Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 579
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Cell Physiol ; 239(2): e31163, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38009273

RESUMEN

Many studies have indicated that tumor growth factor-beta (TGF-ß) signaling mediates radiation-induced bystander effects (RIBEs). The primary cilium (PC) coordinates several signaling pathways including TGF-ß signaling to regulate diverse cellular processes. But whether the PC participates in TGF-ß induced RIBEs remains unclear. The cellular levels of TGF-ß1 were detected by western blot analysis and the secretion of TGF-ß1 was measured by ELISA kit. The ciliogenesis was altered by CytoD treatment, STIL siRNA transfection, IFT88 siRNA transfection, or KIF3a siRNA transfection, separately, and was detected by western blot analysis and immunofluorescence staining. G0 /G1 phase cells were arrested by serum starvation and S phase cells were induced by double thymidine block. The TGF-ß1 signaling was interfered by LY2109761, a TGF-ß receptor 1 (TßR1) inhibitor, or TGF-ß1 neutral antibody. The DNA damages were induced by TGF-ß1 or radiated conditional medium (RCM) from irradiated cells and were reflected by p21 expression, 53BP1 foci, and γH2AX foci. Compared with unirradiated control, both A549 and Beas-2B cells expressed and secreted more TGF-ß1 after carbon ion beam or X-ray irradiation. RCM collected from irradiated cells or TGF-ß1 treatment caused an increase of DNA damage in cocultured unirradiated Beas-2B cells while blockage of TGF-ß signaling by TßR1 inhibitor or TGF-ß1 neutral antibody alleviates this phenomenon. IFT88 siRNA or KIF3a siRNA impaired PC formation resulted in an aggravated DNA damage in bystander cells, while elevated PC formation by CytoD or STIL siRNA resulted in a decrease of DNA damage. Furthermore, TGF-ß1 induced more DNA damages in S phases cells which showed lower PC formation rate and less DNA damages in G0 /G1 phase cells which showed higher PC formation rate. This study demonstrates the particular role of primary cilia during RCM induced DNA damages through TGF-ß1 signaling restriction and thereby provides a functional link between primary cilia and RIBEs.


Asunto(s)
Efecto Espectador , Factor de Crecimiento Transformador beta1 , Efecto Espectador/genética , Efecto Espectador/efectos de la radiación , Cilios/metabolismo , ADN , ARN Interferente Pequeño/genética , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Humanos , Línea Celular Tumoral
2.
Cell Mol Biol (Noisy-le-grand) ; 69(3): 156-162, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37300673

RESUMEN

To investigate the protective effect of Quercetin (Que) on lung epithelial cells (BEAS-2B) induced bystander effect (RIBE) after heavy ion irradiation of A549 cells. A549 cells were irradiated with 2 Gy X heavy ion rays to obtain a conditioned medium. BEAS-2B was incubated with a conditioned medium or Que. CCK-8 assay was used to screen the optimal effective concentration of Que and detect cell proliferation. Cell number was measured by cell counter and apoptosis rate was measured by flow cytometry. HMGB1 and ROS levels were measured by ELISA. Western blot was used to detect the protein expression of HMGB1, TLR4, p65, Bcl-2, Bax, Caspase3 and Cleaved Caspase3. The growth and proliferation rate of BEAS-2B decreased while the apoptosis rate increased after conditioned medium stimulation, and Que intervention inhibited this effect. The expression of HMGB1 and ROS increased after conditioned medium stimulation, and this effect was inhibited by Que intervention. In addition, the conditioned medium increased the levels of proteins of HMGB1, TLR4, p65, Bax, Caspase3 and Cleaved Caspase 3, and decreased levels of Bcl-2 protein, but Que intervention decreased the levels of HMGB1, TLR4, p65, Bax, Caspase3 and Cleaved Caspase 3proteins, and increased levels of Bcl-2 protein. The RIBE of BEAS-2B induced by irradiation of A549 is associated with HMGB1TLR4/NF-κB signaling pathway in conditioned medium inducing apoptosis by activating ROS, and Que may block RIBE-induced apoptosis by regulating HMGB1/TLR4/NF-κB pathway.


Asunto(s)
Proteína HMGB1 , Neoplasias Pulmonares , Humanos , FN-kappa B/metabolismo , Quercetina/farmacología , Medios de Cultivo Condicionados/farmacología , Proteína HMGB1/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Efecto Espectador/efectos de la radiación , Receptor Toll-Like 4/metabolismo , Neoplasias Pulmonares/metabolismo , Células Epiteliales/metabolismo , Apoptosis , Pulmón/metabolismo
3.
Exp Cell Res ; 418(1): 113247, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35688281

RESUMEN

Radiation-induced bystander effects (RIBEs) refer to a series of reactions displaying in nonirradiated cells triggered by signals from irradiated cells. Though bystander effects induced by ionizing radiation have been well studied, there are still limited data on ultraviolet(UV) induced bystander effects(UV-RIBEs). Studies have verified that exosomes, acting as a new tool of intercellular communication, participate in ionizing radiation-induced bystander effect. The purpose of what we studied was to explore the function of exosomes in UV-RIBEs, and seeking the relevant mechanism. Human skin fibroblasts (HSFs) were exposed to a single dose of ultraviolet A (UVA) radiation (20 J/cm2) or ultraviolet B (UVB) radiation (60 mJ/cm2), respectively. Exosomes were isolated from the culture medium of HSFs by differential ultracentrifugation. Three endpoints relevant to potodamage were used in the evaluation of UV-RIBEs, which including the cell proliferation, oxidative damage, and apoptosis. Our results showed that exosomes from UV-irradiated cells contributed to UV-RIBEs. The expression of miR-4655-3p in exosomes increased after UV radiation and exosomes assisted in the transportation of miR-4655-3p between cells. The upregulation of miR-4655-3p enhanced the UV-RIBEs in the bystander cells. MiR-4655-3p restrained the expression of E2F2 through direct binding to its 3'-UTR. In addition, E2F2 contributed to the cell proliferation and decreased oxidative damage of HSFs. To sum up that exosomal miR-4655-3p plays a crucial role in UV-RIBEs and this function mentioned partially related to the inhibition of E2F2.


Asunto(s)
Exosomas , MicroARNs , Regiones no Traducidas 3' , Efecto Espectador/efectos de la radiación , Proliferación Celular/genética , Proliferación Celular/efectos de la radiación , Exosomas/metabolismo , Exosomas/efectos de la radiación , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Rayos Ultravioleta
4.
Nature ; 547(7664): 458-462, 2017 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-28723894

RESUMEN

The radiation-induced bystander effect (RIBE) refers to a unique process in which factors released by irradiated cells or tissues exert effects on other parts of the animal not exposed to radiation, causing genomic instability, stress responses and altered apoptosis or cell proliferation. Although RIBEs have important implications for radioprotection, radiation safety and radiotherapy, the molecular identities of RIBE factors and their mechanisms of action remain poorly understood. Here we use Caenorhabditis elegans as a model in which to study RIBEs, and identify the cysteine protease CPR-4, a homologue of human cathepsin B, as the first RIBE factor in nematodes, to our knowledge. CPR-4 is secreted from animals irradiated with ultraviolet or ionizing gamma rays, and is the major factor in the conditioned medium that leads to the inhibition of cell death and increased embryonic lethality in unirradiated animals. Moreover, CPR-4 causes these effects and stress responses at unexposed sites distal to the irradiated tissue. The activity of CPR-4 is regulated by the p53 homologue CEP-1 in response to radiation, and CPR-4 seems to exert RIBEs by acting through the insulin-like growth factor receptor DAF-2. Our study provides crucial insights into RIBEs, and will facilitate the identification of additional RIBE factors and their mechanisms of action.


Asunto(s)
Efecto Espectador/efectos de la radiación , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/efectos de la radiación , Catepsina B/metabolismo , Animales , Caenorhabditis elegans/citología , Proteínas de Caenorhabditis elegans/metabolismo , Proteasas de Cisteína/metabolismo , Receptor de Insulina/metabolismo , Rayos Ultravioleta
5.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38003655

RESUMEN

It is well established that cells, tissues, and organisms exposed to low doses of ionizing radiation can induce effects in non-irradiated neighbors (non-targeted effects or NTE), but the mechanisms remain unclear. This is especially true of the initial steps leading to the release of signaling molecules contained in exosomes. Voltage-gated ion channels, photon emissions, and calcium fluxes are all involved but the precise sequence of events is not yet known. We identified what may be a quantum entanglement type of effect and this prompted us to consider whether aspects of quantum biology such as tunneling and entanglement may underlie the initial events leading to NTE. We review the field where it may be relevant to ionizing radiation processes. These include NTE, low-dose hyper-radiosensitivity, hormesis, and the adaptive response. Finally, we present a possible quantum biological-based model for NTE.


Asunto(s)
Efecto Espectador , Transducción de Señal , Efecto Espectador/efectos de la radiación , Tolerancia a Radiación , Radiación Ionizante , Biología
6.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37511215

RESUMEN

Non-targeted effects (NTE) have been generally regarded as a low-dose ionizing radiation (IR) phenomenon. Recently, regarding long distant abscopal effects have also been observed at high doses of IR) relevant to antitumor radiation therapy. IR is inducing NTE involving intracellular and extracellular signaling, which may lead to short-ranging bystander effects and distant long-ranging extracellular signaling abscopal effects. Internal and "spontaneous" cellular stress is mostly due to metabolic oxidative stress involving mitochondrial energy production (ATP) through oxidative phosphorylation and/or anaerobic pathways accompanied by the leakage of O2- and other radicals from mitochondria during normal or increased cellular energy requirements or to mitochondrial dysfunction. Among external stressors, ionizing radiation (IR) has been shown to very rapidly perturb mitochondrial functions, leading to increased energy supply demands and to ROS/NOS production. Depending on the dose, this affects all types of cell constituents, including DNA, RNA, amino acids, proteins, and membranes, perturbing normal inner cell organization and function, and forcing cells to reorganize the intracellular metabolism and the network of organelles. The reorganization implies intracellular cytoplasmic-nuclear shuttling of important proteins, activation of autophagy, and mitophagy, as well as induction of cell cycle arrest, DNA repair, apoptosis, and senescence. It also includes reprogramming of mitochondrial metabolism as well as genetic and epigenetic control of the expression of genes and proteins in order to ensure cell and tissue survival. At low doses of IR, directly irradiated cells may already exert non-targeted effects (NTE) involving the release of molecular mediators, such as radicals, cytokines, DNA fragments, small RNAs, and proteins (sometimes in the form of extracellular vehicles or exosomes), which can induce damage of unirradiated neighboring bystander or distant (abscopal) cells as well as immune responses. Such non-targeted effects (NTE) are contributing to low-dose phenomena, such as hormesis, adaptive responses, low-dose hypersensitivity, and genomic instability, and they are also promoting suppression and/or activation of immune cells. All of these are parts of the main defense systems of cells and tissues, including IR-induced innate and adaptive immune responses. The present review is focused on the prominent role of mitochondria in these processes, which are determinants of cell survival and anti-tumor RT.


Asunto(s)
Daño del ADN , Radiación Ionizante , Reparación del ADN , Mitocondrias/metabolismo , Efecto Espectador/efectos de la radiación , Citocinas/metabolismo
7.
Apoptosis ; 27(3-4): 184-205, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35076828

RESUMEN

Although radiation-induced bystander effects have been broadly explored in various biological systems, the molecular mechanisms and the consequences of different regulatory factors (dose, time, cell type) on bystander responses are not clearly understood. This study investigates the effects of irradiated cell-conditioned media (ICCM) collected at different times post-irradiation on bystander cancer cells regarding DNA damage and apoptosis induction. Human hepatocellular carcinoma HepG2 cells were exposed to γ-ray doses of 2 Gy, 5 Gy, and 8 Gy. In the early and late stages (1 h, 2 h, and 24 h) after irradiation, the ICCM was collected and transferred to unirradiated cells. Compared to control, bystander cells showed an increased level of H2AX phosphorylation, mitochondrial membrane depolarization, and elevation of intrinsic apoptotic pathway mediators such as p53, Bax, cas9, cas-3, and PARP cleavage. These results were confirmed by phosphatidylserine (PS) externalization and scanning electron microscopic observations, suggesting a rise in bystander HepG2 cell apoptosis. Anti-apoptotic Bcl2-level and viability were lower in bystander cells compared to control. The highest effects were observed in 8 Gy γ radiation-induced bystander cells. Even though the bystander effect was persistent at all time points of the study, ICCM at the early time points (1 or 2 h) had the most significant impact on the apoptosis markers in bystander cells. Nevertheless, 24 h ICCM induced the highest increase in H2AX and p53 phosphorylation and Bax levels. The effects of ICCM of irradiated HepG2 cells were additionally studied in normal liver cells BRL-3A to simulate actual radiotherapy conditions. The outcomes suggest that the expression of the signaling mediators in bystander cells is highly dynamic. A cross-talk between those signaling mediators regulates bystander responses depending on the radiation dose and time of incubation post-irradiation.


Asunto(s)
Caspasas , Proteína p53 Supresora de Tumor , Apoptosis , Efecto Espectador/fisiología , Efecto Espectador/efectos de la radiación , Caspasas/genética , Caspasas/metabolismo , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/efectos de la radiación , Daño del ADN , Rayos gamma , Células Hep G2 , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Dosis de Radiación , Proteína p53 Supresora de Tumor/genética , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
8.
Arch Biochem Biophys ; 725: 109302, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35643336

RESUMEN

Oxidative stress is associated with the induction of a plethora of effects on cellular macromolecules and signaling cascades. The onset of oxidative imbalance characterizes irradiated cells. The present study investigates the effects of ionizing radiation on oxidative stress induction in bystander cells and their interactions with critical cell signaling mediators. The effect of irradiated cell-conditioned medium (ICCM) from γ-irradiated hepatocellular carcinoma (HepG2) cells were studied in bystander HepG2 and normal liver (BRL-3A) cells at early (1 h, 2 h) and later (24 h) time points post-irradiation. Although ROS generation and lipid peroxidation showed the highest effects in both bystander cell groups at the early time points, antioxidant enzymes superoxide dismutase and catalase showed the lowest activity. Oxidative stress was persistent up to 24 h, but the highest level was seen in 1 h ICCM treated 8By cells. Although the levels of all pro-survival signaling factors (p-PI3K, p-Akt, p-p38MAPK, p-JNK, and p-NFκB) increased in bystander HepG2 cells, they showed a significant decrease in bystander BRL-3A cells. JAK2-STAT3 activation, however, was reduced only in BRL-3A cells, with no effect in HepG2 cells. However, in both bystander cell groups, activation of DNA damage sensors ATM, ATR, and cell cycle inhibitor p21 increased. Elevated ROS levels down-regulated the activation of PI3K, Akt, JNK, and NF-κB in BRL-3A cells but enhanced the activation of ATM and p21. In contrast, in HepG2 cells, increased ROS level elevated the activation of PI3K, JNK, p38MAPK, NF-κB with no effect on p-ATM or p21. ROS differentially influenced the interactions between the signaling mediators in the bystander cells. p-ATR levels, although increased in both bystander cell groups, showed no association with other factors. ICCM from the same HepG2 cells differently affected signaling factors in two groups of cells, highlighting the critical significance of the study in the field of radiation biology.


Asunto(s)
FN-kappa B , Proteínas Proto-Oncogénicas c-akt , Efecto Espectador/fisiología , Efecto Espectador/efectos de la radiación , Medios de Cultivo Condicionados , Daño del ADN , FN-kappa B/metabolismo , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo
9.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36361775

RESUMEN

Irradiation of the tumour site during treatment for cancer with external-beam ionising radiation results in a complex and dynamic series of effects in both the tumour itself and the normal tissue which surrounds it. The development of a spectral model of the effect of each exposure and interaction mode between these tissues would enable label free assessment of the effect of radiotherapeutic treatment in practice. In this study Fourier transform Infrared microspectroscopic imaging was employed to analyse an in-vitro model of radiotherapeutic treatment for prostate cancer, in which a normal cell line (PNT1A) was exposed to low-dose X-ray radiation from the scattered treatment beam, and also to irradiated cell culture medium (ICCM) from a cancer cell line exposed to a treatment relevant dose (2 Gy). Various exposure modes were studied and reference was made to previously acquired data on cellular survival and DNA double strand break damage. Spectral analysis with manifold methods, linear spectral fitting, non-linear classification and non-linear regression approaches were found to accurately segregate spectra on irradiation type and provide a comprehensive set of spectral markers which differentiate on irradiation mode and cell fate. The study demonstrates that high dose irradiation, low-dose scatter irradiation and radiation-induced bystander exposure (RIBE) signalling each produce differential effects on the cell which are observable through spectroscopic analysis.


Asunto(s)
Efecto Espectador , Traumatismos por Radiación , Masculino , Humanos , Efecto Espectador/efectos de la radiación , Roturas del ADN de Doble Cadena , Supervivencia Celular/efectos de la radiación , Línea Celular
10.
Int J Mol Sci ; 23(8)2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-35456987

RESUMEN

Exosomes released by irradiated cells mediate the radiation-induced bystander effect, which is manifested by DNA breaks detected in recipient cells; yet, the specific mechanism responsible for the generation of chromosome lesions remains unclear. In this study, naive FaDu head and neck cancer cells were stimulated with exosomes released by irradiated (a single 2 Gy dose) or mock-irradiated cells. Maximum accumulation of gamma H2A.X foci, a marker of DNA breaks, was detected after one hour of stimulation with exosomes from irradiated donors, the level of which was comparable to the one observed in directly irradiated cells (a weaker wave of the gamma H2A.X foci accumulation was also noted after 23 h of stimulation). Exosomes from irradiated cells, but not from control ones, activated two stress-induced protein kinases: ATM and ATR. Noteworthy is that while direct irradiation activated only ATM, both ATM and ATR were activated by two factors known to induce the replication stress: hydroxyurea and camptothecin (with subsequent phosphorylation of gamma H2A.X). One hour of stimulation with exosomes from irradiated cells suppressed DNA synthesis in recipient cells and resulted in the subsequent nuclear accumulation of RNA:DNA hybrids, which is an indicator of impaired replication. Interestingly, the abovementioned effects were observed before a substantial internalization of exosomes, which may suggest a receptor-mediated mechanism. It was observed that after one hour of stimulation with exosomes from irradiated donors, phosphorylation of several nuclear proteins, including replication factors and regulators of heterochromatin remodeling as well as components of multiple intracellular signaling pathways increased. Hence, we concluded that the bystander effect mediated by exosomes released from irradiated cells involves the replication stress in recipient cells.


Asunto(s)
Efecto Espectador , Exosomas , Efecto Espectador/efectos de la radiación , Línea Celular Tumoral , Exosomas/metabolismo , Rayos gamma , Transducción de Señal/efectos de la radiación
11.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36232421

RESUMEN

The role of signalling in initiating and perpetuating effects triggered by deposition of ionising radiation energy in parts of a system is very clear. Less clear are the very early steps involved in converting energy to chemical and biological effects in non-targeted parts of the system. The paper aims to present a new model, which could aid our understanding of the role of low dose effects in determining ultimate disease outcomes. We propose a key role for electromagnetic signals resulting from physico-chemical processes such as excitation decay, and acoustic waves. These lead to the initiation of damage response pathways such as elevation of reactive oxygen species and membrane associated changes in key ion channels. Critically, these signalling pathways allow coordination of responses across system levels. For example, depending on how these perturbations are transduced, adverse or beneficial outcomes may predominate. We suggest that by appreciating the importance of signalling and communication between multiple levels of organisation, a unified theory could emerge. This would allow the development of models incorporating time, space and system level to position data in appropriate areas of a multidimensional domain. We propose the use of the term "infosome" to capture the nature of radiation-induced communication systems which include physical as well as chemical signals. We have named our model "the variable response model" or "VRM" which allows for multiple outcomes following exposure to low doses or to signals from low dose irradiated cells, tissues or organisms. We suggest that the use of both dose and infosome in radiation protection might open up new conceptual avenues that could allow intrinsic uncertainty to be embraced within a holistic protection framework.


Asunto(s)
Efecto Espectador , Traumatismos por Radiación , Efecto Espectador/efectos de la radiación , Conservación de los Recursos Naturales , Relación Dosis-Respuesta en la Radiación , Fenómenos Electromagnéticos , Humanos , Radiación Ionizante , Especies Reactivas de Oxígeno/metabolismo
12.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34360718

RESUMEN

Besides the direct effects of radiations, indirect effects are observed within the surrounding non-irradiated area; irradiated cells relay stress signals in this close proximity, inducing the so-called radiation-induced bystander effect. These signals received by neighboring unirradiated cells induce specific responses similar with those of direct irradiated cells. To understand the cellular response of bystander cells, we performed a 2D gel-based proteomic study of the chondrocytes receiving the conditioned medium of low-dose irradiated chondrosarcoma cells. The conditioned medium was directly analyzed by mass spectrometry in order to identify candidate bystander factors involved in the signal transmission. The proteomic analysis of the bystander chondrocytes highlighted 20 proteins spots that were significantly modified at low dose, implicating several cellular mechanisms, such as oxidative stress responses, cellular motility, and exosomes pathways. In addition, the secretomic analysis revealed that the abundance of 40 proteins in the conditioned medium of 0.1 Gy irradiated chondrosarcoma cells was significantly modified, as compared with the conditioned medium of non-irradiated cells. A large cluster of proteins involved in stress granules and several proteins involved in the cellular response to DNA damage stimuli were increased in the 0.1 Gy condition. Several of these candidates and cellular mechanisms were confirmed by functional analysis, such as 8-oxodG quantification, western blot, and wound-healing migration tests. Taken together, these results shed new lights on the complexity of the radiation-induced bystander effects and the large variety of the cellular and molecular mechanisms involved, including the identification of a new potential actor, namely the stress granules.


Asunto(s)
Neoplasias Óseas/metabolismo , Efecto Espectador/efectos de la radiación , Condrocitos/metabolismo , Condrosarcoma/metabolismo , Gránulos Citoplasmáticos/metabolismo , Proteómica , Rayos X , Neoplasias Óseas/radioterapia , Línea Celular Tumoral , Condrosarcoma/radioterapia , Humanos
13.
Future Oncol ; 16(16): 1137-1151, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32338046

RESUMEN

Advances in the immunological pharmaceuticals, such as checkpoint inhibitors and agonists, have positive implications for the future of the radiotherapy abscopal response. A once rare phenomenon, whereby distant nonirradiated tumor sites regressed after radiotherapy alone, may become more common when combined with the immune modulating agents. Radiotherapy can increase neoantigen expression, increased tumor PD-L1 expression, increase MHC class I expression, reverse exhausted CD8 T cells and increase tumor-infiltrating tumors within the tumor microenvironment. These changes in the tumor and the tumor microenvironment after radiotherapy could potentiate responses to anti-CTL-4, anti-PD-L1/PD-1 and other immunotherapy agents. Thus, advances in checkpoint inhibitors have increased interest in re-evaluation of the role of conventional radiotherapy approaches on the immune system. We reviewed newer nonconventional approaches such as SBRT-PATHY, GRID, FLASH, carbon ion and proton therapy and their role in eliciting immune responses. We believe that combining these novel radiation methods may enhance the outcome with the newly US FDA approved immune modulating agents.


Asunto(s)
Efecto Espectador/efectos de la radiación , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia/métodos , Neoplasias/tratamiento farmacológico , Neoplasias/radioterapia , Animales , Efecto Espectador/inmunología , Humanos , Neoplasias/inmunología , Neoplasias/patología , Radioterapia/métodos
14.
Exp Cell Res ; 383(1): 111498, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31302031

RESUMEN

Radiation-induced bystander effects (RIBE) are discussed as relevant processes during radiotherapy. Irradiated cells are suggested to release growth-inhibitory/DNA-damaging factors transported to non-irradiated cells. However, the molecular nature of this phenomenon has not yet been resolved. We aimed at identifying the growth-inhibitory factor(s) transmitted to non-irradiated cells. RIBE-competent PC3 cells were used to produce conditioned medium (CM) after exposure to ionizing radiation. Indicator cells were incubated with CM and clonogenic survival as well as cell proliferation were determined as endpoints. A549 indicator cells exhibited a bystander effect upon incubation with CM from irradiated PC3 cells. This bystander effect was not due to DNA-damaging factors, but a radiation-triggered reduction of mitogenic/clonogenic activity present in CM. Several tumor cells, but not normal fibroblasts secrete this factor, whose release is reduced by irradiation. We identified L-Plastin to be responsible for the mitogenic/clonogenic activity. Removal of L-Plastin from CM by immunoprecipitation or siRNA-mediated knockdown of L-Plastin expression resulted in loss or reduction of mitogenic/clonogenic activity transmitted via CM, respectively. Exosome-transported L-Plastin was constitutively Ser5-phosphorylated, indicative of its bioactive conformation. In summary, we observed production and exosomal secretion of L-Plastin by cancer cells. Via exosome-transmitted L-Plastin, tumors induce clonogenic and mitogenic activity in cancer and normal cells of the tumor microenvironment. Irradiation inhibits L-Plastin production targeting both cancer cells and the tumor niche and may explain the high impact of radiotherapy in tumor control.


Asunto(s)
Efecto Espectador/efectos de la radiación , Proliferación Celular/efectos de la radiación , Exosomas/metabolismo , Neoplasias Pulmonares/patología , Proteínas de Microfilamentos/metabolismo , Neoplasias de la Próstata/patología , Radiación Ionizante , Efecto Espectador/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Células Cultivadas , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/efectos de la radiación , Exosomas/efectos de la radiación , Fibroblastos/efectos de la radiación , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/radioterapia , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/radioterapia
15.
Lasers Med Sci ; 35(3): 531-545, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31529349

RESUMEN

This review article aims to address the kinetic of TDEs in cancer cells pre- and post-radiotherapy. Radiotherapy is traditionally used for the treatment of multiple cancer types; however, there is growing evidence to show that radiotherapy exerts NTEs on cells near to the irradiated cells. In tumor mass, irradiated cells can affect non-irradiated cells in different ways. Of note, exosomes are nano-scaled cell particles releasing from tumor cells and play key roles in survival, metastasis, and immunosuppression of tumor cells. Recent evidence indicated that irradiation has the potential to affect the dynamic of different signaling pathways such as exosome biogenesis. Indeed, exosomes act as intercellular mediators in various cell communication through transmitting bio-molecules. Due to their critical roles in cancer biology, exosomes are at the center of attention. TDEs contain an exclusive molecular signature that they may serve as tumor biomarker in the diagnosis of different cancers. Interestingly, radiotherapy and IR could also contribute to altering the dynamic of exosome secretion. Most probably, the content of exosomes in irradiated cells is different compared to exosomes originated from the non-irradiated BCs. Irradiated cells release exosomes with exclusive content that mediate NTEs in BCs. Considering variation in cell type, IR doses, and radio-resistance or radio-sensitivity of different cancers, there is, however, contradictions in the feature and activity of irradiated exosomes on neighboring cells.


Asunto(s)
Efecto Espectador/efectos de la radiación , Exosomas/efectos de la radiación , Neoplasias/patología , Neoplasias/radioterapia , Comunicación Celular/efectos de la radiación , Exosomas/patología , Humanos , Transducción de Señal/efectos de la radiación
16.
Int J Mol Sci ; 21(21)2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33182277

RESUMEN

Molecular communication between irradiated and unirradiated neighbouring cells initiates radiation-induced bystander effects (RIBE) and out-of-field (abscopal) effects which are both an example of the non-targeted effects (NTE) of ionising radiation (IR). Exosomes are small membrane vesicles of endosomal origin and newly identified mediators of NTE. Although exosome-mediated changes are well documented in radiation therapy and oncology, there is a lack of knowledge regarding the role of exosomes derived from inside and outside the radiation field in the early and delayed induction of NTE following IR. Therefore, here we investigated the changes in exosome profile and the role of exosomes as possible molecular signalling mediators of radiation damage. Exosomes derived from organs of whole body irradiated (WBI) or partial body irradiated (PBI) mice after 24 h and 15 days post-irradiation were transferred to recipient mouse embryonic fibroblast (MEF) cells and changes in cellular viability, DNA damage and calcium, reactive oxygen species and nitric oxide signalling were evaluated compared to that of MEF cells treated with exosomes derived from unirradiated mice. Taken together, our results show that whole and partial-body irradiation increases the number of exosomes, instigating changes in exosome-treated MEF cells, depending on the source organ and time after exposure.


Asunto(s)
Exosomas/efectos de la radiación , Traumatismos por Radiación/patología , Animales , Efecto Espectador/efectos de la radiación , Calcio/metabolismo , Supervivencia Celular/efectos de la radiación , Células Cultivadas , Daño del ADN/efectos de la radiación , Exosomas/metabolismo , Femenino , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Traumatismos por Radiación/metabolismo , Radiación Ionizante , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de la radiación
17.
Cell Commun Signal ; 17(1): 165, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31842899

RESUMEN

BACKGROUND: Non-targeting effects of radiotherapy have become as clinical concern due to secondary tumorigenesis in the patients receiving radiotherapy. Radiotherapy also affects non-tumoral cells present in the tumor microenvironment and surrounding tissues. As such, the irradiated cells are thought to communicate the signals that promote secondary tumorigenesis by affecting the function and fate of non-irradiated cells in the vicinity including endothelial cells. This may include up-regulation of genes in irradiated cells, secretion of paracrine factors and induction of gene expression in surrounding non-irradiated cells, which favor cell survival and secondary tumorigenesis. In the current study, we aimed to investigate whether the conditioned media from X-ray irradiated MCF-7 cells contribute to induction of gene expression in human umbilical vein endothelial cells (HUVECs) in vitro and modulate their angiogenic capability and migration. METHODS: Following the co-culturing of X-ray irradiated MCF-7 media with HUVECs, the migration and wound healing rate of HUVECs was monitored using Transwell plate and scratch wound healing assay, respectively. The levels of angiogenic protein i.e. vascular endothelial growth factor (VEGF-A) in the conditioned media of MCF-7 cells was measured using ELISA. Additionally, we quantified mRNA levels of VEGFR-2, HSP-70, Ang-2, and Ang-1 genes in HUVECs by real time-PCR. Tubulogenesis capacity of endothelial cells was measured by growth factor reduced Matrigel matrix, whereas expression of CD34 (a marker of angiogenic tip cells) was detected by flow cytometry. RESULTS: Data showed that VEGF-A protein content of conditioned media of irradiated MCF-7 cells was increased (P < 0.05) with increase in dose. Data showed that irradiated conditioned media from MCF-7 cells, when incubated with HUVECs, significantly enhanced the cell migration and wound healing rate of HUVECs in a dose-dependent manner (P < 0.05). The mRNA levels of VEGFR-2, HSP-70, Ang-2, and Ang-1 were dose-dependently enhanced in HUVECs incubated with irradiated conditioned media (P < 0.05). Importantly, HUVECs treated with irradiated conditioned media showed a marked increase in the tube formation capability as well as in expression of CD34 marker (P < 0.05). CONCLUSIONS: Our findings indicate that conditioned media from irradiated MCF-7 cells induce angiogenic responses in endothelial cells in vitro, which could be due to transfer of overexpressed VEGF-A and possibly other factors secreted from irradiated MCF-7 cells to endothelial cells, and induction of intrinsic genes (VEGFR-2, HSP-70, Ang-2, and Ang-1) in endothelial cells. Video abstract.


Asunto(s)
Efecto Espectador/efectos de la radiación , Medios de Cultivo Condicionados/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Rayos X , Movimiento Celular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Células MCF-7 , Transducción de Señal/efectos de los fármacos
18.
Radiat Environ Biophys ; 57(3): 223-231, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29785486

RESUMEN

Although evidence suggests that ionizing radiation can induce the bystander effect (radiation-induced bystander effect: RIBE) in cultured cells or mouse models, it is unclear whether the effect occurs in cells of wild animals. We investigated medium-mediated bystander micronucleus (MN) formation and DNA damage in un-irradiated cells from a large Japanese field mouse (Apodemus speciosus). We isolated four clones of A. speciosus embryonic fibroblasts (A603-1, A603-2, A603-3, and A603-4) derived from the same mother, and examined their radiation sensitivity using the colony-forming assay. A603-3 and A603-4 were similar, and A603-1 and A603-2 were highly sensitive compared with A603-3 and A603-4. We examined RIBE in the four clones in autologous medium from cell cultures exposed to 2 Gy X-ray radiation (irradiated cell conditioned medium: ICCM). We only observed increased MN prevalence and induction of DNA damage foci in A603-1 and A603-3 cells after ICCM transfer. The ICCM of A603-3 (RIBE-induced) was able to induce MN in A603-4 (not RIBE-induced). To assess the possible contribution of reactive oxygen species (ROS) or nitric oxide (NO) in medium-mediated RIBE, dimethyl sulfoxide (DMSO; a ROS scavenger) or 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO; an NO scavenger) were added to the medium. A suppressive effect was observed after adding DMSO, but there was no effect after treatment with c-PTIO. These results suggest that an enhanced radiosensitivity may not be directly related to the induction of medium-mediated RIBE. Moreover, ROS are involved in the transduction of the RIBE signal in A. speciosus cells, but NO is not. In conclusion, our results suggest that RIBE may be conserved in wild animals. The results contribute to better knowledge of radiation effects on wild, non-human species.


Asunto(s)
Efecto Espectador/efectos de la radiación , Embrión de Mamíferos/citología , Animales , Supervivencia Celular/efectos de la radiación , Roturas del ADN de Doble Cadena/efectos de la radiación , Embrión de Mamíferos/efectos de la radiación , Murinae , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/metabolismo
19.
J Mater Sci Mater Med ; 29(8): 130, 2018 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-30074096

RESUMEN

The development of a myriad of nanoparticles types has opened new possibilities for the diagnostics and treatment of many diseases, especially for cancer. However, most of the researches done so far do not focus on the protection of normal cells surrounding a tumor from irradiation bystander effects that might lead to cancer recurrence. Gap-junctions are known to be involved in this process, which leads to genomic instability of neighboring normal cells, and flufenamic acid (FFA) is included in a new group of gap-junction blockers recently discovered. The present work explores the use of mesoporous silica nanoparticles MCM-41 functionalized with 3-Aminopropyltriethoxysilane (APTES) for anchoring the flufenamic acid for its prolonged and controlled release and protection from radiation bystander effects. MCM-41 and functionalized samples were structurally and chemically characterized with multiple techniques. The biocompatibility of all samples was tested in a live/dead assay performed in cultured MRC-5 and HeLa cells. HeLa cells cultured were exposed to 50 Gy of gamma-rays and the media transferred to fibroblast cells cultured separately. Our results show that MCM-41 and functionalized samples have high biocompatibility with MCR-5 and HeLa cells, and most importantly, the FFA delivered by these NPs was able to halt apoptosis, one of main bystander effects.


Asunto(s)
Efecto Espectador/efectos de la radiación , Ácido Flufenámico/química , Ácido Flufenámico/farmacología , Nanopartículas/química , Dióxido de Silicio/química , Dióxido de Silicio/farmacología , Efecto Espectador/efectos de los fármacos , Línea Celular , Fibroblastos/efectos de los fármacos , Fibroblastos/efectos de la radiación , Rayos gamma/efectos adversos , Humanos , Ensayo de Materiales , Microscopía Electrónica de Rastreo
20.
Rev Med Liege ; 73(1): 17-21, 2018 Jan.
Artículo en Francés | MEDLINE | ID: mdl-29388406

RESUMEN

Radiotherapy is known for its action on local tumoral control. However, it is also able to induce immunomodulatory effects at a systemic level. The abscopal effect (from latin ab scopus which means «away from the target¼) is an illustration of this phenomenon. It is defined as a tumor regression observed outside and at a distance of the irradiation fields. The potential application of this effect of treatment in disseminated cancers is a fast-growing field of research. The optimal therapeutic strategy to achieve this effect remains unknown.


La radiothérapie, connue pour son action sur le contrôle tumoral local, est également capable d'induire des effets immuno-modulateurs systémiques. L'effet abscopal (du latin ab scopus qui signifie «à distance de la cible¼) décrit la régression tumorale observée à distance de la zone d'irradiation. L'exploitation thérapeutique de celui-ci comme traitement des cancers disséminés est un domaine de recherche en plein essor. Actuellement, les modalités thérapeutiques optimales visant à obtenir cet effet demeurent inconnues.


Asunto(s)
Efecto Espectador/efectos de la radiación , Neoplasias/radioterapia , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA