Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.330
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 25(5): 340-358, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38102449

RESUMEN

Plant cells build nanofibrillar walls that are central to plant growth, morphogenesis and mechanics. Starting from simple sugars, three groups of polysaccharides, namely, cellulose, hemicelluloses and pectins, with very different physical properties are assembled by the cell to make a strong yet extensible wall. This Review describes the physics of wall growth and its regulation by cellular processes such as cellulose production by cellulose synthase, modulation of wall pH by plasma membrane H+-ATPase, wall loosening by expansin and signalling by plant hormones such as auxin and brassinosteroid. In addition, this Review discusses the nuanced roles, properties and interactions of cellulose, matrix polysaccharides and cell wall proteins and describes how wall stress and wall loosening cooperatively result in cell wall growth.


Asunto(s)
Pared Celular , Celulosa , Células Vegetales , Pared Celular/metabolismo , Celulosa/metabolismo , Células Vegetales/metabolismo , Proteínas de Plantas/metabolismo , Desarrollo de la Planta/fisiología , Plantas/metabolismo , Polisacáridos/metabolismo , Glucosiltransferasas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal
2.
Cell ; 184(7): 1724-1739.e16, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33667348

RESUMEN

Divergence of gene function is a hallmark of evolution, but assessing functional divergence over deep time is not trivial. The few alleles available for cross-species studies often fail to expose the entire functional spectrum of genes, potentially obscuring deeply conserved pleiotropic roles. Here, we explore the functional divergence of WUSCHEL HOMEOBOX9 (WOX9), suggested to have species-specific roles in embryo and inflorescence development. Using a cis-regulatory editing drive system, we generate a comprehensive allelic series in tomato, which revealed hidden pleiotropic roles for WOX9. Analysis of accessible chromatin and conserved cis-regulatory sequences identifies the regions responsible for this pleiotropic activity, the functions of which are conserved in groundcherry, a tomato relative. Mimicking these alleles in Arabidopsis, distantly related to tomato and groundcherry, reveals new inflorescence phenotypes, exposing a deeply conserved pleiotropy. We suggest that targeted cis-regulatory mutations can uncover conserved gene functions and reduce undesirable effects in crop improvement.


Asunto(s)
Genes de Plantas , Pleiotropía Genética/genética , Proteínas de Homeodominio/genética , Proteínas de Plantas/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Alelos , Arabidopsis/genética , Sistemas CRISPR-Cas/genética , Cromatina/metabolismo , Regulación de la Expresión Génica de las Plantas , Inflorescencia/genética , Solanum lycopersicum/genética , Mutagénesis , Desarrollo de la Planta/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas , Solanaceae/genética , Solanaceae/crecimiento & desarrollo
3.
Cell ; 184(20): 5201-5214.e12, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34536345

RESUMEN

Certain obligate parasites induce complex and substantial phenotypic changes in their hosts in ways that favor their transmission to other trophic levels. However, the mechanisms underlying these changes remain largely unknown. Here we demonstrate how SAP05 protein effectors from insect-vectored plant pathogenic phytoplasmas take control of several plant developmental processes. These effectors simultaneously prolong the host lifespan and induce witches' broom-like proliferations of leaf and sterile shoots, organs colonized by phytoplasmas and vectors. SAP05 acts by mediating the concurrent degradation of SPL and GATA developmental regulators via a process that relies on hijacking the plant ubiquitin receptor RPN10 independent of substrate ubiquitination. RPN10 is highly conserved among eukaryotes, but SAP05 does not bind insect vector RPN10. A two-amino-acid substitution within plant RPN10 generates a functional variant that is resistant to SAP05 activities. Therefore, one effector protein enables obligate parasitic phytoplasmas to induce a plethora of developmental phenotypes in their hosts.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/parasitología , Interacciones Huésped-Parásitos/fisiología , Parásitos/fisiología , Proteolisis , Ubiquitinas/metabolismo , Secuencia de Aminoácidos , Animales , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Ingeniería Genética , Humanos , Insectos/fisiología , Modelos Biológicos , Fenotipo , Fotoperiodo , Filogenia , Phytoplasma/fisiología , Desarrollo de la Planta , Brotes de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica , Reproducción , Nicotiana , Factores de Transcripción/metabolismo , Transcripción Genética
4.
Cell ; 180(5): 826-828, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32142675

RESUMEN

The carnivorous plant Utricularia gibba forms cup-shaped leaflets to capture prey. Whitewoods et al. (2020) use computational modeling to simulate the formation of the trap's 3D geometry. Directional expansion of the young leaflet is proposed to be a crucial morphogenetic driver, pointing at a fundamental principle of plant development.


Asunto(s)
Lamiales/genética , Expresión Génica , Desarrollo de la Planta , Hojas de la Planta
5.
Annu Rev Cell Dev Biol ; 37: 341-367, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34351784

RESUMEN

Nutrients are vital to life through intertwined sensing, signaling, and metabolic processes. Emerging research focuses on how distinct nutrient signaling networks integrate and coordinate gene expression, metabolism, growth, and survival. We review the multifaceted roles of sugars, nitrate, and phosphate as essential plant nutrients in controlling complex molecular and cellular mechanisms of dynamic signaling networks. Key advances in central sugar and energy signaling mechanisms mediated by the evolutionarily conserved master regulators HEXOKINASE1 (HXK1), TARGET OF RAPAMYCIN (TOR), and SNF1-RELATED PROTEIN KINASE1 (SNRK1) are discussed. Significant progress in primary nitrate sensing, calcium signaling, transcriptome analysis, and root-shoot communication to shape plant biomass and architecture are elaborated. Discoveries on intracellular and extracellular phosphate signaling and the intimate connections with nitrate and sugar signaling are examined. This review highlights the dynamic nutrient, energy, growth, and stress signaling networks that orchestrate systemwide transcriptional, translational, and metabolic reprogramming, modulate growth and developmental programs, and respond to environmental cues.


Asunto(s)
Desarrollo de la Planta , Transducción de Señal , Nutrientes , Desarrollo de la Planta/genética , Plantas/genética , Plantas/metabolismo , Transducción de Señal/genética
6.
Annu Rev Cell Dev Biol ; 35: 239-257, 2019 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-31382759

RESUMEN

Roots provide the primary mechanism that plants use to absorb water and nutrients from their environment. These functions are dependent on developmental mechanisms that direct root growth and branching into regions of soil where these resources are relatively abundant. Water is the most limiting factor for plant growth, and its availability is determined by the weather, soil structure, and salinity. In this review, we define the developmental pathways that regulate the direction of growth and branching pattern of the root system, which together determine the expanse of soil from which a plant can access water. The ability of plants to regulate development in response to the spatial distribution of water is a focus of many recent studies and provides a model for understanding how biological systems utilize positional cues to affect signaling and morphogenesis. A better understanding of these processes will inform approaches to improve crop water use efficiency to more sustainably feed a growing population.


Asunto(s)
Raíces de Plantas/crecimiento & desarrollo , Sequías , Desarrollo de la Planta , Fenómenos Fisiológicos de las Plantas , Plantas , Salinidad , Suelo , Agua
7.
Annu Rev Cell Dev Biol ; 35: 407-431, 2019 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-31403819

RESUMEN

A large and significant portion of eukaryotic transcriptomes consists of noncoding RNAs (ncRNAs) that have minimal or no protein-coding capacity but are functional. Diverse ncRNAs, including both small RNAs and long ncRNAs (lncRNAs), play essential regulatory roles in almost all biological processes by modulating gene expression at the transcriptional and posttranscriptional levels. In this review, we summarize the current knowledge of plant small RNAs and lncRNAs, with a focus on their biogenesis, modes of action, local and systemic movement, and functions at the nexus of plant development and environmental responses. The complex connections among small RNAs, lncRNAs, and small peptides in plants are also discussed, along with the challenges of identifying and investigating new classes of ncRNAs.


Asunto(s)
Desarrollo de la Planta/genética , Plantas/genética , ARN Largo no Codificante/metabolismo , ARN de Planta/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , ARN Largo no Codificante/genética , ARN de Planta/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
8.
Cell ; 171(7): 1708-1708.e0, 2017 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-29245015

RESUMEN

Abscisic acid is a key phytohormone produced in response to abiotic stress conditions and is an activator of abiotic stress resistance mechanisms and a regulator during diverse developmental stages in plants. This SnapShot explores how ABA signaling operates and coordinates resistance during stress responses and modulates plant development.


Asunto(s)
Ácido Abscísico/metabolismo , Desarrollo de la Planta , Transducción de Señal , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/metabolismo
9.
Cell ; 167(2): 325-339, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27716506

RESUMEN

For the past several decades, advances in plant development, physiology, cell biology, and genetics have relied heavily on the model (or reference) plant Arabidopsis thaliana. Arabidopsis resembles other plants, including crop plants, in many but by no means all respects. Study of Arabidopsis alone provides little information on the evolutionary history of plants, evolutionary differences between species, plants that survive in different environments, or plants that access nutrients and photosynthesize differently. Empowered by the availability of large-scale sequencing and new technologies for investigating gene function, many new plant models are being proposed and studied.


Asunto(s)
Modelos Biológicos , Plantas , Arabidopsis , Biodiversidad , Evolución Biológica , Chlorophyta , Desarrollo de la Planta
10.
Cell ; 164(6): 1257-1268, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26967291

RESUMEN

Plants are equipped with the capacity to respond to a large number of diverse signals, both internal ones and those emanating from the environment, that are critical to their survival and adaption as sessile organisms. These signals need to be integrated through highly structured intracellular networks to ensure coherent cellular responses, and in addition, spatiotemporal actions of hormones and peptides both orchestrate local cell differentiation and coordinate growth and physiology over long distances. Further, signal interactions and signaling outputs vary significantly with developmental context. This review discusses our current understanding of the integrated intracellular and intercellular signaling networks that control plant growth.


Asunto(s)
Desarrollo de la Planta , Plantas/metabolismo , Ambiente , Luz , Células Vegetales/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo
11.
Cell ; 161(4): 907-18, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25913191

RESUMEN

In flowering plants, fertilization-dependent degeneration of the persistent synergid cell ensures one-on-one pairings of male and female gametes. Here, we report that the fusion of the persistent synergid cell and the endosperm selectively inactivates the persistent synergid cell in Arabidopsis thaliana. The synergid-endosperm fusion causes rapid dilution of pre-secreted pollen tube attractant in the persistent synergid cell and selective disorganization of the synergid nucleus during the endosperm proliferation, preventing attractions of excess number of pollen tubes (polytubey). The synergid-endosperm fusion is induced by fertilization of the central cell, while the egg cell fertilization predominantly activates ethylene signaling, an inducer of the synergid nuclear disorganization. Therefore, two female gametes (the egg and the central cell) control independent pathways yet coordinately accomplish the elimination of the persistent synergid cell by double fertilization.


Asunto(s)
Arabidopsis/citología , Arabidopsis/metabolismo , Arabidopsis/embriología , Fusión Celular , Endospermo/metabolismo , Mitosis , Péptidos/metabolismo , Desarrollo de la Planta , Proteínas de Plantas/metabolismo , Tubo Polínico/metabolismo
12.
Annu Rev Cell Dev Biol ; 32: 441-468, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27298090

RESUMEN

Programmed cell death (PCD) is a collective term for diverse processes causing an actively induced, tightly controlled cellular suicide. PCD has a multitude of functions in the development and health of multicellular organisms. In comparison to intensively studied forms of animal PCD such as apoptosis, our knowledge of the regulation of PCD in plants remains limited. Despite the importance of PCD in plant development and as a response to biotic and abiotic stresses, the complex molecular networks controlling different forms of plant PCD are only just beginning to emerge. With this review, we provide an update on the considerable progress that has been made over the last decade in our understanding of PCD as an inherent part of plant development. We highlight both functions of developmental PCD and central aspects of its molecular regulation.


Asunto(s)
Apoptosis , Desarrollo de la Planta , Senescencia Celular , Células Vegetales/metabolismo , Reproducción
13.
Nature ; 609(7929): 986-993, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36104568

RESUMEN

Nutrients and energy have emerged as central modulators of developmental programmes in plants and animals1-3. The evolutionarily conserved target of rapamycin (TOR) kinase is a master integrator of nutrient and energy signalling that controls growth. Despite its key regulatory roles in translation, proliferation, metabolism and autophagy2-5, little is known about how TOR shapes developmental transitions and differentiation. Here we show that glucose-activated TOR kinase controls genome-wide histone H3 trimethylation at K27 (H3K27me3) in Arabidopsis thaliana, which regulates cell fate and development6-10. We identify FERTILIZATION-INDEPENDENT ENDOSPERM (FIE), an indispensable component of Polycomb repressive complex 2 (PRC2), which catalyses H3K27me3 (refs. 6-8,10-12), as a TOR target. Direct phosphorylation by TOR promotes the dynamic translocation of FIE from the cytoplasm to the nucleus. Mutation of the phosphorylation site on FIE abrogates the global H3K27me3 landscape, reprogrammes the transcriptome and disrupts organogenesis in plants. Moreover, glucose-TOR-FIE-PRC2 signalling modulates vernalization-induced floral transition. We propose that this signalling axis serves as a nutritional checkpoint leading to epigenetic silencing of key transcription factor genes that specify stem cell destiny in shoot and root meristems and control leaf, flower and silique patterning, branching and vegetative-to-reproduction transition. Our findings reveal a fundamental mechanism of nutrient signalling in direct epigenome reprogramming, with broad relevance for the developmental control of multicellular organisms.


Asunto(s)
Arabidopsis , Glucosa , Diana Mecanicista del Complejo 2 de la Rapamicina , Fosfatidilinositol 3-Quinasas , Desarrollo de la Planta , Complejo Represivo Polycomb 2 , Proteínas Represoras , Transducción de Señal , Arabidopsis/embriología , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Diferenciación Celular/genética , Linaje de la Célula/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Glucosa/metabolismo , Histonas/química , Histonas/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Mutación , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Desarrollo de la Planta/genética , Complejo Represivo Polycomb 2/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética
14.
Annu Rev Cell Dev Biol ; 30: 59-78, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25000996

RESUMEN

The definition of shape in multicellular organisms is a major issue of developmental biology. It is well established that morphogenesis relies on genetic regulation. However, cells, tissues, and organism behaviors are also bound by the laws of physics, which limit the range of possible deformations organisms can undergo but also define what organisms must do to achieve specific shapes. Besides experiments, theoretical models and numerical simulations of growing tissues are powerful tools to investigate the link between genetic regulation and mechanics. Here, we provide an overview of the main mechanical models of plant morphogenesis developed so far, from subcellular scales to whole tissues. The common concepts and discrepancies between the various models are discussed.


Asunto(s)
Fenómenos Químicos , Biología Computacional/métodos , Modelos Biológicos , Desarrollo de la Planta , División Celular , Pared Celular/fisiología , Simulación por Computador , Retroalimentación Fisiológica , Desarrollo de la Planta/fisiología , Procesos Estocásticos
15.
Annu Rev Cell Dev Biol ; 30: 207-33, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25288113

RESUMEN

Development in multicellular organisms requires the coordinated production of a large number of specialized cell types through sophisticated signaling mechanisms. Non-cell-autonomous signals are one of the key mechanisms by which organisms coordinate development. In plants, intercellular movement of transcription factors and other mobile signals, such as hormones and peptides, is essential for normal development. Through a combination of different approaches, a large number of non-cell-autonomous signals that control plant development have been identified. We review some of the transcriptional regulators that traffic between cells, as well as how changes in symplasmic continuity affect and are affected by development. We also review current models for how mobile signals move via plasmodesmata and how movement is inhibited. Finally, we consider challenges in and new tools for studying protein movement.


Asunto(s)
Comunicación Celular/fisiología , Desarrollo de la Planta/fisiología , Proteínas de Plantas/metabolismo , Plasmodesmos/fisiología , Transporte de Proteínas/fisiología , Pared Celular/ultraestructura , Cloroplastos/fisiología , Florigena , Glucanos/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Plasmodesmos/ultraestructura , ARN de Planta/fisiología , Transducción de Señal , Factores de Transcripción/metabolismo , Tricomas/metabolismo
16.
Trends Biochem Sci ; 48(9): 788-800, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37393166

RESUMEN

Temperature is one of the main environmental cues affecting plant growth and development, and plants have evolved multiple mechanisms to sense and acclimate to high temperature. Emerging research has shown that transcription factors, epigenetic factors, and their coordination are essential for plant temperature responses and the resulting phenological adaptation. Here, we summarize recent advances in molecular and cellular mechanisms to understand how plants acclimate to high temperature and describe how plant meristems sense and integrate environmental signals. Furthermore, we lay out future directions for new technologies to reveal heterogeneous responses in different cell types thus improving plant environmental plasticity.


Asunto(s)
Desarrollo de la Planta , Factores de Transcripción , Temperatura , Factores de Transcripción/genética , Plantas/genética , Epigénesis Genética
17.
Annu Rev Genet ; 53: 45-65, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31430180

RESUMEN

The genetic control of the characteristic cell sizes of different species and tissues is a long-standing enigma. Plants are convenient for studying this question in a multicellular context, as their cells do not move and are easily tracked and measured from organ initiation in the meristems to subsequent morphogenesis and differentiation. In this article, we discuss cell size control in plants compared with other organisms. As seen from yeast cells to mammalian cells, size homeostasis is maintained cell autonomously in the shoot meristem. In developing organs, vacuolization contributes to cell size heterogeneity and may resolve conflicts between growth control at the cellular and organ levels. Molecular mechanisms for cell size control have implications for how cell size responds to changes in ploidy, which are particularly important in plant development and evolution. We also discuss comparatively the functional consequences of cell size and their potential repercussions at higher scales, including genome evolution.


Asunto(s)
Meristema/citología , Células Vegetales/fisiología , Ploidias , Tamaño de la Célula , Replicación del ADN , Células Eucariotas/citología , Meristema/crecimiento & desarrollo , Mitosis , Modelos Biológicos , Desarrollo de la Planta/genética , Levaduras/citología , Levaduras/genética
18.
Plant Cell ; 36(5): 1410-1428, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38382088

RESUMEN

The phytohormone auxin is at times called the master regulator of plant processes and has been shown to be a central player in embryo development, the establishment of the polar axis, early aspects of seedling growth, as well as growth and organ formation during later stages of plant development. The Plant Cell has been key, since the inception of the journal, to developing an understanding of auxin biology. Auxin-regulated plant growth control is accomplished by both changes in the levels of active hormones and the sensitivity of plant tissues to these concentration changes. In this historical review, we chart auxin research as it has progressed in key areas and highlight the role The Plant Cell played in these scientific developments. We focus on understanding auxin-responsive genes, transcription factors, reporter constructs, perception, and signal transduction processes. Auxin metabolism is discussed from the development of tryptophan auxotrophic mutants, the molecular biology of conjugate formation and hydrolysis, indole-3-butyric acid metabolism and transport, and key steps in indole-3-acetic acid biosynthesis, catabolism, and transport. This progress leads to an expectation of a more comprehensive understanding of the systems biology of auxin and the spatial and temporal regulation of cellular growth and development.


Asunto(s)
Ácidos Indolacéticos , Reguladores del Crecimiento de las Plantas , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Historia del Siglo XXI , Historia del Siglo XX , Desarrollo de la Planta/genética , Regulación de la Expresión Génica de las Plantas , Transducción de Señal
19.
Plant Cell ; 36(2): 404-426, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37804096

RESUMEN

L-serine (Ser) and L-glycine (Gly) are critically important for the overall functioning of primary metabolism. We investigated the interaction of the phosphorylated pathway of Ser biosynthesis (PPSB) with the photorespiration-associated glycolate pathway of Ser biosynthesis (GPSB) using Arabidopsis thaliana PPSB-deficient lines, GPSB-deficient mutants, and crosses of PPSB with GPSB mutants. PPSB-deficient lines mainly showed retarded primary root growth. Mutation of the photorespiratory enzyme Ser-hydroxymethyltransferase 1 (SHMT1) in a PPSB-deficient background resumed primary root growth and induced a change in the plant metabolic pattern between roots and shoots. Grafting experiments demonstrated that metabolic changes in shoots were responsible for the changes in double mutant development. PPSB disruption led to a reduction in nitrogen (N) and sulfur (S) contents in shoots and a general transcriptional response to nutrient deficiency. Disruption of SHMT1 boosted the Gly flux out of the photorespiratory cycle, which increased the levels of the one-carbon (1C) metabolite 5,10-methylene-tetrahydrofolate and S-adenosylmethionine. Furthermore, disrupting SHMT1 reverted the transcriptional response to N and S deprivation and increased N and S contents in shoots of PPSB-deficient lines. Our work provides genetic evidence of the biological relevance of the Ser-Gly-1C metabolic network in N and S metabolism and in interorgan metabolic homeostasis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Serina/metabolismo , Glicina/metabolismo , Carbono/metabolismo , Nitrógeno/metabolismo , Arabidopsis/metabolismo , Redes y Vías Metabólicas/genética , Azufre/metabolismo , Desarrollo de la Planta
20.
Nature ; 597(7878): 683-687, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34588667

RESUMEN

Plant traits determine how individual plants cope with heterogeneous environments. Despite large variability in individual traits, trait coordination and trade-offs1,2 result in some trait combinations being much more widespread than others, as revealed in the global spectrum of plant form and function (GSPFF3) and the root economics space (RES4) for aboveground and fine-root traits, respectively. Here we combine the traits that define both functional spaces. Our analysis confirms the major trends of the GSPFF and shows that the RES captures additional information. The four dimensions needed to explain the non-redundant information in the dataset can be summarized in an aboveground and a fine-root plane, corresponding to the GSPFF and the RES, respectively. Both planes display high levels of species aggregation, but the differentiation among growth forms, families and biomes is lower on the fine-root plane, which does not include any size-related trait, than on the aboveground plane. As a result, many species with similar fine-root syndromes display contrasting aboveground traits. This highlights the importance of including belowground organs to the GSPFF when exploring the interplay between different natural selection pressures and whole-plant trait integration.


Asunto(s)
Ecosistema , Fenómenos Fisiológicos de las Plantas , Raíces de Plantas/fisiología , Plantas/clasificación , Fenotipo , Desarrollo de la Planta , Análisis de Componente Principal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA