RESUMEN
The neural crest is an embryonic stem cell population unique to vertebrates1 whose expansion and diversification are thought to have promoted vertebrate evolution by enabling emergence of new cell types and structures such as jaws and peripheral ganglia2. Although jawless vertebrates have sensory ganglia, convention has it that trunk sympathetic chain ganglia arose only in jawed vertebrates3-8. Here, by contrast, we report the presence of trunk sympathetic neurons in the sea lamprey, Petromyzon marinus, an extant jawless vertebrate. These neurons arise from sympathoblasts near the dorsal aorta that undergo noradrenergic specification through a transcriptional program homologous to that described in gnathostomes. Lamprey sympathoblasts populate the extracardiac space and extend along the length of the trunk in bilateral streams, expressing the catecholamine biosynthetic pathway enzymes tyrosine hydroxylase and dopamine ß-hydroxylase. CM-DiI lineage tracing analysis further confirmed that these cells derive from the trunk neural crest. RNA sequencing of isolated ammocoete trunk sympathoblasts revealed gene profiles characteristic of sympathetic neuron function. Our findings challenge the prevailing dogma that posits that sympathetic ganglia are a gnathostome innovation, instead suggesting that a late-developing rudimentary sympathetic nervous system may have been characteristic of the earliest vertebrates.
Asunto(s)
Evolución Biológica , Linaje de la Célula , Cresta Neural , Neuronas , Sistema Nervioso Simpático , Vertebrados , Animales , Dopamina beta-Hidroxilasa/metabolismo , Dopamina beta-Hidroxilasa/genética , Ganglios Simpáticos/citología , Ganglios Simpáticos/metabolismo , Cresta Neural/citología , Cresta Neural/metabolismo , Neuronas/citología , Neuronas/metabolismo , Petromyzon/anatomía & histología , Petromyzon/embriología , Petromyzon/genética , Sistema Nervioso Simpático/citología , Sistema Nervioso Simpático/fisiología , Tirosina 3-Monooxigenasa/metabolismo , Tirosina 3-Monooxigenasa/genética , Vertebrados/anatomía & histología , Vertebrados/embriología , Vertebrados/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Aorta/anatomía & histología , Aorta/embriología , Catecolaminas/biosíntesis , Catecolaminas/metabolismo , Vías BiosintéticasRESUMEN
Chronic sleep disruption (CSD), from insufficient or fragmented sleep and is an important risk factor for Alzheimer's disease (AD). Underlying mechanisms are not understood. CSD in mice results in degeneration of locus ceruleus neurons (LCn) and CA1 hippocampal neurons and increases hippocampal amyloid-ß42 (Aß42), entorhinal cortex (EC) tau phosphorylation (p-tau), and glial reactivity. LCn injury is increasingly implicated in AD pathogenesis. CSD increases NE turnover in LCn, and LCn norepinephrine (NE) metabolism activates asparagine endopeptidase (AEP), an enzyme known to cleave amyloid precursor protein (APP) and tau into neurotoxic fragments. We hypothesized that CSD would activate LCn AEP in an NE-dependent manner to induce LCn and hippocampal injury. Here, we studied LCn, hippocampal, and EC responses to CSD in mice deficient in NE [dopamine ß-hydroxylase (Dbh)-/-] and control male and female mice, using a model of chronic fragmentation of sleep (CFS). Sleep was equally fragmented in Dbh -/- and control male and female mice, yet only Dbh -/- mice conferred resistance to CFS loss of LCn, LCn p-tau, and LCn AEP upregulation and activation as evidenced by an increase in AEP-cleaved APP and tau fragments. Absence of NE also prevented a CFS increase in hippocampal AEP-APP and Aß42 but did not prevent CFS-increased AEP-tau and p-tau in the EC. Collectively, this work demonstrates AEP activation by CFS, establishes key roles for NE in both CFS degeneration of LCn neurons and CFS promotion of forebrain Aß accumulation, and, thereby, identifies a key molecular link between CSD and specific AD neural injuries.
Asunto(s)
Péptidos beta-Amiloides , Cisteína Endopeptidasas , Hipocampo , Locus Coeruleus , Norepinefrina , Privación de Sueño , Animales , Péptidos beta-Amiloides/metabolismo , Norepinefrina/metabolismo , Ratones , Hipocampo/metabolismo , Hipocampo/patología , Privación de Sueño/metabolismo , Privación de Sueño/patología , Masculino , Locus Coeruleus/metabolismo , Locus Coeruleus/patología , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/genética , Fragmentos de Péptidos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Dopamina beta-Hidroxilasa/metabolismo , Dopamina beta-Hidroxilasa/genética , Proteínas tau/metabolismo , Femenino , Degeneración Nerviosa/patología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/genéticaRESUMEN
Exposure to unfamiliar odorants induces an array of repetitive defensive and non-defensive behaviors in rodents which likely reflect adaptive stress responses to the uncertain valence of novel stimuli. Mice genetically deficient for dopamine ß-hydroxylase (Dbh-/-) lack the enzyme required to convert dopamine (DA) into norepinephrine (NE), resulting in globally undetectable NE and supranormal DA levels. Because catecholamines modulate novelty detection and reactivity, we investigated the effects of novel plant-derived odorants on repetitive behaviors in Dbh-/- mice and Dbh+/- littermate controls, which have catecholamine levels comparable to wild-type mice. Unlike Dbh+/- controls, which exhibited vigorous digging in response to novel odorants, Dbh-/- mice displayed excessive grooming. Drugs that block NE synthesis or neurotransmission suppressed odorant-induced digging in Dbh+/- mice, while a DA receptor antagonist attenuated grooming in Dbh-/- mice. The testing paradigm elicited high circulating levels of corticosterone regardless of Dbh genotype, indicating that NE is dispensable for this systemic stress response. Odorant exposure increased NE and DA abundance in the prefrontal cortex (PFC) of Dbh+/- mice, while Dbh-/- animals lacked NE and had elevated PFC DA levels that were unaffected by novel smells. Together, these findings suggest that novel odorant-induced increases in central NE tone contribute to repetitive digging and reflect psychological stress, while central DA signaling contributes to repetitive grooming. Further, we have established a simple method for repeated assessment of stress-induced repetitive behaviors in mice, which may be relevant for modeling neuropsychiatric disorders like Tourette syndrome or obsessive-compulsive disorder that are characterized by stress-induced exacerbation of compulsive symptoms.
Asunto(s)
Dopamina , Norepinefrina , Animales , Dopamina/farmacología , Dopamina beta-Hidroxilasa/genética , Dopamina beta-Hidroxilasa/metabolismo , Ratones , Norepinefrina/farmacología , Odorantes , Corteza PrefrontalRESUMEN
High-calorie diets and chronic stress are major contributors to the development of obesity and metabolic disorders. These two risk factors regulate the activity of the sympathetic nervous system (SNS). The present study showed a key role of the cannabinoid type 1 receptor (CB1) in dopamine ß-hydroxylase (dbh)-expressing cells in the regulation of SNS activity. In a diet-induced obesity model, CB1 deletion from these cells protected mice from diet-induced weight gain by increasing sympathetic drive, resulting in reduced adipogenesis in white adipose tissue and enhanced thermogenesis in brown adipose tissue. The deletion of CB1 from catecholaminergic neurons increased the plasma norepinephrine levels, norepinephrine turnover, and sympathetic activity in the visceral fat, which coincided with lowered neuropeptide Y (NPY) levels in the visceral fat of the mutant mice compared with the controls. Furthermore, the mutant mice showed decreased plasma corticosterone levels. Our study provided new insight into the mechanisms underlying the roles of the endocannabinoid system in regulating energy balance, where the CB1 deletion in dbh-positive cells protected from diet-induced weight gain via multiple mechanisms, such as increased SNS activity, reduced NPY activity, and decreased basal hypothalamic-pituitary-adrenal (HPA) axis activity.
Asunto(s)
Cannabinoides , Neuropéptido Y , Ratones , Animales , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Endocannabinoides/metabolismo , Dopamina beta-Hidroxilasa/genética , Dopamina beta-Hidroxilasa/metabolismo , Cannabinoides/metabolismo , Corticosterona/metabolismo , Obesidad/genética , Obesidad/metabolismo , Dieta Alta en Grasa/efectos adversos , Neuronas/metabolismo , Norepinefrina/metabolismo , Aumento de PesoRESUMEN
Background and Objectives: Autism spectrum disorder (ASD) is a neurodevelopmental disorder the cause of which is not fully known. Genetic factors are believed to play a major role in the etiology of ASD. However, genetic factors have been identified in only some cases, and other causes remain to be identified. This study aimed to identify potential associations between ASD and the 19-bp insertion/deletion polymorphism in the dopamine beta-hydroxylase (DBH) gene which plays a crucial role in the metabolism of neurotransmitters. Materials and Methods: The 19-bp insertion/deletion polymorphism upstream of the DBH gene was analyzed for associations in 177 ASD patients and 250 healthy controls. Family-based analysis was performed in family trios of each patient using the transmission disequilibrium test to investigate the potential contributions of this DBH polymorphism to ASD. Results: The frequency of the 19-bp insertion allele was significantly higher in the patient group compared to the controls (0.624 vs. 0.556, respectively; p = 0.046). The frequency of the insertion/insertion genotype was also higher in the patient group (0.378 vs. 0.288, respectively) but without statistical significance (p = 0.110). The family-based analysis showed an association between patient families and the insertion allele when only families of male participants were analyzed (73 vs. 48 events; OR 1.521; 95% CI 1.057-2.189; p = 0.023). Conclusions: This population-based analysis found an association between the 19-bp insertion allele of the DBH gene and ASD. No association at the genotype level was found. The family-based analysis found an association between the insertion allele and ASD when the analysis was performed on male participants only, suggesting a linkage between the DBH locus and ASD.
Asunto(s)
Trastorno del Espectro Autista , Dopamina beta-Hidroxilasa , Trastorno del Espectro Autista/genética , Dopamina beta-Hidroxilasa/genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Polimorfismo Genético/genética , TailandiaRESUMEN
Classical studies suggest that growth hormone (GH) secretion is controlled by negative-feedback loops mediated by GH-releasing hormone (GHRH)- or somatostatin-expressing neurons. Catecholamines are known to alter GH secretion and neurons expressing TH are located in several brain areas containing GH-responsive cells. However, whether TH-expressing neurons are required to regulate GH secretion via negative-feedback mechanisms is unknown. In the present study, we showed that between 50% and 90% of TH-expressing neurons in the periventricular, paraventricular, and arcuate hypothalamic nuclei and locus ceruleus of mice exhibited STAT5 phosphorylation (pSTAT5) after an acute GH injection. Ablation of GH receptor (GHR) from TH cells or in the entire brain markedly increased GH pulse secretion and body growth in both male and female mice. In contrast, GHR ablation in cells that express the dopamine transporter (DAT) or dopamine ß-hydroxylase (DBH; marker of noradrenergic/adrenergic cells) did not affect body growth. Nevertheless, less than 50% of TH-expressing neurons in the hypothalamus were found to express DAT. Ablation of GHR in TH cells increased the hypothalamic expression of Ghrh mRNA, although very few GHRH neurons were found to coexpress TH- and GH-induced pSTAT5. In summary, TH neurons that do not express DAT or DBH are required for the autoregulation of GH secretion via a negative-feedback loop. Our findings revealed a critical and previously unidentified group of catecholaminergic interneurons that are apt to sense changes in GH levels and regulate the somatotropic axis in mice.SIGNIFICANCE STATEMENT Textbooks indicate until now that the pulsatile pattern of growth hormone (GH) secretion is primarily controlled by GH-releasing hormone and somatostatin neurons. The regulation of GH secretion relies on the ability of these cells to sense changes in circulating GH levels to adjust pituitary GH secretion within a narrow physiological range. However, our study identifies a specific population of tyrosine hydroxylase-expressing neurons that is critical to autoregulate GH secretion via a negative-feedback loop. The lack of this mechanism in transgenic mice results in aberrant GH secretion and body growth. Since GH plays a key role in cell proliferation, body growth, and metabolism, our findings provide a major advance to understand how the brain regulates the somatotropic axis.
Asunto(s)
Exocitosis , Retroalimentación Fisiológica , Hormona del Crecimiento/metabolismo , Neuronas/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Animales , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Dopamina beta-Hidroxilasa/genética , Dopamina beta-Hidroxilasa/metabolismo , Femenino , Hormona Liberadora de Hormona del Crecimiento/genética , Hormona Liberadora de Hormona del Crecimiento/metabolismo , Hipotálamo/metabolismo , Locus Coeruleus/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Somatotropina/metabolismo , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Tirosina 3-Monooxigenasa/genéticaRESUMEN
Dopamine beta-hydroxylase (DßH) is an essential neurotransmitter-synthesizing enzyme that catalyzes the formation of norepinephrine (NE) from dopamine and has been extensively studied since its discovery in the 1950s. NE serves as a neurotransmitter in both the central and peripheral nervous systems and is the precursor to epinephrine synthesis in the brain and adrenal medulla. Alterations in noradrenergic signaling have been linked to both central nervous system and peripheral pathologies. DßH protein, which is found in circulation, can, therefore, be evaluated as a marker of norepinephrine function in a plethora of different disorders and diseases. In many of these diseases, DßH protein availability and activity are believed to contribute to disease presentation or select symptomology and are believed to be under strong genetic control. Alteration in the DßH protein by genetic polymorphisms may result in DßH becoming rate-limiting and directly contributing to lower NE and epinephrine levels and disease. With the completion of the human genome project and the advent of next-generation sequencing, new insights have been gained into the existence of naturally occurring DßH sequencing variants (genetic polymorphisms) in disease. Also, biophysical tools coupled with genetic sequences are illuminating structure-function relationships within the enzyme. In this review, we discuss the role of genetic variants in DßH and its role in health and disease.
Asunto(s)
Dopamina beta-Hidroxilasa/genética , Dopamina beta-Hidroxilasa/metabolismo , Variación Genética/fisiología , Animales , Humanos , Inflamación/enzimología , Inflamación/genética , Trastornos Mentales/enzimología , Trastornos Mentales/genética , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/genética , Norepinefrina/genética , Norepinefrina/metabolismoRESUMEN
BACKGROUND: Patients with schizophrenia are at a higher risk for suicide compared with the general population. Dopamine beta-hydroxylase (DßH) plays a key role in the conversion of dopamine to norepinephrine, which is related to suicidal behavior and cognitive regulation. OBJECTIVE: To examine whether there is the effect of DßH 5'-insertion/deletion (Ins/Del) polymorphism on cognitive performance in suicide attempters with chronic schizophrenia. METHODS: This polymorphism was detected in 114 suicide attempters and 617 non-suicide attempters with chronic schizophrenia. Cognitive performance was assessed by the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). RESULTS: The allelic and genotypic frequencies of this polymorphism between two groups did not differ after controlling for covariates (both, p > .05). There were no differences in RBANS scores between two groups after adjusting for covariates (all, p > .05). However, based on the genotype grouping in suicide attempters and non-attempters, the attention score significantly differed after adjusting for covariates (both, p < .05). Further analysis indicated that this polymorphism was associated with attention score in suicide attempters (p < .05), but not in non-suicide attempters (p > .05). CONCLUSIONS: DßH 5'-Ins/Del polymorphism was not a risk locus of suicide attempters, but it was implicated in attention regulation in suicide attempters with chronic schizophrenia.
Asunto(s)
Cognición/fisiología , Dopamina beta-Hidroxilasa/genética , Esquizofrenia/genética , Intento de Suicidio/psicología , Adulto , Alelos , Enfermedad Crónica , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Polimorfismo Genético , Riesgo , Esquizofrenia/enzimología , Esquizofrenia/fisiopatologíaRESUMEN
The copper (Cu) transporters ATPase copper-transporting alpha (ATP7A) and ATPase copper-transporting beta (ATP7B) are essential for the normal function of the mammalian central nervous system. Inactivation of ATP7A or ATP7B causes the severe neurological disorders, Menkes disease and Wilson disease, respectively. In both diseases, Cu imbalance is associated with abnormal levels of the catecholamine-type neurotransmitters dopamine and norepinephrine. Dopamine is converted to norepinephrine by dopamine-ß-hydroxylase (DBH), which acquires its essential Cu cofactor from ATP7A. However, the role of ATP7B in catecholamine homeostasis is unclear. Here, using immunostaining of mouse brain sections and cultured cells, we show that DBH-containing neurons express both ATP7A and ATP7B. The two transporters are located in distinct cellular compartments and oppositely regulate the export of soluble DBH from cultured neuronal cells under resting conditions. Down-regulation of ATP7A, overexpression of ATP7B, and pharmacological Cu depletion increased DBH retention in cells. In contrast, ATP7B inactivation elevated extracellular DBH. Proteolytic processing and the specific activity of exported DBH were not affected by changes in ATP7B levels. These results establish distinct regulatory roles for ATP7A and ATP7B in neuronal cells and explain, in part, the lack of functional compensation between these two transporters in human disorders of Cu imbalance.
Asunto(s)
Encéfalo/enzimología , ATPasas Transportadoras de Cobre/biosíntesis , Dopamina beta-Hidroxilasa/metabolismo , Regulación Enzimológica de la Expresión Génica , Neuronas/enzimología , Animales , Encéfalo/citología , Cobre/metabolismo , ATPasas Transportadoras de Cobre/genética , Dopamina beta-Hidroxilasa/genética , Ratones , Neuronas/citología , ProteolisisRESUMEN
BACKGROUND: Wilson's disease (WD) is a rare copper metabolism disorder with hepatic and neurological symptoms. Dopamine ß hydroxylase (DBH) encodes a copper-dependent mono-oxygenase that converts dopamine to norepinephrine, thereby regulating the endogenous dopamine content in the neurons. Polymorphisms of DBH have been reported to be associated with several neurological diseases, such as Parkinson's disease, Alzheimer's disease, schizophrenia and attention-deficit hyperactivity disorder, which have overlapping neurological symptoms with WD. The present study aimed to assess the role of DBH polymorphisms on the clinical course of WD. METHODS: In total, 141 WD patients from India were included in the present study. Three polymorphisms of DBH (rs1611115 in the promoter, rs1108580 in exon 2 and rs129882 in 3'-UTR) were screened for their association with the clinical attributes (hepatic and neurological features) and age of onset of WD using a polymerase chain reaction-restriction fragment length polymorphsm method and sequencing approach. The distribution of genotype or allele frequencies was tested using 2 × 2 contingency chi-squared and logistic regression analysis (additive, dominant and recessive model). RESULTS: The genotypic and allelic frequencies of these single nucleotide polymophisms did not vary significantly along with the clinical symptoms (hepatic and neurological) or the age of onset of WD. No significant association was observed when we analyzed our samples with respect to harboring different kinds of ATP7B mutations (nonsense/in-del and missense). CONCLUSIONS: The data obtained in the present study suggest that the selected DBH variants are unlikely to have any significant contribution towards modifying the clinical symptoms of Indian WD patients.
Asunto(s)
Dopamina beta-Hidroxilasa/genética , Degeneración Hepatolenticular/genética , Polimorfismo de Nucleótido Simple , Adolescente , Adulto , Alelos , Niño , Femenino , Frecuencia de los Genes , Genotipo , Degeneración Hepatolenticular/diagnóstico , Degeneración Hepatolenticular/epidemiología , Humanos , India , Masculino , Oportunidad Relativa , Regiones Promotoras Genéticas , Adulto JovenRESUMEN
Dopamine-beta-hydroxylase (DBH) enzyme activity is modulated at the genetic level by the presence of several polymorphisms. Among these, the 19-bp insertion/deletion (I/D) polymorphism (rs72393728/rs141116007) was investigated in several genetic association studies for its correlation with the susceptibility to develop episodic migraine, but conflicting results were achieved. In the present study we analyzed this genetic variant in a carefully characterized population of migraineurs encompassing both episodic and chronic migraine (with and without medication overuse) with the aim to perform a replication study and verify any possible correlation with migraine endophenotypes. Genotyping of the DBH 19-bp I/D polymorphism was performed on 400 migraine patients and 204 healthy individuals. The associations between genotypic frequencies and the clinical and sociodemographic features of migraineurs were then investigated. The DBH 19-bp I/D polymorphism did not correlate with migraine susceptibility or most clinical variables, with the exception of a statistically significant correlation within the subgroup of patients affected by chronic migraine were the individuals carrying the deleted (D) allele were significantly more prone to abuse in analgesics. As a result of this finding, the DBH 19-bp I/D polymorphism does not influence migraine susceptibility, but it might contribute to the development of medication overuse in patient with chronic migraine.
Asunto(s)
Dopamina beta-Hidroxilasa/genética , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/genética , Uso Excesivo de Medicamentos Recetados , Adulto , Enfermedad Crónica , Femenino , Predisposición Genética a la Enfermedad/genética , Genotipo , Humanos , Mutación INDEL , Masculino , Persona de Mediana EdadRESUMEN
The α1 -adrenergic antagonist, doxazosin, has improved cocaine use disorder (CUD) presumably by blocking norepinephrine (NE) stimulation and reward from cocaine-induced NE increases. If the NE levels for release were lower, then doxazosin might more readily block this NE stimulation and be more effective. The NE available for release can be lower through a genetic polymorphism in dopamine ß-hydroxylase (DBH) (C-1021T, rs1611115), which reduces DßH's conversion of dopamine to NE. We hypothesize that doxazosin would be more effective in CUD patients who have these genetically lower DßH levels. This 12-week, double-blind, randomized, placebo-controlled trial included 76 CUD patients: 49 with higher DßH levels from the DBH CC genotype and 27 with lower DßH levels from T-allele carriers (CT or TT). Patients were randomized to doxazosin (8 mg/day, N = 47) or placebo (N = 29) and followed with thrice weekly urine toxicology and once weekly cognitive behavioral psychotherapy. Cocaine use was reduced at a higher rate among patients in the doxazosin than in the placebo arm. We found significantly lower cocaine use rates among patients carrying the T-allele (CT/TT) than the CC genotype. The percentage of cocaine positive urines was reduced by 41 percent from baseline in the CT/TT group with low DßH and NE levels, as compared with no net reduction in the CC genotype group with normal DßH and NE levels. The DBH polymorphism appears play an important role in CUD patients' response to doxazosin treatment, supporting a pharmacogenetic association and potential application for personalized medicine.
Asunto(s)
Antagonistas de Receptores Adrenérgicos alfa 1/uso terapéutico , Trastornos Relacionados con Cocaína/rehabilitación , Dopamina beta-Hidroxilasa/genética , Doxazosina/uso terapéutico , Polimorfismo Genético/genética , Método Doble Ciego , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Norepinefrina/antagonistas & inhibidores , Resultado del TratamientoRESUMEN
Glucocorticoids are produced by the adrenal cortex and regulate cell metabolism in a variety of organs. This occurs either directly, by acting on specific receptors in a variety of cells, or by stimulating catecholamine expression within neighbor cells of the adrenal medulla. In this way, the whole adrenal gland may support specific metabolic requirements to cope with stressful conditions from external environment or internal organs. In addition, glucocorticoid levels may increase significantly in the presence of inappropriate secretion from adrenal cortex or may be administered at high doses to treat inflammatory disorders. In these conditions, metabolic alterations and increased blood pressure may occur, although altered sleep-waking cycle, anxiety, and mood disorders are frequent. These latter symptoms remain unexplained at the molecular level, although they overlap remarkably with disorders affecting catecholamine nuclei of the brainstem reticular formation. In fact, the present study indicates that various doses of glucocorticoids alter the expression of genes and proteins, which are specific for reticular catecholamine neurons. In detail, corticosterone administration to organotypic mouse brainstem cultures significantly increases Tyrosine hydroxylase (TH) and Dopamine transporter (DAT), while Phenylethanolamine N-methyltransferase (PNMT) is not affected. On the other hand, Dopamine Beta-Hydroxylase (DBH) increases only after very high doses of corticosterone.
Asunto(s)
Tronco Encefálico/metabolismo , Catecolaminas/metabolismo , Corticosterona/farmacología , Animales , Tronco Encefálico/citología , Tronco Encefálico/efectos de los fármacos , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Dopamina beta-Hidroxilasa/genética , Dopamina beta-Hidroxilasa/metabolismo , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Órganos/métodos , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo , Regulación hacia ArribaRESUMEN
This work represents one part of our research project, in which we attempted to prove that a humoral regulation between noradrenaline-producing organs exist in the perinatal period. In this study, we used a rat model that allowed blocking the synthesis of noradrenalin in the brain and evaluated gene expression and protein levels of noradrenaline key synthesis enzymes such as tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH) in peripheral noradrenaline-producing organs. As a result, we showed an increased gene expression of TH and DBH in adrenal glands. These data indicate that, if neonatal rat brain lacks the ability to produce noradrenaline, then the synthesis of noradrenaline in adrenal glands increased as a compensatory process, so that the concentration levels in blood are maintained at normal levels. This indicates that there is a humoral regulation between brain and adrenal glands, which is not fully understood yet.
Asunto(s)
Encéfalo/fisiología , Morfogénesis , Norepinefrina/biosíntesis , Animales , Encéfalo/crecimiento & desarrollo , Dopamina beta-Hidroxilasa/genética , Regulación del Desarrollo de la Expresión Génica , Ratas , Tirosina 3-Monooxigenasa/genéticaRESUMEN
ADHD is associated with an elevated risk of mortality and reduced estimated life expectancy (ELE) by adulthood. Reduced life expectancy is substantially related to the trait of behavioral disinhibition; a correlate of both ADHD and of several dopamine genes related to dopamine signaling and metabolism. We therefore hypothesized that several ADHD risk genes related to dopamine might also be predictive of reduced ELE. Using a longitudinal study of 131 hyperactive children and 71 control cases followed to young adulthood, we examined whether several polymorphisms involving DRD4, DAT1, and DBH were related to ELE. The homozygous 9/9 allele of DAT1 and the heterozygous allele of DBH TaqI were associated with 5- and 2-year reductions, respectively, in total ELE. They did not operate on ELE through any relationships to ADHD specifically or behavioral disinhibition more generally. Instead, they showed links to alcohol use (DBH), reduced education, smoking, and reduced exercise (DAT1) employed in the computation of ELE. We conclude that polymorphisms of two dopamine genes are linked to reductions in ELE independently of their association with ADHD.
Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno por Déficit de Atención con Hiperactividad/mortalidad , Dopamina/metabolismo , Adolescente , Adulto , Alelos , Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Estudios de Casos y Controles , Niño , Dopamina/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Dopamina beta-Hidroxilasa/genética , Dopamina beta-Hidroxilasa/metabolismo , Femenino , Estudios de Seguimiento , Frecuencia de los Genes/genética , Predisposición Genética a la Enfermedad/genética , Genotipo , Humanos , Esperanza de Vida , Estudios Longitudinales , Masculino , Repeticiones de Minisatélite/genética , Polimorfismo Genético/genética , Receptores de Dopamina D4/genética , Receptores de Dopamina D4/metabolismo , Factores de Riesgo , Adulto JovenRESUMEN
BACKGROUND/AIMS: The neuropathies Alzheimer's disease (AD), Parkinson's disease (PD), and schizophrenia (SCZ) have different pathological mechanisms but share some common neurodegenerative features, such as gradual loss of neuronal structure and function. Dopamine beta-hydroxylase (DBH), a gene located in the chromosomal region 9q34, plays a crucial role in the process of converting dopamine into norepinephrine (NE). Several case-control studies have reported this pathway in the pathogenesis of AD, PD and SCZ. However, the results are controversial. METHODS: We conducted a meta-analysis to estimate the associations between polymorphisms in this gene and AD, PD and SCZ. Seven databases (PubMed, Embase, Web of Science, China National Knowledge Infrastructure (CNKI), Wan Fang, SZ Gene and AD Gene) were searched to identify eligible studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to evaluate the associations of DBH variants with AD, PD and SCZ susceptibility. RESULTS: A total of 41 studies involving 10506 cases and 15083 controls were included in our meta-analysis. The analysis results indicated that a lack of association (P > 0.05) was observed between most of the currently available DBH polymorphisms and the neurological diseases AD, PD and SCZ; however, the DBH rs1611131 (allelic model: OR = 0.889, 95% CI: 0.815 - 0.969; dominant model: OR = 0.868, 95% CI: 0.778 - 0.968), rs2283123 (allelic model: OR = 0.285, 95% CI: 0.095 - 0.862; dominant model: OR = 0.290, 95% CI: 0.094 -0.897) and rs2007153 (allelic model: OR = 2.196, 95% CI: 1.506 - 3.200; dominant model: OR = 2.985, 95% CI: 1.465 - 6.084; recessive model: OR = 2.729, 95% CI: 1.548 - 4.812) variants were shown to be significantly associated with the risk of AD (the former variant) and SCZ (the latter two variants). CONCLUSION: On the one hand, most DBH polymorphisms from the currently available loci showed no linkage to AD, PD or SCZ, indicating the lower possibility of these loci serving as genetic markers of the risks of diseases with neurodegenerative characteristics. On the other hand, the DBH rs2283123 and rs2007153 polymorphisms could have opposite effects on SCZ development in Caucasians and be more specific in Croatians, while the DBH rs1611131 minor variant might have a protective effect on AD risk in Caucasians; however, these results require further study.
Asunto(s)
Dopamina beta-Hidroxilasa/genética , Enfermedad de Parkinson/patología , Esquizofrenia/patología , Alelos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Bases de Datos Factuales , Sitios Genéticos , Humanos , Oportunidad Relativa , Enfermedad de Parkinson/genética , Polimorfismo de Nucleótido Simple , Riesgo , Esquizofrenia/genética , Población Blanca/genéticaRESUMEN
A meta-analysis was performed to assess the association between the dopamine beta-hydroxylase (DBH) rs1611115 genetic polymorphism and Parkinson's disease (PD). A comprehensive search was conducted to identify all case-control or cohort studies. The fixed or random effect-pooled measure was selected on the basis of a homogeneity test among studies. Heterogeneity among studies was evaluated using the I2. We performed sensitivity analyses to evaluate the robustness of the results. Publication bias was estimated using Egger's linear regression test. Five case-control studies corresponded to the inclusion criteria comprising 3926 patients and 3542 controls which were included in the present meta-analysis. Our meta-analysis showed no significant association between DBH rs1611115 genetic polymorphism and risk of PD in the codominant (REM, OR = 1.017, 95%CI = 0.854-1.210), dominant (REM, OR = 0.989, 95%CI = 0.826-1.185), and recessive (REM, OR = 1.007, 95%CI = 0.657-1.542) models. Moreover, in the subgroup analysis based on region (Asia and Europe), no significant associations were observed in Asia or Europe. This meta-analysis suggests that the DBH rs1611115 genetic polymorphism might not be associated with PD.
Asunto(s)
Dopamina beta-Hidroxilasa/genética , Predisposición Genética a la Enfermedad/genética , Enfermedad de Parkinson/genética , Polimorfismo de Nucleótido Simple/genética , Bases de Datos Bibliográficas/estadística & datos numéricos , Femenino , Estudios de Asociación Genética , Humanos , MasculinoRESUMEN
Sympathetic and parasympathetic control of the heart is a classic example of norepinephrine (NE) and acetylcholine (ACh) triggering opposing actions. Sympathetic NE increases heart rate and contractility through activation of ß receptors, whereas parasympathetic ACh slows the heart through muscarinic receptors. Sympathetic neurons can undergo a developmental transition from production of NE to ACh and we provide evidence that mouse cardiac sympathetic nerves transiently produce ACh after myocardial infarction (MI). ACh levels increased in viable heart tissue 10-14 d after MI, returning to control levels at 21 d, whereas NE levels were stable. At the same time, the genes required for ACh synthesis increased in stellate ganglia, which contain most of the sympathetic neurons projecting to the heart. Immunohistochemistry 14 d after MI revealed choline acetyltransferase (ChAT) in stellate sympathetic neurons and vesicular ACh transporter immunoreactivity in tyrosine hydroxylase-positive cardiac sympathetic fibers. Finally, selective deletion of the ChAT gene from adult sympathetic neurons prevented the infarction-induced increase in cardiac ACh. Deletion of the gp130 cytokine receptor from sympathetic neurons prevented the induction of cholinergic genes after MI, suggesting that inflammatory cytokines induce the transient acquisition of a cholinergic phenotype in cardiac sympathetic neurons. Ex vivo experiments examining the effect of NE and ACh on rabbit cardiac action potential duration revealed that ACh blunted both the NE-stimulated decrease in cardiac action potential duration and increase in myocyte calcium transients. This raises the possibility that sympathetic co-release of ACh and NE may impair adaptation to high heart rates and increase arrhythmia susceptibility. SIGNIFICANCE STATEMENT: Sympathetic neurons normally make norepinephrine (NE), which increases heart rate and the contractility of cardiac myocytes. We found that, after myocardial infarction, the sympathetic neurons innervating the heart begin to make acetylcholine (ACh), which slows heart rate and decreases contractility. Several lines of evidence confirmed that the source of ACh was sympathetic nerves rather than parasympathetic nerves that are the normal source of ACh in the heart. Global application of NE with or without ACh to ex vivo hearts showed that ACh partially reversed the NE-stimulated decrease in cardiac action potential duration and increase in myocyte calcium transients. That suggests that sympathetic co-release of ACh and NE may impair adaptation to high heart rates and increase arrhythmia susceptibility.
Asunto(s)
Transdiferenciación Celular/fisiología , Receptor gp130 de Citocinas/metabolismo , Ganglios Simpáticos/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Neuronas/fisiología , Acetilcolina/metabolismo , Acetilcolina/farmacología , Animales , Transdiferenciación Celular/genética , Colina O-Acetiltransferasa/deficiencia , Colina O-Acetiltransferasa/genética , Modelos Animales de Enfermedad , Dopamina beta-Hidroxilasa/genética , Dopamina beta-Hidroxilasa/metabolismo , Femenino , Genotipo , Masculino , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/efectos de los fármacos , Norepinefrina/metabolismo , Norepinefrina/farmacología , Conejos , Tirosina 3-Monooxigenasa/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina/genética , Proteínas de Transporte Vesicular de Acetilcolina/metabolismoRESUMEN
Dopamine-ß-hydroxylase (DBH, EC 1.14.17.1), an oxido-reductase that catalyses the conversion of dopamine to norepinephrine, is largely expressed in sympathetic neurons and adrenal medulla. Several regulatory and structural variants in DBH associated with various neuropsychiatric, cardiovascular diseases and a few that may determine enzyme activity have also been identified. Due to paucity of studies on functional characterization of DBH variants, its structure-function relationship is poorly understood. The purpose of the study was to characterize five non-synonymous (ns) variants that were prioritized either based on previous association studies or Sorting Tolerant From Intolerant (SIFT) algorithm. The DBH ORF with wild type (WT) and site-directed mutagenized variants were transfected into HEK293 cells to generate transient and stable lines expressing these variant enzymes. Activity was determined by UPLC-PDA and corresponding quantity by MRMHR on a TripleTOF 5600 MS respectively of spent media from stable cell lines. Homospecific activity computed for the WT and variant proteins showed a marginal decrease in A318S, W544S and R549C variants. In transient cell lines, differential secretion was observed in the case of L317P, W544S and R549C. Secretory defect in L317P was confirmed by localization in ER. R549C exhibited both decreased homospecific activity and differential secretion. Of note, all the variants were seen to be destabilizing based on in silico folding analysis and molecular dynamics (MD) simulation, lending support to our experimental observations. These novel genotype-phenotype correlations in this gene of considerable pharmacological relevance have implications for dopamine-related disorders.
Asunto(s)
Dopamina beta-Hidroxilasa/genética , Dopamina/genética , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética , Estudios de Asociación Genética , Células HEK293 , Humanos , Relación Estructura-ActividadRESUMEN
Methamphetamine (METH) is a highly abused psychostimulant that is associated with an increased risk for developing Parkinson's disease (PD). This enhanced vulnerability likely relates to the toxic effects of METH that overlap with PD pathology, for example, aberrant functioning of α-synuclein and parkin. In PD, peripheral factors are thought to contribute to central nervous system (CNS) degeneration. For example, α-synuclein levels in the enteric nervous system (ENS) are elevated, and this precedes the onset of motor symptoms. It remains unclear whether neurons of the ENS, particularly catecholaminergic neurons, exhibit signs of METH-induced toxicity as seen in the CNS. The aim of this study was to determine whether self-administered METH altered the levels of α-synuclein, parkin, tyrosine hydroxylase (TH), and dopamine-ß-hydroxylase (DßH) in the myenteric plexus of the distal colon ENS. Young adult male Sprague-Dawley rats self-administered METH for 3 h per day for 14 days and controls were saline-yoked. Distal colon tissue was collected at 1, 14, or 56 days after the last operant session. Levels of α-synuclein were increased, while levels of parkin, TH, and DßH were decreased in the myenteric plexus in the METH-exposed rats at 1 day following the last operant session and returned to the control levels after 14 or 56 days of forced abstinence. The changes were not confined to neurofilament-positive neurons. These results suggest that colon biomarkers may provide early indications of METH-induced neurotoxicity, particularly in young chronic METH users who may be more susceptible to progression to PD later in life.