de Hielo/química , Agua de Mar/análisis , Agua de Mar/química , Animales , Antozoos , Arrecifes de Coral , Foraminíferos , Historia Antigua , Rhodophyta
17.
Nature ; 553(7686): 39-44, 2018 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-29300008

RESUMEN

Little is known about the ocean temperature's long-term response to climate perturbations owing to limited observations and a lack of robust reconstructions. Although most of the anthropogenic heat added to the climate system has been taken up by the ocean up until now, its role in a century and beyond is uncertain. Here, using noble gases trapped in ice cores, we show that the mean global ocean temperature increased by 2.57 ± 0.24 degrees Celsius over the last glacial transition (20,000 to 10,000 years ago). Our reconstruction provides unprecedented precision and temporal resolution for the integrated global ocean, in contrast to the depth-, region-, organism- and season-specific estimates provided by other methods. We find that the mean global ocean temperature is closely correlated with Antarctic temperature and has no lead or lag with atmospheric CO2, thereby confirming the important role of Southern Hemisphere climate in global climate trends. We also reveal an enigmatic 700-year warming during the early Younger Dryas period (about 12,000 years ago) that surpasses estimates of modern ocean heat uptake.


Asunto(s)
Cubierta de Hielo/química , Océanos y Mares , Temperatura , Regiones Antárticas , Atmósfera/química , Dióxido de Carbono/análisis , Clima , Historia del Siglo XXI , Historia Antigua , Calor , Gases Nobles/análisis , Estaciones del Año
18.
Nature ; 558(7709): 233-241, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29899481

RESUMEN

We present two narratives on the future of Antarctica and the Southern Ocean, from the perspective of an observer looking back from 2070. In the first scenario, greenhouse gas emissions remained unchecked, the climate continued to warm, and the policy response was ineffective; this had large ramifications in Antarctica and the Southern Ocean, with worldwide impacts. In the second scenario, ambitious action was taken to limit greenhouse gas emissions and to establish policies that reduced anthropogenic pressure on the environment, slowing the rate of change in Antarctica. Choices made in the next decade will determine what trajectory is realized.


Asunto(s)
Calentamiento Global/prevención & control , Calentamiento Global/estadística & datos numéricos , Animales , Regiones Antárticas , Atmósfera/química , Biodiversidad , Dióxido de Carbono/análisis , Explotaciones Pesqueras , Cadena Alimentaria , Actividades Humanas , Cubierta de Hielo/química , Especies Introducidas , Agua de Mar/análisis , Factores de Tiempo
19.
Nature ; 556(7700): 227-230, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29643484

RESUMEN

The Atlantic meridional overturning circulation (AMOC) is a system of ocean currents that has an essential role in Earth's climate, redistributing heat and influencing the carbon cycle1, 2. The AMOC has been shown to be weakening in recent years 1 ; this decline may reflect decadal-scale variability in convection in the Labrador Sea, but short observational datasets preclude a longer-term perspective on the modern state and variability of Labrador Sea convection and the AMOC1, 3-5. Here we provide several lines of palaeo-oceanographic evidence that Labrador Sea deep convection and the AMOC have been anomalously weak over the past 150 years or so (since the end of the Little Ice Age, LIA, approximately AD 1850) compared with the preceding 1,500 years. Our palaeoclimate reconstructions indicate that the transition occurred either as a predominantly abrupt shift towards the end of the LIA, or as a more gradual, continued decline over the past 150 years; this ambiguity probably arises from non-AMOC influences on the various proxies or from the different sensitivities of these proxies to individual components of the AMOC. We suggest that enhanced freshwater fluxes from the Arctic and Nordic seas towards the end of the LIA-sourced from melting glaciers and thickened sea ice that developed earlier in the LIA-weakened Labrador Sea convection and the AMOC. The lack of a subsequent recovery may have resulted from hysteresis or from twentieth-century melting of the Greenland Ice Sheet 6 . Our results suggest that recent decadal variability in Labrador Sea convection and the AMOC has occurred during an atypical, weak background state. Future work should aim to constrain the roles of internal climate variability and early anthropogenic forcing in the AMOC weakening described here.


Asunto(s)
Convección , Océanos y Mares , Agua de Mar/análisis , Movimientos del Agua , Regiones Árticas , Océano Atlántico , Cambio Climático/estadística & datos numéricos , Agua Dulce/análisis , Groenlandia , Historia del Siglo XV , Historia del Siglo XVI , Historia del Siglo XVII , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Historia Medieval , Cubierta de Hielo/química , Terranova y Labrador , Reproducibilidad de los Resultados , Factores de Tiempo
20.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33723012

RESUMEN

Understanding the history of the Greenland Ice Sheet (GrIS) is critical for determining its sensitivity to warming and contribution to sea level; however, that history is poorly known before the last interglacial. Most knowledge comes from interpretation of marine sediment, an indirect record of past ice-sheet extent and behavior. Subglacial sediment and rock, retrieved at the base of ice cores, provide terrestrial evidence for GrIS behavior during the Pleistocene. Here, we use multiple methods to determine GrIS history from subglacial sediment at the base of the Camp Century ice core collected in 1966. This material contains a stratigraphic record of glaciation and vegetation in northwestern Greenland spanning the Pleistocene. Enriched stable isotopes of pore-ice suggest precipitation at lower elevations implying ice-sheet absence. Plant macrofossils and biomarkers in the sediment indicate that paleo-ecosystems from previous interglacial periods are preserved beneath the GrIS. Cosmogenic 26Al/10Be and luminescence data bracket the burial of the lower-most sediment between <3.2 ± 0.4 Ma and >0.7 to 1.4 Ma. In the upper-most sediment, cosmogenic 26Al/10Be data require exposure within the last 1.0 ± 0.1 My. The unique subglacial sedimentary record from Camp Century documents at least two episodes of ice-free, vegetated conditions, each followed by glaciation. The lower sediment derives from an Early Pleistocene GrIS advance. 26Al/10Be ratios in the upper-most sediment match those in subglacial bedrock from central Greenland, suggesting similar ice-cover histories across the GrIS. We conclude that the GrIS persisted through much of the Pleistocene but melted and reformed at least once since 1.1 Ma.


Asunto(s)
Sedimentos Geológicos/análisis , Cubierta de Hielo/química , Dispersión de las Plantas , Aluminio/análisis , Berilio/análisis , Fósiles , Congelación , Sedimentos Geológicos/química , Groenlandia , Radioisótopos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA