Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(11): 6406-6423, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38742631

RESUMEN

Bacteria have developed a wide range of strategies to respond to stress, one of which is the rapid large-scale reorganization of their nucleoid. Nucleoid associated proteins (NAPs) are believed to be major actors in nucleoid remodeling, but the details of this process remain poorly understood. Here, using the radiation resistant bacterium D. radiodurans as a model, and advanced fluorescence microscopy, we examined the changes in nucleoid morphology and volume induced by either entry into stationary phase or exposure to UV-C light, and characterized the associated changes in mobility of the major NAP in D. radiodurans, the heat-unstable (HU) protein. While both types of stress induced nucleoid compaction, HU diffusion was reduced in stationary phase cells, but was instead increased following exposure to UV-C, suggesting distinct underlying mechanisms. Furthermore, we show that UV-C-induced nucleoid remodeling involves a rapid nucleoid condensation step associated with increased HU diffusion, followed by a slower decompaction phase to restore normal nucleoid morphology and HU dynamics, before cell division can resume. These findings shed light on the diversity of nucleoid remodeling processes in bacteria and underline the key role of HU in regulating this process through changes in its mode of assembly on DNA.


Asunto(s)
Proteínas Bacterianas , Proteínas de Unión al ADN , Deinococcus , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Deinococcus/efectos de la radiación , Deinococcus/genética , Deinococcus/metabolismo , ADN Bacteriano/metabolismo , ADN Bacteriano/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Estrés Fisiológico , Rayos Ultravioleta
2.
Trends Genet ; 37(9): 830-845, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34088512

RESUMEN

A growing number of known species possess a remarkable characteristic - extreme resistance to the effects of ionizing radiation (IR). This review examines our current understanding of how organisms can adapt to and survive exposure to IR, one of the most toxic stressors known. The study of natural extremophiles such as Deinococcus radiodurans has revealed much. However, the evolution of Deinococcus was not driven by IR. Another approach, pioneered by Evelyn Witkin in 1946, is to utilize experimental evolution. Contributions to the IR-resistance phenotype affect multiple aspects of cell physiology, including DNA repair, removal of reactive oxygen species, the structure and packaging of DNA and the cell itself, and repair of iron-sulfur centers. Based on progress to date, we overview the diversity of mechanisms that can contribute to biological IR resistance arising as a result of either natural or experimental evolution.


Asunto(s)
Bacterias/efectos de la radiación , Reparación del ADN , Extremófilos/fisiología , Extremófilos/efectos de la radiación , Genética de Radiación/métodos , Radiación de Fondo , Fenómenos Fisiológicos Bacterianos , Deinococcus/fisiología , Deinococcus/efectos de la radiación , Radiación Ionizante
3.
Appl Environ Microbiol ; 90(7): e0010824, 2024 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-38864629

RESUMEN

The extremophile Deinococcus radiodurans maintains a highly organized and condensed nucleoid as its default state, possibly contributing to its high tolerance to ionizing radiation (IR). Previous studies of the D. radiodurans nucleoid were limited by reliance on manual image annotation and qualitative metrics. Here, we introduce a high-throughput approach to quantify the geometric properties of cells and nucleoids using confocal microscopy, digital reconstructions of cells, and computational modeling. We utilize this novel approach to investigate the dynamic process of nucleoid condensation in response to IR stress. Our quantitative analysis reveals that at the population level, exposure to IR induced nucleoid compaction and decreased the size of D. radiodurans cells. Morphological analysis and clustering identified six distinct sub-populations across all tested experimental conditions. Results indicate that exposure to IR induced fractional redistributions of cells across sub-populations to exhibit morphologies associated with greater nucleoid condensation and decreased the abundance of sub-populations associated with cell division. Nucleoid-associated proteins (NAPs) may link nucleoid compaction and stress tolerance, but their roles in regulating compaction in D. radiodurans are unknown. Imaging of genomic mutants of known and suspected NAPs that contribute to nucleoid condensation found that deletion of nucleic acid-binding proteins, not previously described as NAPs, can remodel the nucleoid by driving condensation or decondensation in the absence of stress and that IR increased the abundance of these morphological states. Thus, our integrated analysis introduces a new methodology for studying environmental influences on bacterial nucleoids and provides an opportunity to further investigate potential regulators of nucleoid condensation.IMPORTANCEDeinococcus radiodurans, an extremophile known for its stress tolerance, constitutively maintains a highly condensed nucleoid. Qualitative studies have described nucleoid behavior under a variety of conditions. However, a lack of quantitative data regarding nucleoid organization and dynamics has limited our understanding of the regulatory mechanisms controlling nucleoid organization in D. radiodurans. Here, we introduce a quantitative approach that enables high-throughput quantitative measurements of subcellular spatial characteristics in bacterial cells. Applying this to wild-type or single-protein-deficient populations of D. radiodurans subjected to ionizing radiation, we identified significant stress-responsive changes in cell shape, nucleoid organization, and morphology. These findings highlight this methodology's adaptability and capacity for quantitatively analyzing the cellular response to stressors for screening cellular proteins involved in bacterial nucleoid organization.


Asunto(s)
Deinococcus , Radiación Ionizante , Deinococcus/efectos de la radiación , Deinococcus/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
4.
Appl Environ Microbiol ; 90(5): e0153823, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38587394

RESUMEN

A plethora of gene regulatory mechanisms with eccentric attributes in Deinoccocus radiodurans confer it to possess a distinctive ability to survive under ionizing radiation. Among the many regulatory processes, small RNA (sRNA)-mediated regulation of gene expression is prevalent in bacteria but barely investigated in D. radiodurans. In the current study, we identified a novel sRNA, DrsS, through RNA-seq analysis in D. radiodurans cells while exposed to ionizing radiation. Initial sequence analysis for promoter identification revealed that drsS is potentially co-transcribed with sodA and dr_1280 from a single operon. Elimination of the drsS allele in D. radiodurans chromosome resulted in an impaired growth phenotype under γ-radiation. DrsS has also been found to be upregulated under oxidative and genotoxic stresses. Deletion of the drsS gene resulted in the depletion of intracellular concentration of both Mn2+ and Fe2+ by ~70% and 40%, respectively, with a concomitant increase in carbonylation of intracellular protein. Complementation of drsS gene in ΔdrsS cells helped revert its intracellular Mn2+ and Fe2+ concentration and alleviated carbonylation of intracellular proteins. Cells with deleted drsS gene exhibited higher sensitivity to oxidative stress than wild-type cells. Extrachromosomally expressed drsS in ΔdrsS cells retrieved its oxidative stress resistance properties by catalase-mediated detoxification of reactive oxygen species (ROS). In vitro binding assays indicated that DsrS directly interacts with the coding region of the katA transcript, thus possibly protecting it from cellular endonucleases in vivo. This study identified a novel small RNA DrsS and investigated its function under oxidative stress in D. radiodurans. IMPORTANCE: Deinococcus radiodurans possesses an idiosyncratic quality to survive under extreme ionizing radiation and, thus, has evolved with diverse mechanisms which promote the mending of intracellular damages caused by ionizing radiation. As sRNAs play a pivotal role in modulating gene expression to adapt to altered conditions and have been delineated to participate in almost all physiological processes, understanding the regulatory mechanism of sRNAs will unearth many pathways that lead to radioresistance in D. radiodurans. In that direction, DrsS has been identified to be a γ-radiation-induced sRNA, which is also induced by oxidative and genotoxic stresses. DrsS appeared to activate catalase under oxidative stress and detoxify intracellular ROS. This sRNA has also been shown to balance intracellular Mn(II) and Fe concentrations protecting intracellular proteins from carbonylation. This novel mechanism of DrsS identified in D. radiodurans adds substantially to our knowledge of how this bacterium exploits sRNA for its survival under stresses.


Asunto(s)
Proteínas Bacterianas , Deinococcus , Regulación Bacteriana de la Expresión Génica , ARN Bacteriano , Especies Reactivas de Oxígeno , Deinococcus/genética , Deinococcus/efectos de la radiación , Deinococcus/metabolismo , Especies Reactivas de Oxígeno/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Radiación Ionizante , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Estrés Oxidativo , Rayos gamma
5.
Crit Rev Biotechnol ; 44(7): 1439-1459, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38246753

RESUMEN

Stress tolerance is a vital attribute for all living beings to cope with environmental adversities. IrrE (also named PprI) from Deinococcus radiodurans enhances resistance to extreme radiation stress by functioning as a global regulator, mediating the transcription of genes involved in deoxyribonucleic acid (DNA) damage response (DDR). The expression of IrrE augmented the resilience of various species to heat, radiation, oxidation, osmotic stresses and inhibitors, encompassing bacterial, fungal, plant, and mammalian cells. Moreover, IrrE was employed in a global regulator engineering strategy to broaden its applications in stress tolerance. The regulatory impacts of heterologously expressed IrrE have been investigated at the molecular and systems level, including the regulation of genes, proteins, modules, or pathways involved in DNA repair, detoxification proteins, protective molecules, native regulators and other aspects. In this review, we discuss the regulatory role and mechanism of IrrE in the antiradiation response of D. radiodurans. Furthermore, the applications and regulatory effects of heterologous expression of IrrE to enhance abiotic stress tolerance are summarized in particular.


Asunto(s)
Proteínas Bacterianas , Deinococcus , Estrés Fisiológico , Deinococcus/genética , Deinococcus/efectos de la radiación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Daño del ADN
6.
Cell ; 136(6): 998-1000, 2009 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-19303843

RESUMEN

Slade et al. (2009) describe in this issue how the genome of the bacterium Deinococcus radiodurans gets reassembled after being shattered by high-dose radiation. In contrast to the extreme nature of the damage, the steps of repair appear surprisingly ordinary. So, why can't all organisms carry out extreme genome repair?


Asunto(s)
Reparación del ADN , Deinococcus/genética , Deinococcus/efectos de la radiación , Daño del ADN , Genoma Bacteriano
7.
Cell ; 136(6): 1044-55, 2009 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-19303848

RESUMEN

Deinococcus radiodurans' extreme resistance to ionizing radiation, desiccation, and DNA-damaging chemicals involves a robust DNA repair that reassembles its shattered genome. The repair process requires diploidy and commences with an extensive exonucleolytic erosion of DNA fragments. Liberated single-stranded overhangs prime strand elongation on overlapping fragments and the elongated complementary strands reestablish chromosomal contiguity by annealing. We explored the interdependence of the DNA recombination and replication processes in the reconstitution of the D. radiodurans genome disintegrated by ionizing radiation. The priming of extensive DNA repair synthesis involves RecA and RadA proteins. DNA polymerase III is essential for the initiation of repair synthesis, whereas efficient elongation requires DNA polymerases I and III. Inactivation of both polymerases leads to degradation of DNA fragments and rapid cell death. The present in vivo characterization of key recombination and replication processes dissects the mechanism of DNA repair in heavily irradiated D. radiodurans.


Asunto(s)
Reparación del ADN , Deinococcus/genética , Deinococcus/efectos de la radiación , Recombinación Genética , Proteínas Bacterianas/metabolismo , Daño del ADN , ADN Polimerasa III , Reparación del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN , Deinococcus/enzimología , Deinococcus/metabolismo , Rayos gamma , Genoma Bacteriano , Hidroxiurea/farmacología , Rec A Recombinasas/metabolismo
8.
BMC Microbiol ; 22(1): 264, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333788

RESUMEN

BACKGROUND: Deinococcus radiodurans (D. radiodurans) is best known for its extreme resistance to diverse environmental stress factors, including ionizing radiation (IR), ultraviolet (UV) irradiation, oxidative stress, and high temperatures. Robust DNA repair system and antioxidant system have been demonstrated to contribute to extreme resistance in D. radiodurans. However, practically all studies on the mechanism underlying D. radiodurans's extraordinary resistance relied on the treated strain during the post-treatment recovery lag phase to identify the key elements involved. The direct gene or protein changes of D. radiodurans after stress have not yet been characterized. RESULTS: In this study, we performed a proteomics profiling on D. radiodurans right after the heavy ion irradiation treatment, to discover the altered proteins that were quickly responsive to IR in D. radiodurans. Our study found that D. radiodurans shown exceptional resistance to 12C6+ heavy ion irradiation, in contrast to Escherichia coli (E.coli) strains. By using iTRAQ (Isobaric Tags for Relative and Absolute Quantitation)-based quantitative mass spectrometry analysis, the kinetics of proteome changes induced by various dosages of 12C6+ heavy ion irradiation were mapped. The results revealed that 452 proteins were differentially expressed under heavy ion irradiation, with the majority of proteins being upregulated, indicating the upregulation of functional categories of translation, TCA cycle (Tricarboxylic Acid cycle), and antioxidation regulation under heavy ion irradiation. CONCLUSIONS: This study shows how D. radiodurans reacts to exposure to 12C6+ heavy ion irradiation in terms of its overall protein expression profile. Most importantly, comparing the proteome profiling of D. radiodurans directly after heavy ion irradiation with research on the post-irradiation recovery phase would potentially provide a better understanding of mechanisms underlying the extreme radioresistance in D. radiodurans.


Asunto(s)
Deinococcus , Iones Pesados , Deinococcus/genética , Deinococcus/metabolismo , Deinococcus/efectos de la radiación , Proteoma/metabolismo , Proteómica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Antioxidantes/metabolismo
9.
Mol Cell Proteomics ; 19(8): 1375-1395, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32536603

RESUMEN

Recent work has begun to investigate the role of protein damage in cell death because of ionizing radiation (IR) exposure, but none have been performed on a proteome-wide basis, nor have they utilized MS (MS) to determine chemical identity of the amino acid side chain alteration. Here, we use Escherichia coli to perform the first MS analysis of IR-treated intact cells on a proteome scale. From quintuplicate IR-treated (1000 Gy) and untreated replicates, we successfully quantified 13,262 peptides mapping to 1938 unique proteins. Statistically significant, but low in magnitude (<2-fold), IR-induced changes in peptide abundance were observed in 12% of all peptides detected, although oxidative alterations were rare. Hydroxylation (+15.99 Da) was the most prevalent covalent adduct detected. In parallel with these studies on E. coli, identical experiments with the IR-resistant bacterium, Deinococcus radiodurans, revealed orders of magnitude less effect of IR on the proteome. In E. coli, the most significant target of IR by a wide margin was glyceraldehyde 3'-phosphate dehydrogenase (GAPDH), in which the thiol side chain of the catalytic Cys residue was oxidized to sulfonic acid. The same modification was detected in IR-treated human breast carcinoma cells. Sensitivity of GAPDH to reactive oxygen species (ROS) has been described previously in microbes and here, we present GAPDH as an immediate, primary target of IR-induced oxidation across all domains of life.


Asunto(s)
Escherichia coli/metabolismo , Escherichia coli/efectos de la radiación , Proteómica , Radiación Ionizante , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Dominio Catalítico , Deinococcus/metabolismo , Deinococcus/efectos de la radiación , Hidroxilación , Peso Molecular , Oxidación-Reducción/efectos de la radiación , Péptidos/química , Péptidos/metabolismo , Proteolisis/efectos de la radiación , Proteoma/metabolismo
10.
Nucleic Acids Res ; 47(21): 11403-11417, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31598697

RESUMEN

Exposure to harmful conditions such as radiation and desiccation induce oxidative stress and DNA damage. In radiation-resistant Deinococcus bacteria, the radiation/desiccation response is controlled by two proteins: the XRE family transcriptional repressor DdrO and the COG2856 metalloprotease IrrE. The latter cleaves and inactivates DdrO. Here, we report the biochemical characterization and crystal structure of DdrO, which is the first structure of a XRE protein targeted by a COG2856 protein. DdrO is composed of two domains that fold independently and are separated by a flexible linker. The N-terminal domain corresponds to the DNA-binding domain. The C-terminal domain, containing three alpha helices arranged in a novel fold, is required for DdrO dimerization. Cleavage by IrrE occurs in the loop between the last two helices of DdrO and abolishes dimerization and DNA binding. The cleavage site is hidden in the DdrO dimer structure, indicating that IrrE cleaves DdrO monomers or that the interaction with IrrE induces a structural change rendering accessible the cleavage site. Predicted COG2856/XRE regulatory protein pairs are found in many bacteria, and available data suggest two different molecular mechanisms for stress-induced gene expression: COG2856 protein-mediated cleavage or inhibition of oligomerization without cleavage of the XRE repressor.


Asunto(s)
Deinococcus , Proteínas Represoras/química , Estrés Fisiológico/genética , Estrés Fisiológico/efectos de la radiación , Factores de Transcripción/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Daño del ADN , Deinococcus/enzimología , Deinococcus/genética , Deinococcus/metabolismo , Deinococcus/efectos de la radiación , Regulación Bacteriana de la Expresión Génica/efectos de la radiación , Metaloproteasas/química , Metaloproteasas/genética , Metaloproteasas/metabolismo , Modelos Moleculares , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Represoras/genética , Factores de Transcripción/genética
11.
Mol Microbiol ; 112(3): 854-865, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31162841

RESUMEN

The GC-rich genome of Deinococcus radiodurans contains a very high density of putative guanine quadruplex (G4) DNA motifs and its RecQ (drRecQ) was earlier characterized as a 3'→5' dsDNA helicase. We saw that N-Methyl mesoporphyrin IX (NMM), a G4 DNA binding drug affected normal growth as well as the gamma radiation resistance of the wild-type bacterium. Interestingly, NMM treatment and recQ deletion showed additive effect on normal growth but there was no effect of NMM on gamma radiation resistance of recQ mutant. The recombinant drRecQ showed ~400 times higher affinity to G4 DNA (Kd  = 11.74 ± 1.77 nM) as compared to dsDNA (Kd  = 4.88 ± 1.30 µM). drRecQ showed ATP independent helicase function on G4 DNA, which was higher than ATP-dependent helicase activity on dsDNA. Unlike wild-type cells that sparingly stained for G4 structure with Thioflavin T (ThT), recQ mutant showed very high-density of ThT fluorescence foci on DNA indicating an important role of drRecQ in regulation of G4 DNA structure dynamics in vivo. These results together suggested that drRecQ is an ATP independent G4 DNA helicase that plays an important role in the regulation of G4 DNA structure dynamics and its impact on radioresistance in D. radiodurans.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Bacteriano/química , Deinococcus/enzimología , Deinococcus/efectos de la radiación , Regulación Bacteriana de la Expresión Génica , RecQ Helicasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Deinococcus/genética , Deinococcus/crecimiento & desarrollo , G-Cuádruplex , Viabilidad Microbiana/efectos de la radiación , RecQ Helicasas/química , RecQ Helicasas/genética , Especificidad por Sustrato
12.
Int J Syst Evol Microbiol ; 70(9): 4993-5000, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32776869

RESUMEN

Strain SDU3-2T was isolated from a soil sample collected in Shandong Province, PR China. Cells of SDU3-2T were spherical, Gram-stain-positive, aerobic and non-motile. Cellular growth of the strain occurred at 25-45 °C, pH 5.5-8.5 and with 0-1.5 % (w/v) of NaCl. Phylogenetic analysis based on the 16S rRNA gene sequences showed that strain SDU3-2T was closest to the type strain Deinococcus murrayi ALT-1bT with a similarity of 95.2 %. The draft genome was 3.49 Mbp long with 69.2 mol% G+C content. Strain SDU3-2T exhibited high resistance to gamma radiation (D10 >12 kGy) and UV (D10 >900 J m-2). The strain encoded many genes for resistance to radiation and oxidative stress, which were highly conserved with other Deinococcus species, but possessed interspecific properties. The major fatty acids of SDU3-2T cells were C15 : 1 ω6c, C16 : 1 ω7c/C16 : 1 ω6c, and C17 : 1 ω8c, the major menaquinone was menaquinone-8, and the major polar lipids were an unidentified phosphoglycolipid, four unidentified glycolipids and an unidentified phospholipid. The average nucleotide identity and DNA-DNA hybridization results further indicated that strain SDU3-2T represents a new species in the genus Deinococcus, for which the name Deinococcus terrestris sp. nov. is proposed. The type strain is SDU3-2T (=CGMCC 1.17147T=KCTC 43098T).


Asunto(s)
Deinococcus/clasificación , Filogenia , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Deinococcus/aislamiento & purificación , Deinococcus/efectos de la radiación , Ácidos Grasos/química , Rayos gamma , Glucolípidos/química , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Rayos Ultravioleta , Vitamina K 2/análogos & derivados , Vitamina K 2/química
13.
J Biol Phys ; 46(3): 309-324, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32809182

RESUMEN

The extremophilic bacterium Deinococcus radiodurans displays an extraordinary ability to withstand lethal radiation effects, due to its complex mechanisms for both proteome radiation protection and DNA repair. Published results obtained recently at this laboratory show that D. radiodurans submitted to ionizing radiation results in its DNA being shattered into small fragments which, when exposed to a "static electric field' (SEF), greatly decreases cell viability. These findings motivated the performing of D. radiodurans exposed to gamma radiation, yet exposed to a different exogenous physical agent, "static magnetic fields" (SMF). Cells of D. radiodurans [strain D.r. GY 9613 (R1)] in the exponential phase were submitted to 60Co gamma radiation from a gamma cell. Samples were exposed to doses in the interval 0.5-12.5 kGy, while the control samples were kept next to the irradiation setup. Exposures to SMF were carried out with intensities of 0.08 T and 0.8 T delivered by two settings: (a) a device built up at this laboratory with niobium magnets, delivering 0.08 T, and (b) an electromagnet (Walker Scientific) generating static magnetic fields with intensities from 0.1 to 0.8 T. All samples were placed in a bacteriological incubator at 30 °C for 48 h, and after incubation, a counting of colony forming units was performed. Two sets of cell surviving data were measured, each in triplicate, obtained in independent experiments. A remarkable similarity between the two data sets is revealed, underscoring reproducibility within the 5% range. Appraisal of raw data shows that exposure of irradiated cells to SMF substantially increases their viability. Data interpretation strongly suggests that the increase of D. radiodurans cell viability is a sole magnetic physical effect, driven by a stochastic process, improving the efficiency of the rejoining of DNA fragments, thus increasing cell viability. A type of cut-off dose is identified at 10 kGy, above which the irradiated cellular system loses recovery and the cell survival mechanism collapses.


Asunto(s)
Deinococcus/citología , Deinococcus/efectos de la radiación , Rayos gamma , Campos Magnéticos , Supervivencia Celular/efectos de la radiación , Fragmentación del ADN/efectos de la radiación , Deinococcus/genética
14.
J Bacteriol ; 201(17)2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31235513

RESUMEN

Guanine quadruplex (G4) DNA/RNA are secondary structures that regulate the various cellular processes in both eukaryotes and bacteria. Deinococcus radiodurans, a Gram-positive bacterium known for its extraordinary radioresistance, shows a genomewide occurrence of putative G4 DNA-forming motifs in its GC-rich genome. N-Methyl mesoporphyrin (NMM), a G4 DNA structure-stabilizing drug, did not affect bacterial growth under normal conditions but inhibited the postirradiation recovery of gamma-irradiated cells. Transcriptome sequencing analysis of cells treated with both radiation and NMM showed repression of gamma radiation-responsive gene expression, which was observed in the absence of NMM. Notably, this effect of NMM on the expression of housekeeping genes involved in other cellular processes was not observed. Stabilization of G4 DNA structures mapped at the upstream of recA and in the encoding region of DR_2199 had negatively affected promoter activity in vivo, DNA synthesis in vitro and protein translation in Escherichia coli host. These results suggested that G4 DNA plays an important role in DNA damage response and in the regulation of expression of the DNA repair proteins required for radioresistance in D. radioduransIMPORTANCEDeinococcus radiodurans can recover from extensive DNA damage caused by many genotoxic agents. It lacks LexA/RecA-mediated canonical SOS response. Therefore, the molecular mechanisms underlying the regulation of DNA damage response would be worth investigating in this bacterium. D. radiodurans genome is GC-rich and contains numerous islands of putative guanine quadruplex (G4) DNA structure-forming motifs. Here, we showed that in vivo stabilization of G4 DNA structures can impair DNA damage response processes in D. radiodurans Essential cellular processes such as transcription, DNA synthesis, and protein translation, which are also an integral part of the double-strand DNA break repair pathway, are affected by the arrest of G4 DNA structure dynamics. Thus, the role of DNA secondary structures in DNA damage response and radioresistance is demonstrated.


Asunto(s)
ADN/genética , Deinococcus/efectos de la radiación , G-Cuádruplex , Rayos gamma , Regulación Bacteriana de la Expresión Génica/efectos de la radiación , Genoma Bacteriano/efectos de la radiación , Deinococcus/genética
15.
J Bacteriol ; 201(8)2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30692176

RESUMEN

In previous work (D. R. Harris et al., J Bacteriol 191:5240-5252, 2009, https://doi.org/10.1128/JB.00502-09; B. T. Byrne et al., Elife 3:e01322, 2014, https://doi.org/10.7554/eLife.01322), we demonstrated that Escherichia coli could acquire substantial levels of resistance to ionizing radiation (IR) via directed evolution. Major phenotypic contributions involved adaptation of organic systems for DNA repair. We have now undertaken an extended effort to generate E. coli populations that are as resistant to IR as Deinococcus radiodurans After an initial 50 cycles of selection using high-energy electron beam IR, four replicate populations exhibit major increases in IR resistance but have not yet reached IR resistance equivalent to D. radiodurans Regular deep sequencing reveals complex evolutionary patterns with abundant clonal interference. Prominent IR resistance mechanisms involve novel adaptations to DNA repair systems and alterations in RNA polymerase. Adaptation is highly specialized to resist IR exposure, since isolates from the evolved populations exhibit highly variable patterns of resistance to other forms of DNA damage. Sequenced isolates from the populations possess between 184 and 280 mutations. IR resistance in one isolate, IR9-50-1, is derived largely from four novel mutations affecting DNA and RNA metabolism: RecD A90E, RecN K429Q, and RpoB S72N/RpoC K1172I. Additional mechanisms of IR resistance are evident.IMPORTANCE Some bacterial species exhibit astonishing resistance to ionizing radiation, with Deinococcus radiodurans being the archetype. As natural IR sources rarely exceed mGy levels, the capacity of Deinococcus to survive 5,000 Gy has been attributed to desiccation resistance. To understand the molecular basis of true extreme IR resistance, we are using experimental evolution to generate strains of Escherichia coli with IR resistance levels comparable to Deinococcus Experimental evolution has previously generated moderate radioresistance for multiple bacterial species. However, these efforts could not take advantage of modern genomic sequencing technologies. In this report, we examine four replicate bacterial populations after 50 selection cycles. Genomic sequencing allows us to follow the genesis of mutations in populations throughout selection. Novel mutations affecting genes encoding DNA repair proteins and RNA polymerase enhance radioresistance. However, more contributors are apparent.


Asunto(s)
Evolución Biológica , Escherichia coli/genética , Escherichia coli/efectos de la radiación , Tolerancia a Radiación , Radiación Ionizante , Selección Genética , Análisis Mutacional de ADN , Enzimas Reparadoras del ADN/genética , ARN Polimerasas Dirigidas por ADN/genética , Deinococcus/crecimiento & desarrollo , Deinococcus/efectos de la radiación , Escherichia coli/crecimiento & desarrollo , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación
16.
Biochem Biophys Res Commun ; 513(2): 354-359, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-30961930

RESUMEN

Deinococcus radiodurans is an extremophilic bacterium well-known for its extraordinary resistance to ionizing radiation and other DNA damage- and oxidative stress-generating agents. In addition to its efficient DNA damage repair and oxidative stress resistance mechanisms, protein family expansions and stress-induced genes/proteins are also regarded as important components that add to the robustness of this bacterium. D. radiodurans encodes specific expansions of 13 DinB/YfiT homologs, which is a relatively large number when compared to those found in Gram-positive bacteria. In this study, we investigated the expression profiles of 13 dinB genes after γ-irradiation, mitomycin C and H2O2 treatment. dr0053 had the highest expression levels after DNA-damage inducing γ-irradiation and MMC treatment, increasing ∼200-fold and ∼16-fold, respectively. We also determined the crystal structure of DR0053 at 2.07 Šresolution. DR0053 adopted a typical four-helix bundle structure that is characteristic of DinB/YfiT proteins. A putative metal binding site was occupied by zinc even though the highly conserved His triad of DinB/YfiT proteins was replaced by Glu-Asn-His.


Asunto(s)
Proteínas Bacterianas/química , Deinococcus/química , Alquilantes/farmacología , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Deinococcus/efectos de los fármacos , Deinococcus/genética , Deinococcus/efectos de la radiación , Rayos gamma , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de la radiación , Mitomicina/farmacología , Modelos Moleculares , Conformación Proteica
17.
Int J Syst Evol Microbiol ; 69(12): 3696-3701, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31647398

RESUMEN

A Gram-stain-negative, non-motile, strictly aerobic, coccus-shaped bacterium, designated S14-83T, was isolated from a soil sample collected from the South Shetland Islands of Antarctica. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain is a novel member of the genus Deinococcus, with Deinococcus alpinitundrae as its closest relative (96.1 % similarity). The DNA G+C content of the strain was 61.1 mol% and the major respiratory quinone was MK-8. Major cellular fatty acids were summed feature 3 (C16 : 1ω7c/C16 : 1ω6c) and C16 : 0. As well as containing glycophospholipid, aminophospholipids and glycolipid as major polar lipids, there were also some unknown polar lipids. The diagnostic diamino acid in the cell-wall peptidoglycan was ornithine, corroborating the assignment of the strain to the genus Deinococcus. Strain S14-83T was shown to be extremely resistant to gamma radiation (>10 kGy) and UV light (460 Jm-2). On the basis of phylogenetic, chemotaxonomic and phenotypic data presented here, strain S14-83T represents a novel species of the genus Deinococcus, for which the name Deinococcus psychrotolerans sp. nov. is proposed. The type strain is S14-83T (=CCTCC AB 2015449T= DSM 105285 T).


Asunto(s)
Deinococcus/clasificación , Filogenia , Microbiología del Suelo , Regiones Antárticas , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Deinococcus/aislamiento & purificación , Deinococcus/efectos de la radiación , Ácidos Grasos/química , Rayos gamma , Glucolípidos/química , Peptidoglicano/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Rayos Ultravioleta , Vitamina K 2/análogos & derivados , Vitamina K 2/química
18.
Microb Ecol ; 78(4): 855-872, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30980101

RESUMEN

Deinococcus is a genus of soil bacteria known for radiation resistance. However, the effects of radiation exposure on its community structure are unknown. We exposed soil to three levels of gamma radiation, 0.1 kGy/h (low), 1 kGy/h (medium), and 3 kGy/h (high), once a week for 6 weeks and then extracted soil DNA for 16S rRNA amplicon sequencing. We found the following: (1) Increasing radiation dose produced a major increase in relative abundance of Deinococcus, reaching ~ 80% of reads at the highest doses. Differing abundances of the various Deinococcus species in relation to exposure levels indicate distinct "radiation niches." At 3 kGy/h, a single OTU identified as D. ficus overwhelmingly dominated the mesocosms. (2) Corresponding published genome data show that the dominant species at 3 kGy/h, D. ficus, has a larger and more complex genome than other Deinococcus species with a greater proportion of genes related to DNA and nucleotide metabolism, cell wall, membrane, and envelope biogenesis as well as more cell cycle control, cell division, and chromosome partitioning-related genes. Deinococcus ficus also has a higher guanine-cytosine ratio than most other Deinococcus. These features may be linked to genome stability and may explain its greater abundance in this apparently competitive system, under high-radiation exposures. (3) Genomic analysis suggests that Deinococcus, including D. ficus, are capable of utilizing diverse carbon sources derived from both microbial cells killed by the radiation (including C5-C12-containing compounds, like arabinose, lactose, N-acetyl-D-glucosamine) and plant-derived organic matter in the soil (e.g., cellulose and hemicellulose). (4) Overall, based on its metagenome, even the most highly irradiated (3 kGy/h) soil possesses a wide range of the activities necessary for a functional soil system. Future studies may consider the resilience and sustainability of such soils in a high-radiation environment.


Asunto(s)
Deinococcus/efectos de la radiación , Rayos gamma/efectos adversos , Microbiología del Suelo , Suelo/química , Deinococcus/fisiología , Relación Dosis-Respuesta en la Radiación , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis , República de Corea
19.
Nucleic Acids Res ; 45(7): 3812-3821, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28126918

RESUMEN

Deinococcus radiodurans RNA ligase (DraRnl) seals 3΄-OH/5΄-PO4 nicks in duplex nucleic acids in which the 3΄-OH nick terminus consists of two or more ribonucleotides. DraRnl exemplifies a widely distributed Rnl5 family of nick-sealing RNA ligases, the physiological functions of which are uncharted. Here we show via gene knockout that whereas DraRnl is inessential for growth of D. radiodurans, its absence sensitizes the bacterium to killing by ionizing radiation (IR). DraRnl protein is present in exponentially growing and stationary phase cells, but is depleted during the early stages of recovery from 10 kGy of IR and subsequently replenished during the late phase of post-IR genome reassembly. Absence of DraRnl elicts a delay in reconstitution of the 10 kGy IR-shattered D. radiodurans replicons that correlates with the timing of DraRnl replenishment in wild-type cells. Complementation with a catalytically dead mutant highlights that nick sealing activity is important for the radioprotective function of DraRnl. Our findings suggest a scenario in which DraRnl acts at genomic nicks resulting from gap-filling by a ribonucleotide-incorporating repair polymerase.


Asunto(s)
Proteínas Bacterianas/metabolismo , Deinococcus/enzimología , ARN Ligasa (ATP)/metabolismo , Deinococcus/genética , Deinococcus/crecimiento & desarrollo , Deinococcus/efectos de la radiación , Rayos gamma , Eliminación de Gen , Genoma Bacteriano , Operón , ARN Ribosómico/efectos de la radiación , Tolerancia a Radiación
20.
J Bacteriol ; 200(13)2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29686138

RESUMEN

The DNA damage response ddrI gene encodes a transcription regulator belonging to the cAMP receptor protein (CRP) family. Cells devoid of the DdrI protein exhibit a pleiotropic phenotype, including growth defects and sensitivity to DNA-damaging agents and to oxidative stress. Here, we show that the absence of the DdrI protein also confers sensitivity to heat shock treatment, and several genes involved in heat shock response were shown to be upregulated in a DdrI-dependent manner. Interestingly, expression of the Escherichia coli CRP partially compensates for the absence of the DdrI protein. Microscopic observations of ΔddrI mutant cells revealed an increased proportion of two-tetrad and anucleated cells in the population compared to the wild-type strain, indicating that DdrI is crucial for the completion of cell division and/or chromosome segregation. We show that DdrI is also involved in the megaplasmid MP1 stability and in efficient plasmid transformation by facilitating the maintenance of the incoming plasmid in the cell. The in silico prediction of putative DdrI binding sites in the D. radiodurans genome suggests that hundreds of genes, belonging to several functional groups, may be regulated by DdrI. In addition, the DdrI protein absolutely requires cAMP for in vitro binding to specific target sequences, and it acts as a dimer. All these data underline the major role of DdrI in D. radiodurans physiology under normal and stress conditions by regulating, both directly and indirectly, a cohort of genes involved in various cellular processes, including central metabolism and specific responses to diverse harmful environments.IMPORTANCEDeinococcus radiodurans has been extensively studied to elucidate the molecular mechanisms responsible for its exceptional ability to withstand lethal effects of various DNA-damaging agents. A complex network, including efficient DNA repair, protein protection against oxidation, and diverse metabolic pathways, plays a crucial role for its radioresistance. The regulatory networks orchestrating these various pathways are still missing. Our data provide new insights into the crucial contribution of the transcription factor DdrI for the D. radiodurans ability to withstand harmful conditions, including UV radiation, mitomycin C treatment, heat shock, and oxidative stress. Finally, we highlight that DdrI is also required for accurate cell division, for maintenance of plasmid replicons, and for central metabolism processes responsible for the overall cell physiology.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , Deinococcus/metabolismo , Regulación Bacteriana de la Expresión Génica , Adaptación Fisiológica , Proteínas Bacterianas/genética , Proteína Receptora de AMP Cíclico/genética , Deinococcus/genética , Deinococcus/efectos de la radiación , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA