Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 440
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 43(16): 3327-3357, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38907032

RESUMEN

Dynamin 1 mediates fission of endocytic synaptic vesicles in the brain and has two major splice variants, Dyn1xA and Dyn1xB, which are nearly identical apart from the extended C-terminal region of Dyn1xA. Despite a similar set of binding partners, only Dyn1xA is enriched at endocytic zones and accelerates vesicle fission during ultrafast endocytosis. Here, we report that Dyn1xA achieves this localization by preferentially binding to Endophilin A1 through a newly defined binding site within its long C-terminal tail extension. Endophilin A1 binds this site at higher affinity than the previously reported site, and the affinity is determined by amino acids within the Dyn1xA tail but outside the binding site. This interaction is regulated by the phosphorylation state of two serine residues specific to the Dyn1xA variant. Dyn1xA and Endophilin A1 colocalize in patches near the active zone, and mutations disrupting Endophilin A binding to the long tail cause Dyn1xA mislocalization and stalled endocytic pits on the plasma membrane during ultrafast endocytosis. Together, these data suggest that the specificity for ultrafast endocytosis is defined by the phosphorylation-regulated interaction of Endophilin A1 with the C-terminal extension of Dyn1xA.


Asunto(s)
Dinamina I , Endocitosis , Unión Proteica , Animales , Dinamina I/metabolismo , Dinamina I/genética , Fosforilación , Ratones , Sitios de Unión , Humanos , Aciltransferasas , Proteínas Adaptadoras Transductoras de Señales
2.
Cell ; 147(1): 209-22, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21962517

RESUMEN

The GTPase dynamin catalyzes membrane fission by forming a collar around the necks of clathrin-coated pits, but the specific structural interactions and conformational changes that drive this process remain a mystery. We present the GMPPCP-bound structures of the truncated human dynamin 1 helical polymer at 12.2 Å and a fusion protein, GG, linking human dynamin 1's catalytic G domain to its GTPase effector domain (GED) at 2.2 Å. The structures reveal the position and connectivity of dynamin fragments in the assembled structure, showing that G domain dimers only form between tetramers in sequential rungs of the dynamin helix. Using chemical crosslinking, we demonstrate that dynamin tetramers are made of two dimers, in which the G domain of one molecule interacts in trans with the GED of another. Structural comparison of GG(GMPPCP) to the GG transition-state complex identifies a hydrolysis-dependent powerstroke that may play a role in membrane-remodeling events necessary for fission.


Asunto(s)
Dinamina I/química , Dinamina I/metabolismo , Cristalografía por Rayos X , Humanos , Hidrólisis , Modelos Moleculares , Estructura Terciaria de Proteína
3.
Proc Natl Acad Sci U S A ; 120(11): e2215250120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36888655

RESUMEN

Classical dynamins are best understood for their ability to generate vesicles by membrane fission. During clathrin-mediated endocytosis (CME), dynamin is recruited to the membrane through multivalent protein and lipid interactions between its proline-rich domain (PRD) with SRC Homology 3 (SH3) domains in endocytic proteins and its pleckstrin-homology domain (PHD) with membrane lipids. Variable loops (VL) in the PHD bind lipids and partially insert into the membrane thereby anchoring the PHD to the membrane. Recent molecular dynamics (MD) simulations reveal a novel VL4 that interacts with the membrane. Importantly, a missense mutation that reduces VL4 hydrophobicity is linked to an autosomal dominant form of Charcot-Marie-Tooth (CMT) neuropathy. We analyzed the orientation and function of the VL4 to mechanistically link data from simulations with the CMT neuropathy. Structural modeling of PHDs in the cryo-electron microscopy (cryo-EM) cryoEM map of the membrane-bound dynamin polymer confirms VL4 as a membrane-interacting loop. In assays that rely solely on lipid-based membrane recruitment, VL4 mutants with reduced hydrophobicity showed an acute membrane curvature-dependent binding and a catalytic defect in fission. Remarkably, in assays that mimic a physiological multivalent lipid- and protein-based recruitment, VL4 mutants were completely defective in fission across a range of membrane curvatures. Importantly, expression of these mutants in cells inhibited CME, consistent with the autosomal dominant phenotype associated with the CMT neuropathy. Together, our results emphasize the significance of finely tuned lipid and protein interactions for efficient dynamin function.


Asunto(s)
Proteínas Sanguíneas , Dinaminas , Microscopía por Crioelectrón , Dinaminas/metabolismo , Endocitosis/fisiología , Lípidos , Dinamina I/metabolismo
4.
J Neurosci ; 44(25)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641407

RESUMEN

Vertebrate vision begins with light absorption by rod and cone photoreceptors, which transmit signals from their synaptic terminals to second-order neurons: bipolar and horizontal cells. In mouse rods, there is a single presynaptic ribbon-type active zone at which the release of glutamate occurs tonically in the dark. This tonic glutamatergic signaling requires continuous exo- and endocytosis of synaptic vesicles. At conventional synapses, endocytosis commonly requires dynamins: GTPases encoded by three genes (Dnm1-3), which perform membrane scission. Disrupting endocytosis by dynamin deletions impairs transmission at conventional synapses, but the impact of disrupting endocytosis and the role(s) of specific dynamin isoforms at rod ribbon synapses are understood incompletely. Here, we used cell-specific knock-outs (KOs) of the neuron-specific Dnm1 and Dnm3 to investigate the functional roles of dynamin isoforms in rod photoreceptors in mice of either sex. Analysis of synaptic protein expression, synapse ultrastructure, and retinal function via electroretinograms (ERGs) showed that dynamins 1 and 3 act redundantly and are essential for supporting the structural and functional integrity of rod ribbon synapses. Single Dnm3 KO showed no phenotype, and single Dnm1 KO only modestly reduced synaptic vesicle density without affecting vesicle size and overall synapse integrity, whereas double Dnm1/Dnm3 KO impaired vesicle endocytosis profoundly, causing enlarged vesicles, reduced vesicle density, reduced ERG responses, synaptic terminal degeneration, and disassembly and degeneration of postsynaptic processes. Concurrently, cone function remained intact. These results show the fundamental redundancy of dynamins 1 and 3 in regulating the structure and function of rod ribbon synapses.


Asunto(s)
Dinamina III , Dinamina I , Electrorretinografía , Ratones Noqueados , Células Fotorreceptoras Retinianas Bastones , Sinapsis , Animales , Células Fotorreceptoras Retinianas Bastones/fisiología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/ultraestructura , Ratones , Sinapsis/fisiología , Sinapsis/metabolismo , Sinapsis/ultraestructura , Masculino , Femenino , Dinamina I/metabolismo , Dinamina I/genética , Dinamina III/genética , Dinamina III/metabolismo , Ratones Endogámicos C57BL
5.
Mol Ther ; 32(10): 3318-3330, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39127888

RESUMEN

Effective gene therapy for gain-of-function or dominant-negative disease mutations may require eliminating expression of the mutant copy together with wild-type replacement. We evaluated such a knockdown-replace strategy in a mouse model of DNM1 disease, a debilitating and intractable neurodevelopmental epilepsy. To challenge the approach robustly, we expressed a patient-based variant in GABAergic neurons-which resulted in growth delay and lethal seizures evident by postnatal week three-and delivered to newborn pups an AAV9-based vector encoding a ubiquitously expressed, Dnm1-specific interfering RNA (RNAi) bivalently in tail-to-tail configuration with a neuron-specific, RNAi-resistant, codon-optimized Dnm1 cDNA. Pups receiving RNAi or cDNA alone fared no better than untreated pups, whereas the vast majority of mutants receiving modest doses survived with almost full growth recovery. Synaptic recordings of cortical neurons derived from treated pups revealed that significant alterations in transmission from inhibitory to excitatory neurons were rectified by bivalent vector application. To examine the mutant transcriptome and impact of treatment, we used RNA sequencing and functional annotation clustering. Mutants displayed abnormal expression of more than 1,000 genes in highly significant and relevant functional clusters, clusters that were abrogated by treatment. Together these results suggest knockdown-replace as a potentially effective strategy for treating DNM1 and related genetic neurodevelopmental disease.


Asunto(s)
Modelos Animales de Enfermedad , Dinamina I , Terapia Genética , Vectores Genéticos , Animales , Ratones , Terapia Genética/métodos , Dinamina I/genética , Dinamina I/metabolismo , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Humanos , Técnicas de Silenciamiento del Gen , Epilepsia/terapia , Epilepsia/genética , ARN Interferente Pequeño/genética , Mutación , Neuronas GABAérgicas/metabolismo , Dependovirus/genética , Interferencia de ARN
6.
J Cell Sci ; 135(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36245272

RESUMEN

MUNC18-1 (also known as syntaxin-binding protein-1, encoded by Stxbp1) binds to syntaxin-1. Together, these proteins regulate synaptic vesicle exocytosis and have a separate role in neuronal viability. In Stxbp1 null mutant neurons, syntaxin-1 protein levels are reduced by 70%. Here, we show that dynamin-1 protein levels are reduced at least to the same extent, and transcript levels of Dnm1 (which encodes dynamin-1) are reduced by 50% in Stxbp1 null mutant brain. Several, but not all, other endocytic proteins were also found to be reduced, but to a lesser extent. The reduced dynamin-1 expression was not observed in SNAP25 null mutants or in double-null mutants of MUNC13-1 and -2 (also known as Unc13a and Unc13b, respectively), in which synaptic vesicle exocytosis is also blocked. Co-immunoprecipitation experiments demonstrated that dynamin-1 and MUNC18-1 do not bind directly. Furthermore, MUNC18-1 levels were unaltered in neurons lacking all three dynamin paralogues. Finally, overexpression of dynamin-1 was not sufficient to rescue neuronal viability in Stxbp1 null mutant neurons; thus, the reduction in dynamin-1 is not the single cause of neurodegeneration of these neurons. The reduction in levels of dynamin-1 protein and mRNA, as well as of other endocytosis proteins, in Stxbp1 null mutant neurons suggests that MUNC18-1 directly or indirectly controls expression of other presynaptic genes.


Asunto(s)
Dinamina I , Proteínas Munc18 , Dinamina I/genética , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Sintaxina 1/genética , Sintaxina 1/metabolismo , Neuronas/metabolismo , Exocitosis/fisiología
7.
Cell ; 138(3): 549-61, 2009 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-19665976

RESUMEN

The endoplasmic reticulum (ER) consists of tubules that are shaped by the reticulons and DP1/Yop1p, but how the tubules form an interconnected network is unknown. Here, we show that mammalian atlastins, which are dynamin-like, integral membrane GTPases, interact with the tubule-shaping proteins. The atlastins localize to the tubular ER and are required for proper network formation in vivo and in vitro. Depletion of the atlastins or overexpression of dominant-negative forms inhibits tubule interconnections. The Sey1p GTPase in S. cerevisiae is likely a functional ortholog of the atlastins; it shares the same signature motifs and membrane topology and interacts genetically and physically with the tubule-shaping proteins. Cells simultaneously lacking Sey1p and a tubule-shaping protein have ER morphology defects. These results indicate that formation of the tubular ER network depends on conserved dynamin-like GTPases. Since atlastin-1 mutations cause a common form of hereditary spastic paraplegia, we suggest ER-shaping defects as a neuropathogenic mechanism.


Asunto(s)
Dinamina I/metabolismo , Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Dinaminas/metabolismo , Saccharomyces cerevisiae/metabolismo
8.
Nature ; 560(7717): 258-262, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30069048

RESUMEN

Membrane fission is a fundamental process in the regulation and remodelling of cell membranes. Dynamin, a large GTPase, mediates membrane fission by assembling around, constricting and cleaving the necks of budding vesicles1. Here we report a 3.75 Å resolution cryo-electron microscopy structure of the membrane-associated helical polymer of human dynamin-1 in the GMPPCP-bound state. The structure defines the helical symmetry of the dynamin polymer and the positions of its oligomeric interfaces, which were validated by cell-based endocytosis assays. Compared to the lipid-free tetramer form2, membrane-associated dynamin binds to the lipid bilayer with its pleckstrin homology domain (PHD) and self-assembles across the helical rungs via its guanine nucleotide-binding (GTPase) domain3. Notably, interaction with the membrane and helical assembly are accommodated by a severely bent bundle signalling element (BSE), which connects the GTPase domain to the rest of the protein. The BSE conformation is asymmetric across the inter-rung GTPase interface, and is unique compared to all known nucleotide-bound states of dynamin. The structure suggests that the BSE bends as a result of forces generated from the GTPase dimer interaction that are transferred across the stalk to the PHD and lipid membrane. Mutations that disrupted the BSE kink impaired endocytosis. We also report a 10.1 Å resolution cryo-electron microscopy map of a super-constricted dynamin polymer showing localized conformational changes at the BSE and GTPase domains, induced by GTP hydrolysis, that drive membrane constriction. Together, our results provide a structural basis for the mechanism of action of dynamin on the lipid membrane.


Asunto(s)
Biopolímeros/química , Biopolímeros/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Microscopía por Crioelectrón , Dinamina I/metabolismo , Dinamina I/ultraestructura , Biopolímeros/genética , Membrana Celular/química , Dinamina I/química , Dinamina I/genética , Endocitosis/genética , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Hidrólisis , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestructura , Mutación , Dominios Proteicos , Multimerización de Proteína
10.
Nat Chem Biol ; 17(5): 558-566, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33649598

RESUMEN

G-protein-coupled receptor-regulated cAMP production from endosomes can specify signaling to the nucleus by moving the source of cAMP without changing its overall amount. How this is possible remains unknown because cAMP gradients dissipate over the nanoscale, whereas endosomes typically localize micrometers from the nucleus. We show that the key location-dependent step for endosome-encoded transcriptional control is nuclear entry of cAMP-dependent protein kinase (PKA) catalytic subunits. These are sourced from punctate accumulations of PKA holoenzyme that are densely distributed in the cytoplasm and titrated by global cAMP into a discrete metastable state, in which catalytic subunits are bound but dynamically exchange. Mobile endosomes containing activated receptors collide with the metastable PKA puncta and pause in close contact. We propose that these properties enable cytoplasmic PKA to act collectively like a semiconductor, converting nanoscale cAMP gradients generated from endosomes into microscale elevations of free catalytic subunits to direct downstream signaling.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Citoplasma/metabolismo , Endosomas/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Transducción de Señal/genética , Animales , Dominio Catalítico , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Cadenas Pesadas de Clatrina/antagonistas & inhibidores , Cadenas Pesadas de Clatrina/genética , Cadenas Pesadas de Clatrina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Citoplasma/ultraestructura , Dinamina I/genética , Dinamina I/metabolismo , Endosomas/ultraestructura , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Holoenzimas/genética , Holoenzimas/metabolismo , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Unión Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Receptores Adrenérgicos beta 2/genética
11.
J Med Genet ; 59(6): 549-553, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34172529

RESUMEN

BACKGROUND: Developmental and epileptic encephalopathies (DEEs) represent a group of severe neurological disorders characterised by an onset of refractory seizures during infancy or early childhood accompanied by psychomotor developmental delay or regression. DEEs are genetically heterogeneous with, to date, more than 80 different genetic subtypes including DEE31 caused by heterozygous missense variants in DNM1. METHODS: We performed a detailed clinical characterisation of two unrelated patients with DEE and used whole-exome sequencing to identify causative variants in these individuals. The identified variants were tested for cosegregation in the respective families. RESULTS: We excluded pathogenic variants in known, DEE-associated genes. We identified homozygous nonsense variants, c.97C>T; p.(Gln33*) in family 1 and c.850C>T; p.(Gln284*) in family 2, in the DNM1 gene, indicating that biallelic, loss-of-function pathogenic variants in DNM1 cause DEE. CONCLUSION: Our finding that homozygous, loss-of-function variants in DNM1 cause DEE expands the spectrum of pathogenic variants in DNM1. All parents who were heterozygous carriers of the identified loss-of-function variants were healthy and did not show any clinical symptoms, indicating that the type of mutation in DNM1 determines the pattern of inheritance.


Asunto(s)
Encefalopatías , Dinamina I , Mutación Missense , Encefalopatías/genética , Preescolar , Dinamina I/genética , Heterocigoto , Humanos , Mutación , Mutación Missense/genética , Secuenciación del Exoma
12.
J Cell Sci ; 132(12)2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-31118234

RESUMEN

There has been a consensus that actin plays an important role in scission of the clathrin-coated pits (CCPs) together with large GTPases of the dynamin family in metazoan cells. However, the recruitment, regulation and functional interdependence of actin and dynamin during this process remain inadequately understood. Here, based on small-scale screening and in vivo live-imaging techniques, we identified a novel set of molecules underlying CCP scission in the multicellular organism Caenorhabditis elegans We found that loss of Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP-1) impaired CCP scission in a manner that is independent of the C. elegans homolog of WASP/N-WASP (WSP-1) and is mediated by direct binding to G-actin. Moreover, the cortactin-binding domain of WIP-1 serves as the binding interface for DBN-1 (also known in other organisms as Abp1), another actin-binding protein. We demonstrate that the interaction between DBN-1 and F-actin is essential for Dynamin-1 (DYN-1) recruitment at endocytic sites. In addition, the recycling regulator RME-1, a homolog of mammalian Eps15 homology (EH) domain-containing proteins, is increasingly recruited at the arrested endocytic intermediates induced by F-actin loss or DYN-1 inactivation, which further stabilizes the tubular endocytic intermediates. Our study provides new insights into the molecular network underlying F-actin participation in the scission of CCPs.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Actinas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas del Citoesqueleto/metabolismo , Dinamina I/metabolismo , Vesículas Transportadoras/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Intestinos/efectos de los fármacos , Intestinos/patología
13.
FASEB J ; 34(4): 5162-5177, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32065700

RESUMEN

During folliculogenesis, oocytes are dependent on metabolic and molecular support from surrounding somatic cells. Here, we examined the role of the dynamin (DNM) family of mechanoenzymes in mediating endocytotic uptake into growing follicular oocytes. We found DNM1 and DNM2 to be highly expressed in growing follicular oocytes as well as in mature germinal vesicle (GV) and metaphase II (MII) stage oocytes. Moreover, oocyte-specific conditional knockout (cKO) of DNM2 (DNM2Δ) led to complete sterility, with follicles arresting at the preantral stage of development. In addition, DNM2Δ ovaries were characterized by disrupted follicular growth as well as oocyte and follicle apoptosis. Further, the loss of DNM activity, either through DNM2 cKO or through pharmacological inhibition (Dyngo 6a) led to the impairment of endocytotic pathways in preantral oocytes as well as in mature GV and MII oocytes, respectively. Loss of DNM activity resulted in the redistribution of endosomes and the misslocalization of clathrin and actin, suggesting dysfunctional endocytosis. Notably, there was no observable effect on the fertility of DNM1Δ females. Our study has provided new insight into the complex and dynamic nature of oocyte growth during folliculogenesis, suggesting a role for DNM2 in mediating the endocytotic events that are essential for oocyte development.


Asunto(s)
Dinamina II/fisiología , Dinamina I/fisiología , Endocitosis , Fertilidad , Oocitos/citología , Folículo Ovárico/citología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Oocitos/fisiología , Folículo Ovárico/fisiología
14.
FASEB J ; 34(12): 16449-16463, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33070431

RESUMEN

Dynamin 1 is a neuronal endocytic protein that participates in vesicle formation by scission of invaginated membranes. Dynamin 1 is also expressed in the kidney; however, its physiological significance to this organ remains unknown. Here, we show that dynamin 1 is crucial for microtubule organization and stabilization in glomerular podocytes. By immunofluorescence and immunoelectron microscopy, dynamin 1 was concentrated at microtubules at primary processes in rat podocytes. By immunofluorescence of differentiated mouse podocytes (MPCs), dynamin 1 was often colocalized with microtubule bundles, which radially arranged toward periphery of expanded podocyte. In dynamin 1-depleted MPCs by RNAi, α-tubulin showed a dispersed linear filament-like localization, and microtubule bundles were rarely observed. Furthermore, dynamin 1 depletion resulted in the formation of discontinuous, short acetylated α-tubulin fragments, and the decrease of microtubule-rich protrusions. Dynamins 1 and 2 double-knockout podocytes showed dispersed acetylated α-tubulin and rare protrusions. In vitro, dynamin 1 polymerized around microtubules and cross-linked them into bundles, and increased their resistance to the disassembly-inducing reagents Ca2+ and podophyllotoxin. In addition, overexpression and depletion of dynamin 1 in MPCs increased and decreased the nocodazole resistance of microtubules, respectively. These results suggest that dynamin 1 supports the microtubule bundle formation and participates in the stabilization of microtubules.


Asunto(s)
Dinamina I/metabolismo , Riñón/metabolismo , Microtúbulos/metabolismo , Podocitos/metabolismo , Animales , Células Cultivadas , Endocitosis/fisiología , Células Epiteliales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Ratas , Tubulina (Proteína)/metabolismo
15.
PLoS Biol ; 16(4): e2005377, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29668686

RESUMEN

Dynamin Guanosine Triphosphate hydrolases (GTPases) are best studied for their role in the terminal membrane fission process of clathrin-mediated endocytosis (CME), but they have also been proposed to regulate earlier stages of CME. Although highly enriched in neurons, dynamin-1 (Dyn1) is, in fact, widely expressed along with Dyn2 but inactivated in non-neuronal cells via phosphorylation by glycogen synthase kinase-3 beta (GSK3ß) kinase. Here, we study the differential, isoform-specific functions of Dyn1 and Dyn2 as regulators of CME. Endogenously expressed Dyn1 and Dyn2 were fluorescently tagged either separately or together in two cell lines with contrasting Dyn1 expression levels. By quantitative live cell dual- and triple-channel total internal reflection fluorescence microscopy, we find that Dyn2 is more efficiently recruited to clathrin-coated pits (CCPs) than Dyn1, and that Dyn2 but not Dyn1 exhibits a pronounced burst of assembly, presumably into supramolecular collar-like structures that drive membrane scission and clathrin-coated vesicle (CCV) formation. Activation of Dyn1 by acute inhibition of GSK3ß results in more rapid endocytosis of transferrin receptors, increased rates of CCP initiation, and decreased CCP lifetimes but did not significantly affect the extent of Dyn1 recruitment to CCPs. Thus, activated Dyn1 can regulate early stages of CME that occur well upstream of fission, even when present at low, substoichiometric levels relative to Dyn2. Under physiological conditions, Dyn1 is activated downstream of epidermal growth factor receptor (EGFR) signaling to alter CCP dynamics. We identify sorting nexin 9 (SNX9) as a preferred binding partner to activated Dyn1 that is partially required for Dyn1-dependent effects on early stages of CCP maturation. Together, we decouple regulatory and scission functions of dynamins and report a scission-independent, isoform-specific regulatory role for Dyn1 in CME.


Asunto(s)
Vesículas Cubiertas por Clatrina/metabolismo , Clatrina/metabolismo , Dinamina II/metabolismo , Dinamina I/metabolismo , Endocitosis/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células A549 , Línea Celular Tumoral , Clatrina/genética , Vesículas Cubiertas por Clatrina/ultraestructura , Dinamina I/genética , Dinamina II/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulación de la Expresión Génica , Glucógeno Sintasa Quinasa 3 beta/genética , Humanos , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Unión Proteica , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo , Transducción de Señal , Nexinas de Clasificación/genética , Nexinas de Clasificación/metabolismo , Coloración y Etiquetado/métodos
16.
Nature ; 524(7563): 109-113, 2015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-26123023

RESUMEN

Fusion and fission drive all vesicular transport. Although topologically opposite, these reactions pass through the same hemi-fusion/fission intermediate, characterized by a 'stalk' in which only the outer membrane monolayers of the two compartments have merged to form a localized non-bilayer connection. Formation of the hemi-fission intermediate requires energy input from proteins catalysing membrane remodelling; however, the relationship between protein conformational rearrangements and hemi-fusion/fission remains obscure. Here we analysed how the GTPase cycle of human dynamin 1, the prototypical membrane fission catalyst, is directly coupled to membrane remodelling. We used intramolecular chemical crosslinking to stabilize dynamin in its GDP·AlF4(-)-bound transition state. In the absence of GTP this conformer produced stable hemi-fission, but failed to progress to complete fission, even in the presence of GTP. Further analysis revealed that the pleckstrin homology domain (PHD) locked in its membrane-inserted state facilitated hemi-fission. A second mode of dynamin activity, fuelled by GTP hydrolysis, couples dynamin disassembly with cooperative diminishing of the PHD wedging, thus destabilizing the hemi-fission intermediate to complete fission. Molecular simulations corroborate the bimodal character of dynamin action and indicate radial and axial forces as dominant, although not independent, drivers of hemi-fission and fission transformations, respectively. Mirrored in the fusion reaction, the force bimodality might constitute a general paradigm for leakage-free membrane remodelling.


Asunto(s)
Membrana Celular/metabolismo , Vesículas Citoplasmáticas/metabolismo , Dinamina I/metabolismo , Biocatálisis , Proteínas Sanguíneas/química , Dinamina I/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Hidrólisis , Fusión de Membrana , Modelos Moleculares , Fosfoproteínas/química , Conformación Proteica
17.
Nature ; 519(7542): 223-8, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25533962

RESUMEN

Despite three decades of successful, predominantly phenotype-driven discovery of the genetic causes of monogenic disorders, up to half of children with severe developmental disorders of probable genetic origin remain without a genetic diagnosis. Particularly challenging are those disorders rare enough to have eluded recognition as a discrete clinical entity, those with highly variable clinical manifestations, and those that are difficult to distinguish from other, very similar, disorders. Here we demonstrate the power of using an unbiased genotype-driven approach to identify subsets of patients with similar disorders. By studying 1,133 children with severe, undiagnosed developmental disorders, and their parents, using a combination of exome sequencing and array-based detection of chromosomal rearrangements, we discovered 12 novel genes associated with developmental disorders. These newly implicated genes increase by 10% (from 28% to 31%) the proportion of children that could be diagnosed. Clustering of missense mutations in six of these newly implicated genes suggests that normal development is being perturbed by an activating or dominant-negative mechanism. Our findings demonstrate the value of adopting a comprehensive strategy, both genome-wide and nationwide, to elucidate the underlying causes of rare genetic disorders.


Asunto(s)
Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Adolescente , Animales , Proteínas Portadoras/genética , Niño , Preescolar , Proteínas Cromosómicas no Histona/genética , Aberraciones Cromosómicas , ARN Helicasas DEAD-box/genética , Proteínas de Unión al ADN/genética , Dinamina I/genética , Exoma/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes Dominantes/genética , Genoma Humano/genética , Factores de Intercambio de Guanina Nucleótido/genética , Proteínas de Homeodominio/genética , Humanos , Lactante , Recién Nacido , Masculino , Mutación Missense/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Padres , Fosfoproteínas/genética , Complejo Represivo Polycomb 1/genética , Proteína Fosfatasa 2/genética , Proteínas Serina-Treonina Quinasas/genética , Enfermedades Raras/genética , Proteínas Represoras , Factores de Transcripción/genética , Transposasas/genética , Reino Unido , Pez Cebra/genética
18.
Mol Ther ; 28(7): 1706-1716, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32353324

RESUMEN

Developmental and epileptic encephalopathy (DEE) associated with de novo variants in the gene encoding dynamin-1 (DNM1) is a severe debilitating disease with no pharmacological remedy. Like most genetic DEEs, the majority of DNM1 patients suffer from therapy-resistant seizures and comorbidities such as intellectual disability, developmental delay, and hypotonia. We tested RNAi gene therapy in the Dnm1 fitful mouse model of DEE using a Dnm1-targeted therapeutic microRNA delivered by a self-complementary adeno-associated virus vector. Untreated or control-injected fitful mice have growth delay, severe ataxia, and lethal tonic-clonic seizures by 3 weeks of age. These major impairments are mitigated following a single treatment in newborn mice, along with key underlying cellular features including gliosis, cell death, and aberrant neuronal metabolic activity typically associated with recurrent seizures. Our results underscore the potential for RNAi gene therapy to treat DNM1 disease and other genetic DEEs where treatment would require inhibition of the pathogenic gene product.


Asunto(s)
Dinamina I/genética , Síndromes Epilépticos/terapia , Terapia Genética/métodos , MicroARNs/genética , Animales , Animales Recién Nacidos , Dependovirus/genética , Modelos Animales de Enfermedad , Síndromes Epilépticos/genética , Síndromes Epilépticos/patología , Vectores Genéticos/administración & dosificación , Humanos , Infusiones Intraventriculares , Ratones , MicroARNs/administración & dosificación , Interferencia de ARN , Resultado del Tratamiento
19.
J Neurosci ; 39(2): 199-211, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30381405

RESUMEN

Dynamin 1 (dyn1) is required for clathrin-mediated endocytosis in most secretory (neuronal and neuroendocrine) cells. There are two modes of Ca2+-dependent catecholamine release from single dense-core vesicles: full-quantal (quantal) and subquantal in adrenal chromaffin cells, but their relative occurrences and impacts on total secretion remain unclear. To address this fundamental question in neurotransmission area using both sexes of animals, here we report the following: (1) dyn1-KO increased quantal size (QS, but not vesicle size/content) by ≥250% in dyn1-KO mice; (2) the KO-increased QS was rescued by dyn1 (but not its deficient mutant or dyn2); (3) the ratio of quantal versus subquantal events was increased by KO; (4) following a release event, more protein contents were retained in WT versus KO vesicles; and (5) the fusion pore size (dp) was increased from ≤9 to ≥9 nm by KO. Therefore, Ca2+-induced exocytosis is generally a subquantal release in sympathetic adrenal chromaffin cells, implying that neurotransmitter release is generally regulated by dynamin in neuronal cells.SIGNIFICANCE STATEMENT Ca2+-dependent neurotransmitter release from a single vesicle is the primary event in all neurotransmission, including synaptic/neuroendocrine forms. To determine whether Ca2+-dependent vesicular neurotransmitter release is "all-or-none" (quantal), we provide compelling evidence that most Ca2+-induced secretory events occur via the subquantal mode in native adrenal chromaffin cells. This subquantal release mode is promoted by dynamin 1, which is universally required for most secretory cells, including neurons and neuroendocrine cells. The present work with dyn1-KO mice further confirms that Ca2+-dependent transmitter release is mainly via subquantal mode, suggesting that subquantal release could be also important in other types of cells.


Asunto(s)
Glándulas Suprarrenales/metabolismo , Células Cromafines/metabolismo , Dinamina I/fisiología , Neurotransmisores/metabolismo , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo , Glándulas Suprarrenales/citología , Animales , Calcio/farmacología , Catecolaminas/metabolismo , Dinamina I/genética , Endocitosis/fisiología , Exocitosis/efectos de los fármacos , Femenino , Técnicas In Vitro , Masculino , Ratones , Ratones Noqueados , Mutación/genética , Vesículas Secretoras/metabolismo
20.
Mol Pharmacol ; 97(1): 2-8, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31704717

RESUMEN

The thyrotropin (TSH) receptor (TSHR) signals via G proteins of all four classes and ß-arrestin 1. Stimulation of TSHR leads to increasing cAMP production that has been reported as a monotonic dose-response curve that plateaus at high TSH doses. In HEK 293 cells overexpressing TSHRs (HEK-TSHR cells), we found that TSHR activation exhibits an "inverted U-shaped dose-response curve" with increasing cAMP production at low doses of TSH and decreased cAMP production at high doses (>1 mU/ml). Since protein kinase A inhibition by H-89 and knockdown of ß-arrestin 1 or ß-arrestin 2 did not affect the decreased cAMP production at high TSH doses, we studied the roles of TSHR downregulation and of Gi/Go proteins. A high TSH dose (100 mU/ml) caused a 33% decrease in cell-surface TSHR. However, because inhibiting TSHR downregulation with combined expression of a dominant negative dynamin 1 and ß-arrestin 2 knockdown had no effect, we concluded that downregulation is not involved in the biphasic cAMP response. Pertussis toxin, which inhibits activation of Gi/Go, abolished the biphasic response with no statistically significant difference in cAMP levels at 1 and 100 mU/ml TSH. Concordantly, co-knockdown of Gi/Go proteins increased cAMP levels stimulated by 100 mU/ml TSH from 55% to 73% of the peak level. These data show that biphasic regulation of cAMP production is mediated by Gs and Gi/Go at low and high TSH doses, respectively, which may represent a mechanism to prevent overstimulation in TSHR-expressing cells. SIGNIFICANCE STATEMENT: We demonstrate biphasic regulation of TSH-mediated cAMP production involving coupling of the TSH receptor (TSHR) to Gs at low TSH doses and to Gi/o at high TSH doses. We suggest that this biphasic cAMP response allows the TSHR to mediate responses at lower levels of TSH and that decreased cAMP production at high doses may represent a mechanism to prevent overstimulation of TSHR-expressing cells. This mechanism could prevent chronic stimulation of thyroid gland function.


Asunto(s)
AMP Cíclico/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Receptores de Tirotropina/metabolismo , Transducción de Señal/efectos de los fármacos , Tirotropina/administración & dosificación , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Dinamina I/genética , Dinamina I/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/antagonistas & inhibidores , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Toxina del Pertussis/administración & dosificación , Receptores de Tirotropina/genética , Transducción de Señal/genética , Arrestina beta 2/genética , Arrestina beta 2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA