Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Mol Cell ; 84(13): 2490-2510.e9, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38996459

RESUMEN

The formation of dynamic protein filaments contributes to various biological functions by clustering individual molecules together and enhancing their binding to ligands. We report such a propensity for the BTB domains of certain proteins from the ZBTB family, a large eukaryotic transcription factor family implicated in differentiation and cancer. Working with Xenopus laevis and human proteins, we solved the crystal structures of filaments formed by dimers of the BTB domains of ZBTB8A and ZBTB18 and demonstrated concentration-dependent higher-order assemblies of these dimers in solution. In cells, the BTB-domain filamentation supports clustering of full-length human ZBTB8A and ZBTB18 into dynamic nuclear foci and contributes to the ZBTB18-mediated repression of a reporter gene. The BTB domains of up to 21 human ZBTB family members and two related proteins, NACC1 and NACC2, are predicted to behave in a similar manner. Our results suggest that filamentation is a more common feature of transcription factors than is currently appreciated.


Asunto(s)
Dominio BTB-POZ , Factores de Transcripción , Proteínas de Xenopus , Animales , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Cristalografía por Rayos X , Células HEK293 , Modelos Moleculares , Unión Proteica , Multimerización de Proteína , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/química , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Xenopus laevis , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/química
2.
J Med Genet ; 61(5): 490-501, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38296633

RESUMEN

INTRODUCTION: KCTD15 encodes an oligomeric BTB domain protein reported to inhibit neural crest formation through repression of Wnt/beta-catenin signalling, as well as transactivation by TFAP2. Heterozygous missense variants in the closely related paralogue KCTD1 cause scalp-ear-nipple syndrome. METHODS: Exome sequencing was performed on a two-generation family affected by a distinctive phenotype comprising a lipomatous frontonasal malformation, anosmia, cutis aplasia of the scalp and/or sparse hair, and congenital heart disease. Identification of a de novo missense substitution within KCTD15 led to targeted sequencing of DNA from a similarly affected sporadic patient, revealing a different missense mutation. Structural and biophysical analyses were performed to assess the effects of both amino acid substitutions on the KCTD15 protein. RESULTS: A heterozygous c.310G>C variant encoding p.(Asp104His) within the BTB domain of KCTD15 was identified in an affected father and daughter and segregated with the phenotype. In the sporadically affected patient, a de novo heterozygous c.263G>A variant encoding p.(Gly88Asp) was present in KCTD15. Both substitutions were found to perturb the pentameric assembly of the BTB domain. A crystal structure of the BTB domain variant p.(Gly88Asp) revealed a closed hexameric assembly, whereas biophysical analyses showed that the p.(Asp104His) substitution resulted in a monomeric BTB domain likely to be partially unfolded at physiological temperatures. CONCLUSION: BTB domain substitutions in KCTD1 and KCTD15 cause clinically overlapping phenotypes involving craniofacial abnormalities and cutis aplasia. The structural analyses demonstrate that missense substitutions act through a dominant negative mechanism by disrupting the higher order structure of the KCTD15 protein complex.


Asunto(s)
Dominio BTB-POZ , Anomalías Craneofaciales , Cara , Humanos , Anomalías Múltiples , Proteínas Co-Represoras/genética , Anomalías Craneofaciales/genética , Displasia Ectodérmica , Cara/anomalías , Mutación Missense/genética , Síndrome
3.
Biomolecules ; 14(2)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38397429

RESUMEN

Zinc finger and BTB domain-containing 20 (ZBTB20), which was initially identified in human dendritic cells, belongs to a family of transcription factors (TFs) with an N-terminal BTB domain and one or more C-terminal DNA-binding zinc finger domains. Under physiological conditions, ZBTB20 acts as a transcriptional repressor in cellular development and differentiation, metabolism, and innate immunity. Interestingly, multiple lines of evidence from mice and human systems have revealed the importance of ZBTB20 in the pathogenesis and development of cancers. ZBTB20 is not only a hotspot of genetic variation or fusion in many types of human cancers, but also a key TF or intermediator involving in the dysregulation of cancer cells. Given the diverse functions of ZBTB20 in both health and disease, we herein summarize the structure and physiological roles of ZBTB20, with an emphasis on the latest findings on tumorigenesis and cancer progression.


Asunto(s)
Dominio BTB-POZ , Neoplasias , Animales , Humanos , Diferenciación Celular , Neoplasias/genética , Dedos de Zinc
4.
Signal Transduct Target Ther ; 9(1): 20, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38263084

RESUMEN

A lasting imbalance between fatty acid synthesis and consumption leads to non-alcoholic fatty liver disease (NAFLD), coupled with hepatitis and insulin resistance. Yet the details of the underlying mechanisms are not fully understood. Here, we unraveled that the expression of the transcription factor Zbtb18 is markedly decreased in the livers of both patients and murine models of NAFLD. Hepatic Zbtb18 knockout promoted NAFLD features like impaired energy expenditure and fatty acid oxidation (FAO), and induced insulin resistance. Conversely, hepatic Zbtb18 overexpression alleviated hepato-steatosis, insulin resistance, and hyperglycemia in mice fed on a high-fat diet (HFD) or in diabetic mice. Notably, in vitro and in vivo mechanistic studies revealed that Zbtb18 transcriptional activation of Farnesoid X receptor (FXR) mediated FAO and Clathrin Heavy Chain (CLTC) protein hinders NLRP3 inflammasome activity. This key mechanism by which hepatocyte's Zbtb18 expression alleviates NAFLD and consequent liver fibrosis was further verified by FXR's deletion and forced expression in mice and cultured mouse primary hepatocytes (MPHs). Moreover, CLTC deletion significantly abrogated the hepatic Zbtb18 overexpression-driven inhibition of NLRP3 inflammasome activity in macrophages. Altogether, Zbtb18 transcriptionally activates the FXR-mediated FAO and CLTC expression, which inhibits NLRP3 inflammasome's activity alleviating inflammatory stress and insulin resistance, representing an attractive remedy for hepatic steatosis and fibrosis.


Asunto(s)
Dominio BTB-POZ , Diabetes Mellitus Experimental , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Ácidos Grasos , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA