RESUMEN
The evolution of pest resistance to management tools reduces productivity and results in economic losses in agricultural systems. To slow its emergence and spread, monitoring and prevention practices are implemented in resistance management programs. Recent work suggests that genomic approaches can identify signs of emerging resistance to aid in resistance management. Here, we empirically examined the sensitivity of genomic monitoring for resistance management in transgenic Bt crops, a globally important agricultural innovation. Whole genome resequencing of wild North American Helicoverpa zea collected from non-expressing refuge and plants expressing Cry1Ab confirmed that resistance-associated signatures of selection were detectable after a single generation of exposure. Upon demonstrating its sensitivity, we applied genomic monitoring to wild H. zea that survived Vip3A exposure resulting from cross-pollination of refuge plants in seed-blended plots. Refuge seed interplanted with transgenic seed exposed H. zea to sublethal doses of Vip3A protein in corn ears and was associated with allele frequency divergence across the genome. Some of the greatest allele frequency divergence occurred in genomic regions adjacent to a previously described candidate gene for Vip3A resistance. Our work highlights the power of genomic monitoring to sensitively detect heritable changes associated with field exposure to Bt toxins and suggests that seed-blended refuge will likely hasten the evolution of resistance to Vip3A in lepidopteran pests.
Asunto(s)
Bacillus thuringiensis , Endotoxinas , Animales , Larva/metabolismo , Endotoxinas/genética , Endotoxinas/metabolismo , Bacillus thuringiensis/genética , Polinización , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Hemolisinas/metabolismo , Control Biológico de Vectores/métodos , Resistencia a los Insecticidas/genética , Genómica , Semillas/metabolismo , Zea mays/genéticaRESUMEN
A variety of coordinated host-cell responses are activated as defense mechanisms against pore-forming toxins (PFTs). Bacillus thuringiensis (Bt) is a worldwide used biopesticide whose efficacy and precise application methods limits its use to replace synthetic pesticides in agricultural settings. Here, we analyzed the intestinal defense mechanisms of two lepidopteran insect pests after intoxication with sublethal dose of Bt PFTs to find out potential functional genes. We show that larval intestinal epithelium was initially damaged by the PFTs and that larval survival was observed after intestinal epithelium regeneration. Further analyses showed that the intestinal regeneration caused by Cry9A protein is regulated through c-Jun NH (2) terminal kinase (JNK) and Janus tyrosine kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathways. JAK/STAT signaling regulates intestinal regeneration through proliferation and differentiation of intestinal stem cells to defend three different Bt proteins including Cry9A, Cry1F or Vip3A in both insect pests, Chilo suppressalis and Spodoptera frugiperda. Consequently, a nano-biopesticide was designed to improve pesticidal efficacy based on the combination of Stat double stranded RNA (dsRNA)-nanoparticles and Bt strain. This formulation controlled insect pests with better effect suggesting its potential use to reduce the use of synthetic pesticides in agricultural settings for pest control.
Asunto(s)
Bacillus thuringiensis , Plaguicidas , Animales , Bacillus thuringiensis/genética , Quinasas Janus/genética , Tirosina , Endotoxinas/genética , Insectos , Spodoptera/genética , Larva , Plaguicidas/farmacología , Regeneración , Proteínas Bacterianas/farmacología , Proteínas Bacterianas/genética , Proteínas Hemolisinas/farmacología , Proteínas Hemolisinas/genética , Plantas Modificadas Genéticamente , Control Biológico de Vectores/métodosRESUMEN
Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) have revolutionized control of some major pests. However, more than 25 cases of field-evolved practical resistance have reduced the efficacy of transgenic crops producing crystalline (Cry) Bt proteins, spurring adoption of alternatives including crops producing the Bt vegetative insecticidal protein Vip3Aa. Although practical resistance to Vip3Aa has not been reported yet, better understanding of the genetic basis of resistance to Vip3Aa is urgently needed to proactively monitor, delay, and counter pest resistance. This is especially important for fall armyworm (Spodoptera frugiperda), which has evolved practical resistance to Cry proteins and is one of the world's most damaging pests. Here, we report the identification of an association between downregulation of the transcription factor gene SfMyb and resistance to Vip3Aa in S. frugiperda. Results from a genome-wide association study, fine-scale mapping, and RNA-Seq identified this gene as a compelling candidate for contributing to the 206-fold resistance to Vip3Aa in a laboratory-selected strain. Experimental reduction of SfMyb expression in a susceptible strain using RNA interference (RNAi) or CRISPR/Cas9 gene editing decreased susceptibility to Vip3Aa, confirming that reduced expression of this gene can cause resistance to Vip3Aa. Relative to the wild-type promoter for SfMyb, the promoter in the resistant strain has deletions and lower activity. Data from yeast one-hybrid assays, genomics, RNA-Seq, RNAi, and proteomics identified genes that are strong candidates for mediating the effects of SfMyb on Vip3Aa resistance. The results reported here may facilitate progress in understanding and managing pest resistance to Vip3Aa.
Asunto(s)
Bacillus thuringiensis , Insecticidas , Animales , Bacillus thuringiensis/genética , Spodoptera/genética , Toxinas de Bacillus thuringiensis/metabolismo , Regulación hacia Abajo , Factores de Transcripción/metabolismo , Estudio de Asociación del Genoma Completo , Insecticidas/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacología , Proteínas Bacterianas/metabolismo , Productos Agrícolas/genética , Endotoxinas/genética , Endotoxinas/farmacología , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Resistencia a los Insecticidas/genética , Larva/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismoRESUMEN
Lepidopterans affect crop production worldwide. The use of transgenes encoding insecticidal proteins from Bacillus thuringiensis (Bt) in crop plants is a well-established technology that enhances protection against lepidopteran larvae. Concern about widespread field-evolved resistance to Bt proteins has highlighted an urgent need for new insecticidal proteins with different modes or sites of action. We discovered a new family of insecticidal proteins from ferns. The prototype protein from Pteris species (Order Polypodiales) and variants from two other orders of ferns, Schizaeales and Ophioglossales, were effective against important lepidopteran pests of maize and soybean in diet-based assays. Transgenic maize and soybean plants producing these proteins were more resistant to insect damage than controls. We report here the crystal structure of a variant of the prototype protein to 1.98 Å resolution. Remarkably, despite being derived from plants, the structure resembles the 3-domain Cry proteins from Bt but has only two out of three of their characteristic domains, lacking the C-terminal domain which is typically required for their activities. Two of the fern proteins were effective against strains of fall armyworm that were resistant to Bt 3-domain Cry proteins Cry1Fa or Cry2A.127. This therefore represents a novel family of insecticidal proteins that have the potential to provide future tools for pest control.
Asunto(s)
Bacillus thuringiensis , Helechos , Insecticidas , Tracheophyta , Animales , Insecticidas/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Control Biológico de Vectores , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Tracheophyta/metabolismo , Zea mays/metabolismoRESUMEN
BACKGROUND: Genetically modified (GM) crop plants with transgenic expression of Bacillus thuringiensis (Bt) pesticidal proteins are used to manage feeding damage by pest insects. The durability of this technology is threatened by the selection for resistance in pest populations. The molecular mechanism(s) involved in insect physiological response or evolution of resistance to Bt is not fully understood. RESULTS: To investigate the response of a susceptible target insect to Bt, the soybean pod borer, Leguminivora glycinivorella (Lepidoptera: Tortricidae), was exposed to soybean, Glycine max, expressing Cry1Ac pesticidal protein or the non-transgenic parental cultivar. Assessment of larval changes in gene expression was facilitated by a third-generation sequenced and scaffolded chromosome-level assembly of the L. glycinivorella genome (657.4 Mb; 27 autosomes + Z chromosome), and subsequent structural annotation of 18,197 RefSeq gene models encoding 23,735 putative mRNA transcripts. Exposure of L. glycinivorella larvae to transgenic Cry1Ac G. max resulted in prediction of significant differential gene expression for 204 gene models (64 up- and 140 down-regulated) and differential splicing among isoforms for 10 genes compared to unexposed cohorts. Differentially expressed genes (DEGs) included putative peritrophic membrane constituents, orthologs of Bt receptor-encoding genes previously linked or associated with Bt resistance, and those involved in stress responses. Putative functional Gene Ontology (GO) annotations assigned to DEGs were significantly enriched for 36 categories at GO level 2, respectively. Most significantly enriched cellular component (CC), biological process (BP), and molecular function (MF) categories corresponded to vacuolar and microbody, transport and metabolic processes, and binding and reductase activities. The DEGs in enriched GO categories were biased for those that were down-regulated (≥ 0.783), with only MF categories GTPase and iron binding activities were bias for up-regulation genes. CONCLUSIONS: This study provides insights into pathways and processes involved larval response to Bt intoxication, which may inform future unbiased investigations into mechanisms of resistance that show no evidence of alteration in midgut receptors.
Asunto(s)
Bacillus thuringiensis , Mariposas Nocturnas , Plaguicidas , Animales , Larva/genética , Larva/metabolismo , Glycine max/genética , Endotoxinas/genética , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Control Biológico de Vectores/métodos , Mariposas Nocturnas/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/química , Bacillus thuringiensis/metabolismo , Cromosomas/metabolismo , Proteínas Hemolisinas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Resistencia a los Insecticidas/genéticaRESUMEN
Genetically modified (GM) crops, expressing Bacillus thuringiensis (Bt) insecticidal toxins, have substantially transformed agriculture. Despite rapid adoption, their environmental and economic benefits face scrutiny due to unsustainable agricultural practices and the emergence of resistant pests like Spodoptera frugiperda, known as the fall armyworm (FAW). FAW's adaptation to Bt technology in corn and cotton compromises the long-term efficacy of Bt crops. To advance the understanding of the genetic foundations of resistance mechanisms, we conducted an exploratory comparative transcriptomic analysis of two divergent FAW populations. One population exhibited practical resistance to the Bt insecticidal proteins Cry1A.105 and Cry2Ab2, expressed in the genetically engineered MON-89Ø34 - 3 maize, while the other population remained susceptible to these proteins. Differential expression analysis supported that Cry1A.105 and Cry2Ab2 significantly affect the FAW physiology. A total of 247 and 254 differentially expressed genes were identified in the Cry-resistant and susceptible populations, respectively. By integrating our findings with established literature and databases, we underscored 53 gene targets potentially involved in FAW's resistance to Cry1A.105 and Cry2Ab2. In particular, we considered and discussed the potential roles of the differentially expressed genes encoding ABC transporters, G protein-coupled receptors, the P450 enzymatic system, and other Bt-related detoxification genes. Based on these findings, we emphasize the importance of exploratory transcriptomic analyses to uncover potential gene targets involved with Bt insecticidal proteins resistance, and to support the advantages of GM crops in the face of emerging challenges.
Asunto(s)
Toxinas de Bacillus thuringiensis , Proteínas Bacterianas , Endotoxinas , Proteínas Hemolisinas , Resistencia a los Insecticidas , Spodoptera , Transcriptoma , Spodoptera/efectos de los fármacos , Spodoptera/genética , Animales , Endotoxinas/genética , Endotoxinas/farmacología , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Resistencia a los Insecticidas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/parasitología , Zea mays/genética , Zea mays/parasitología , Perfilación de la Expresión GénicaRESUMEN
Bacillus thuringiensis is the most widely used biopesticide, targets a diversity of insect pests belonging to several orders. However, information regarding the B. thuringiensis strains and toxins targeting Zeugodacus cucurbitae is very limited. Therefore, in the present study, we isolated and identified five indigenous B. thuringiensisstrains toxic to larvae of Z. cucurbitae. However, of five strains NBAIR BtPl displayed the highest mortality (LC50 = 37.3 µg/mL) than reference strain B. thuringiensis var. israelensis (4Q1) (LC50 = 45.41 µg/mL). Therefore, the NBAIR BtPl was considered for whole genome sequencing to identify the cry genes present in it. Whole genome sequencing of our strain revealed genome size of 6.87 Mb with 34.95% GC content. Homology search through the BLAST algorithm revealed that NBAIR BtPl is 99.8% similar to B. thuringiensis serovar tolworthi, and gene prediction through Prokka revealed 7406 genes, 7168 proteins, 5 rRNAs, and 66 tRNAs. BtToxin_Digger analysis of NBAIR BtPl genome revealed four cry gene families: cry1, cry2, cry8Aa1, and cry70Aa1. When tested for the presence of these four cry genes in other indigenous strains, results showed that cry70Aa1 was absent. Thus, the study provided a basis for predicting cry70Aa1 be the possible reason for toxicity. In this study apart from novel genes, we also identified other virulent genes encoding zwittermicin, chitinase, fengycin, and bacillibactin. Thus, the current study aids in predicting potential toxin-encoding genes responsible for toxicity to Z. cucurbitae and thus paves the way for the development of B. thuringiensis-based formulations and transgenic crops for management of dipteran pests.
Asunto(s)
Bacillus thuringiensis , Proteínas Bacterianas , Genoma Bacteriano , Secuenciación Completa del Genoma , Bacillus thuringiensis/genética , Animales , Proteínas Bacterianas/genética , Toxinas de Bacillus thuringiensis/genética , Endotoxinas/genética , Control Biológico de Vectores , Tephritidae/genética , Tephritidae/microbiología , Proteínas Hemolisinas/genética , Larva/genética , FilogeniaRESUMEN
BACKGROUND: As part of a publicly funded initiative to develop genetically engineered Brassicas (cabbage, cauliflower, and canola) expressing Bacillus thuringiensis Crystal (Cry)-encoded insecticidal (Bt) toxin for Indian and Australian farmers, we designed several constructs that drive high-level expression of modified Cry1B and Cry1C genes (referred to as Cry1BM and Cry1CM; with M indicating modified). The two main motivations for modifying the DNA sequences of these genes were to minimise any licensing cost associated with the commercial cultivation of transgenic crop plants expressing CryM genes, and to remove or alter sequences that might adversely affect their activity in plants. RESULTS: To assess the insecticidal efficacy of the Cry1BM/Cry1CM genes, constructs were introduced into the model Brassica Arabidopsis thaliana in which Cry1BM/Cry1CM expression was directed from either single (S4/S7) or double (S4S4/S7S7) subterranean clover stunt virus (SCSV) promoters. The resulting transgenic plants displayed a high-level of Cry1BM/Cry1CM expression. Protein accumulation for Cry1CM ranged from 5.18 to 176.88 µg Cry1CM/g dry weight of leaves. Contrary to previous work on stunt promoters, we found no correlation between the use of either single or double stunt promoters and the expression levels of Cry1BM/Cry1CM genes, with a similar range of Cry1CM transcript abundance and protein content observed from both constructs. First instar Diamondback moth (Plutella xylostella) larvae fed on transgenic Arabidopsis leaves expressing the Cry1BM/Cry1CM genes showed 100% mortality, with a mean leaf damage score on a scale of zero to five of 0.125 for transgenic leaves and 4.2 for wild-type leaves. CONCLUSIONS: Our work indicates that the modified Cry1 genes are suitable for the development of insect resistant GM crops. Except for the PAT gene in the USA, our assessment of the intellectual property landscape of components presents within the constructs described here suggest that they can be used without the need for further licensing. This has the capacity to significantly reduce the cost of developing and using these Cry1M genes in GM crop plants in the future.
Asunto(s)
Arabidopsis , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas , Endotoxinas , Proteínas Hemolisinas , Plantas Modificadas Genéticamente , Plantas Modificadas Genéticamente/genética , Arabidopsis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Hemolisinas/genética , Animales , Endotoxinas/genética , Regiones Promotoras Genéticas/genética , Bacillus thuringiensis/genética , Mariposas Nocturnas/genética , Brassica/genética , Control Biológico de Vectores/métodos , Insecticidas/farmacologíaRESUMEN
The resistance to the insecticidal protein Cry1Ac from the bacterium Bacillus thuringiensis (Bt) in the cabbage looper, Trichoplusia ni, has previously been identified to be associated with a frameshift mutation in the ABC transporter ABCC2 gene and with altered expression of the aminopeptidase N (APN) genes APN1 and APN6, shown as missing of the 110-kDa APN1 (phenotype APN1¯) in larval midgut brush border membrane vesicles (BBMV). In this study, genetic linkage analysis identified that the APN1¯ phenotype and the ABCC2 mutation in Cry1Ac-resistant T. ni segregated independently, although they were always associated under Cry1Ac selection. The ABCC2 mutation and APN1¯ phenotype were separated into two T. ni strains respectively. Bioassays of the T. ni strains with Cry1Ac determined that the T. ni with the APN1¯ phenotype showed a low level resistance to Cry1Ac (3.5-fold), and the associated resistance is incompletely dominant in the background of the ABCC2 mutation. Whereas the ABCC2 mutation-associated resistance to Cry1Ac is at a moderate level, and the resistance is incompletely recessive in the genetic background of downregulated APN1. Analysis of Cry1Ac binding to larval midgut BBMV indicated that the midgut in larvae with the APN1¯ phenotype had reduced binding affinity for Cry1Ac, but the number of binding sites remained unchanged, and the midgut in larvae with the ABCC2 mutation had both reduced binding affinity and reduced number of binding sites for Cry1Ac. The reduced Cry1Ac binding to BBMV from larvae with the ABCC2 mutation or APN1¯ phenotype correlated with the lower levels of resistance.IMPORTANCEThe soil bacterium Bacillus thuringiensis (Bt) is an important insect pathogen used as a bioinsecticide for pest control. Bt genes coding for insecticidal proteins are the primary transgenes engineered into transgenic crops (Bt crops) to confer insect resistance. However, the evolution of resistance to Bt proteins in insect populations in response to exposure to Bt threatens the sustainable application of Bt biotechnology. Cry1Ac is a major insecticidal toxin utilized for insect control. Genetic mechanisms of insect resistance to Cry1Ac are complex and require to be better understood. The resistance to Cry1Ac in Trichoplusia ni is associated with a mutation in the ABCC2 gene and also associated with the APN expression phenotype APN1¯. This study identified the genetic independence of the APN1¯ phenotype from the ABCC2 mutation and isolated and analyzed the ABCC2 mutation-associated and APN1¯ phenotype-associated resistance traits in T. ni to provide new insights into the genetic mechanisms of Cry1Ac resistance in insects.
Asunto(s)
Toxinas de Bacillus thuringiensis , Bacillus thuringiensis , Proteínas Bacterianas , Antígenos CD13 , Endotoxinas , Proteínas Hemolisinas , Resistencia a los Insecticidas , Mariposas Nocturnas , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Mutación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Animales , Endotoxinas/genética , Endotoxinas/metabolismo , Endotoxinas/farmacología , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacología , Proteínas Hemolisinas/metabolismo , Resistencia a los Insecticidas/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Bacillus thuringiensis/genética , Mariposas Nocturnas/genética , Antígenos CD13/genética , Antígenos CD13/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Regulación hacia Abajo , Insecticidas/farmacología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismoRESUMEN
Insect-protected soybean (SIP) that produces the Cry1A.105 and Cry2Ab2 insecticidal crystal proteins has been developed to provide protection from feeding damage caused by targeted lepidopteran insect pests. Typically, as part of environmental risk assessment (ERA), plant characterization is conducted, and the data submitted to regulatory agencies prior to commercialization of genetically modified (GM) crops. The objectives of this research were to: (a) compare soybean with and without the SIP trait in plant characterization field trials designed to fulfill requirements for submissions to global regulatory agencies and address China-specific considerations and (b) compare risk assessment conclusions across regions and the methodologies used in the field trials. The soybean with and without the SIP trait in temperate, tropical, and subtropical germplasm were planted in replicated multi-location trials in the USA (in 2012 and 2018) and Brazil (in 2013/2014 and 2017/2018). Agronomic, phenotypic, plant competitiveness, and survival characteristics were assessed for soybean entries with and without the SIP trait. Regardless of genetic background, growing region, season, or testing methodology, the risk assessment conclusions were the same: the evaluated insect-protected soybean did not differ from conventional soybean in evaluated agronomic, phenotypic, competitiveness, and survival characteristics indicating no change in plant pest/weed potential. These results reinforce the concept of data transportability across global regions, different seasons, germplasm, and methodologies that should be considered when assessing environmental risks of GM crops.
Asunto(s)
Glycine max , Plantas Modificadas Genéticamente , Glycine max/genética , Glycine max/parasitología , Glycine max/crecimiento & desarrollo , Animales , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Endotoxinas/genética , Brasil , Control Biológico de Vectores , Proteínas Hemolisinas/genética , Productos Agrícolas/genética , Insectos/genética , Insectos/patogenicidad , Lepidópteros/patogenicidad , Lepidópteros/genética , Proteínas Bacterianas/genética , Toxinas de Bacillus thuringiensis/genéticaRESUMEN
Genetically engineered (GE) cotton event MON 88702, producing Mpp51Aa2 (previously mCry51Aa2) from Bacillus thuringiensis (Bt), controls sucking pests, such as Lygus spp. (Hemiptera: Miridae) and thrips (Thysanoptera). Ingesting high doses of the insecticidal protein resulted in adverse effects on life table parameters of beneficial, predatory Orius spp. (Hemiptera: Anthocoridae). This triggered laboratory studies with more realistic food treatments, including different combinations of prey types with and without Bt protein to further characterize risks to this important group of non-target organisms. In this work, exclusive feeding of frozen spider mites (Tetranychus urticae, Acari: Tetranychidae) from Bt cotton confirmed adverse effects on longevity and fecundity of O. majusculus adults. Alternate feeding of Bt protein-containing spider mites and Bt-free Ephestia kuehniella (Lepidoptera: Pyralidae) eggs mitigated effects on longevity, but not on fecundity. When living larvae of Spodoptera littoralis (Lepidoptera: Noctuidae) from Bt cotton were fed to the predators, however, no effects on longevity and reproduction of female O. majusculus were observed, despite the fact that Bt protein concentrations in larvae were almost as high as concentrations in spider mites. When a diverse mix of prey species with various Bt protein concentrations is consumed in the field, it is unlikely that exposure of Orius spp. to Mpp51Aa2 is high enough to exert adverse effects on predator populations. MON 88702 cotton may thus be a valuable tool for integrated management of sucking pests.
Asunto(s)
Bacillus thuringiensis , Gossypium , Longevidad , Control Biológico de Vectores , Plantas Modificadas Genéticamente , Reproducción , Animales , Gossypium/genética , Gossypium/parasitología , Gossypium/crecimiento & desarrollo , Gossypium/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/parasitología , Bacillus thuringiensis/genética , Reproducción/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Conducta Predatoria , Fertilidad/genética , Spodoptera/crecimiento & desarrollo , Spodoptera/fisiología , Spodoptera/genética , Larva/crecimiento & desarrollo , Larva/genética , Toxinas de Bacillus thuringiensis/genética , Endotoxinas/genética , Endotoxinas/metabolismo , Heterópteros/genética , Heterópteros/fisiología , Heterópteros/crecimiento & desarrollo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Tetranychidae/genética , FemeninoRESUMEN
Antifungal peptides (AFPs) can be used as novel preservatives, but achieving large-scale production and application remains a long-term challenge. In this study, we developed a hybrid peptide MD (metchnikowin-drosomycin fusion) secreted into Escherichia coli supernatant, demonstrating strong inhibitory activity against Aspergillus flavus and Botrytis cinerea. The fusion tag did not impact its activity. Moreover, an endotoxin-free and oxidative leaky strain was developed by knocking out the trxB, gor, and lpp genes of endotoxin-free E. coli ClearColi-BL21(DE3). This strain facilitates the proper folding of multi-disulfide bond proteins and promotes the extracellular production of recombinant bioactive AFP MD, achieving efficient production of endotoxin-free MD. In addition, temperature control replaces chemical inducers to further reduce production costs and circumvent the toxicity of inducers. This extracellularly produced MD exhibited favorable effectiveness in inhibiting fruit mold growth, and its safety was preliminarily established by gavage testing in mice, suggesting that it can be developed into a green and sustainable fruit fungicide. In conclusion, this study provides novel approaches and systematic concepts for producing extracellularly active proteins or peptides with industrial significance. KEY POINTS: ⢠First report of extracellular production of bioactive antifungal peptide in Escherichia coli. ⢠The hybrid antifungal peptide MD showed strong inhibitory activity against Aspergillus flavus and Botrytis cinerea, and the activity was not affected by the fusion tag. ⢠Endotoxin-free oxidative Escherichia coli suitable for the expression of multi-disulfide bond proteins was constructed.
Asunto(s)
Antifúngicos , Escherichia coli , Animales , Ratones , Antifúngicos/farmacología , Escherichia coli/genética , Péptidos/farmacología , Aspergillus flavus/genética , Endotoxinas/genética , Disulfuros , Estrés OxidativoRESUMEN
Cry4Aa, produced by Bacillus thuringiensis subsp. israelensis, exhibits specific toxicity to larvae of medically important mosquito genera. Cry4Aa functions as a pore-forming toxin, and a helical hairpin (α4-loop-α5) of domain I is believed to be the transmembrane domain that forms toxin pores. Pore formation is considered to be a central mode of Cry4Aa action, but the relationship between pore formation and toxicity is poorly understood. In the present study, we constructed Cry4Aa mutants in which each polar amino acid residues within the transmembrane α4 helix was replaced with glutamic acid. Bioassays using Culex pipiens mosquito larvae and subsequent ion permeability measurements using symmetric KCl solution revealed an apparent correlation between toxicity and toxin pore conductance for most of the Cry4Aa mutants. In contrast, the Cry4Aa mutant H178E was a clear exception, almost losing its toxicity but still exhibiting a moderately high conductivity of about 60% of the wild-type. Furthermore, the conductance of the pore formed by the N190E mutant (about 50% of the wild-type) was close to that of H178E, but the toxicity was significantly higher than that of H178E. Ion selectivity measurements using asymmetric KCl solution revealed a significant decrease in cation selectivity of toxin pores formed by H178E compared to N190E. Our data suggest that the toxicity of Cry4Aa is primarily pore related. The formation of toxin pores that are highly ion-permeable and also highly cation-selective may enhance the influx of cations and water into the target cell, thereby facilitating the eventual death of mosquito larvae.
Asunto(s)
Aedes , Bacillus thuringiensis , Culex , Culicidae , Animales , Bacillus thuringiensis/metabolismo , Culicidae/metabolismo , Endotoxinas/genética , Endotoxinas/toxicidad , Endotoxinas/química , Toxinas de Bacillus thuringiensis , Secuencia de Aminoácidos , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/toxicidad , Larva , Cationes/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/toxicidad , Proteínas Bacterianas/químicaRESUMEN
Tobacco Etch virus (TEV) protease is one of the most common tools for removing fusion tags, but no study has shown that TEV can be expressed at high levels in the GRAS host strain Bacillus subtilis and purified for further application. In this study, the fusion protein BsLysSN-TEV C/S-His-TEV consisting of a fusion tag, N-terminal domain of a lysyl-tRNA synthetase (BsLysSN) coded by B. subtilis lysS gene, placed at the N-terminus followed by an endoprotease TEV cleavage site and then the expression of this fusion protein in the cytoplasm of B. subtilis was investigated. The SDS-PAGE and Western-blot analysis demonstrated that His-TEV was overexpressed under the induction of IPTG. This result infers that His-TEV protease showed promising activity in the B. subtilis cytoplasm by the cleavage of the fusion protein. These cleavage products could be purified using the Ni-NTA column, which effectively cleaved the purified recombinant protein substrate, which can be applied in the protein purification process to remove the fusion tag. Significantly, since both His-TEV protease and the fusion recombinant protein substrate are expressed in the endotoxin-free host strain, the tag removal and purified product should be theoretically endotoxin-free, which could be a promising approach for producing therapeutic proteins and also for other relevant biomedical applications.
Asunto(s)
Bacillus subtilis , Endopeptidasas , Proteínas Recombinantes de Fusión , Bacillus subtilis/genética , Bacillus subtilis/enzimología , Endopeptidasas/genética , Endopeptidasas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/química , Endotoxinas/genética , Endotoxinas/metabolismo , Lisina-ARNt Ligasa/genética , Lisina-ARNt Ligasa/metabolismo , Lisina-ARNt Ligasa/química , Expresión GénicaRESUMEN
The fall armyworm (Spodoptera frugiperda) is a major global pest causing severe damage to various crops, especially corn. Transgenic corn producing the Cry1F pesticidal protein from the bacterium Bacillus thuringiensis (Cry1F corn) showed effectiveness in controlling this pest until S. frugiperda populations at locations in North and South America evolved practical resistance. The mechanism for practical resistance involved disruptive mutations in an ATP binding cassette transporter subfamily C2 gene (SfABCC2), which serves as a functional Cry1F receptor in the midgut cells of susceptible S. frugiperda. The SfABCC2 protein contains two transmembrane domains (TMD1 and TMD2), each with a cytosolic nucleotide (ATP) binding domain (NBD1 and NBD2, respectively). Previous reports have demonstrated that disruptive mutations in TMD2 were linked with resistance to Cry1F, yet whether the complete SfABCC2 structure is needed for receptor functionality or if a single TMD-NBD protein can serve as functional Cry1F receptor remains unknown. In the present study, we separately expressed TMD1 and TMD2 with their corresponding NBDs in cultured insect cells and tested their Cry1F receptor functionality. Our results show that the complete SfABCC2 structure is required for Cry1F receptor functionality. Moreover, binding competition assays revealed that Cry1F specifically bound to SfABCC2, whereas neither SfTMD1-NBD1 nor SfTMD2-NBD2 exhibited any significant binding. These results provide insights into the molecular mechanism of Cry1F recognition by SfABCC2 in S. frugiperda, which could facilitate the development of more effective insecticidal proteins.
Asunto(s)
Bacillus thuringiensis , Endotoxinas , Animales , Spodoptera , Endotoxinas/genética , Resistencia a los Insecticidas/genética , Toxinas de Bacillus thuringiensis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacillus thuringiensis/metabolismo , Zea mays , Proteínas Hemolisinas/genética , Plantas Modificadas Genéticamente/genéticaRESUMEN
Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) have revolutionized pest control. However, the evolution of resistance by target pests poses a significant threat to the long-term success of Bt crops. Understanding the genetics and mechanisms underlying Bt resistance is crucial for developing resistance detection methods and management tactics. The T92C mutation in a tetraspanin gene (HaTSPAN1), resulting in the L31S substitution, is associated with dominant resistance to Cry1Ac in a major pest, Helicoverpa armigera. Previous studies using CRISPR/Cas9 technique have demonstrated that knockin of the HaTSPAN1 T92C mutation confers a 125-fold resistance to Cry1Ac in the susceptible SCD strain of H. armigera. In this study, we employed the piggyBac transposon system to create two transgenic H. armigera strains based on SCD: one expressing the wild-type HaTSPAN1 gene (SCD-TSPANwt) and another expressing the T92C mutant form of HaTSPAN1 (SCD-TSPANmt). The SCD-TSPANmt strain exhibited an 82-fold resistance to Cry1Ac compared to the recipient SCD strain, while the SCD-TSPANwt strain remained susceptible. The Cry1Ac resistance followed an autosomal dominant inheritance mode and was genetically linked with the transgene locus in the SCD-TSPANmt strain of H. armigera. Our results further confirm the causal association between the T92C mutation of HaTSPAN1 and dominant resistance to Cry1Ac in H. armigera. Additionally, they suggest that the piggyBac-mediated transformation system we used in H. armigera is promising for functional investigations of candidate Bt resistance genes from other lepidopteran pests.
Asunto(s)
Toxinas de Bacillus thuringiensis , Proteínas Bacterianas , Endotoxinas , Proteínas Hemolisinas , Resistencia a los Insecticidas , Mariposas Nocturnas , Animales , Endotoxinas/genética , Endotoxinas/farmacología , Toxinas de Bacillus thuringiensis/farmacología , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacología , Proteínas Hemolisinas/toxicidad , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/genética , Resistencia a los Insecticidas/genética , Proteínas Bacterianas/genética , Alelos , Plantas Modificadas Genéticamente/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Bacillus thuringiensis/genética , Insecticidas/farmacología , Insecticidas/toxicidad , Helicoverpa armigeraRESUMEN
Exopolysaccharides (EPSs) are carbohydrate polymers that are synthesized and secreted into the extracellular during the growth of microorganisms. Bacillus thuringiensis (Bt) is a type of entomopathogenic bacterium, that produces various insecticidal proteins and EPSs. In our previous study, the EPSs produced by Bt strains were first found to enhance the toxicity of insecticidal crystal proteins against Plutella xylostella. However, the response of the intestinal bacterial communities of P. xylostella under the action of EPSs is still unelucidated. In this study, 16S rRNA amplicon sequencing was used to characterize the intestinal bacterial communities in P. xylostella treated with EPSs alone, Cry1Ac protoxin alone, and both the Cry1Ac protoxin and EPSs. Compared with the control group, alpha diversity indices, the Chao1 and ACE indices were significantly altered after treatment with EPSs alone, and no significant difference was observed between the groups treated with Cry1Ac protoxin alone and Cry1Ac protoxin + EPSs. However, compared with the gut bacterial community feeding on Cry1Ac protoxin alone, the relative abundance of 31 genera was significantly changed in the group treated with Cry1Ac protoxin and EPSs. The intestinal bacteria, through the oral of Cry1Ac protoxin and EPSs, significantly enhanced the toxicity of the Cry1Ac protoxin towards the axenic P. xylostella. In addition, the relative abundance of the 16S rRNA gene in the chloroplasts of Brassica campestris decreased after adding EPSs. Taken together, these results show the vital contribution of the gut microbiota to the Bt strain-killing activity, providing new insights into the mechanism of the synergistic insecticidal activity of Bt proteins and EPSs.
Asunto(s)
Toxinas de Bacillus thuringiensis , Proteínas Bacterianas , Endotoxinas , Microbioma Gastrointestinal , Proteínas Hemolisinas , Mariposas Nocturnas , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Endotoxinas/genética , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacología , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ARN Ribosómico 16S/genética , Bacillus thuringiensis/genética , Insecticidas/farmacologíaRESUMEN
Immune responses to Cas proteins have been demonstrated recently and these may prove to be an impediment to their clinical use in gene editing. To make meaningful assessments of Cas9 immunogenicity during drug development and licensure it is imperative the reagents are free of impurities that could affect in vitro assessments of immunogenicity. Here we address the issue of endotoxin levels in laboratory grade Cas9 proteins used to measure T-cell memory responses. Many of these reagents have not been developed for immunogenicity assays, are or microbial origin and carry varying levels of endotoxin. The use of these reagents, off the shelf, without measuring endotoxin levels is likely to introduce incorrect estimates of the prevalence of memory T-cell responses in research studies. We demonstrate wide variation in endotoxin levels in Cas9 proteins from seven suppliers. Different lots from the same supplier also contained varying levels of endotoxin. ELISPOT assays showed similar large variations in the interferon-γ signals. Finally, when we carried out endotoxin depletion in four Cas9 proteins with strong signals in the ELISPOT assay, we found dampening of the interferon-γ signals.
Asunto(s)
Proteína 9 Asociada a CRISPR , Linfocitos T , Sistemas CRISPR-Cas , Interferón gamma/genética , Endotoxinas/genéticaRESUMEN
China is the world's second-largest maize producer and consumer. In recent years, the invasive fall armyworm Spodoptera frugiperda (J.E. Smith) has adversely affected maize productivity and compromised food security. To mitigate pest-inflicted food shortages, China's Government issued biosafety certificates for two genetically modified (GM) Bt maize hybrids, Bt-Cry1Ab DBN9936 and Bt-Cry1Ab/Cry2Aj Ruifeng 125, in 2019. Here, we quantitatively assess the impact of both Bt maize hybrids on pest feeding damage, crop yield and food safety throughout China's maize belt. Without a need to resort to synthetic insecticides, Bt maize could mitigate lepidopteran pest pressure by 61.9-97.3%, avoid yield loss by 16.4-21.3% (range -11.9-99.2%) and lower mycotoxin contamination by 85.5-95.5% as compared to the prevailing non-Bt hybrids. Yield loss avoidance varied considerably between experimental sites and years, as mediated by on-site infestation pressure and pest identity. For either seed mixtures or block refuge arrangements, pest pressure was kept below established thresholds at 90% Bt maize coverage in Yunnan (where S. frugiperda was the dominant species) and 70% Bt maize coverage in other sites dominated by Helicoverpa armigera (Hübner) and Ostrinia furnacalis (Guenée). Drawing on experiences from other crop/pest systems, Bt maize in se can provide area-wide pest management and thus, contribute to a progressive phase-down of chemical pesticide use. Hence, when consciously paired with agroecological and biodiversity-based measures, GM insecticidal crops can ensure food and nutrition security, contribute to the sustainable intensification of China's agriculture and reduce food systems' environmental footprint.
Asunto(s)
Insecticidas , Mariposas Nocturnas , Animales , Zea mays/genética , Endotoxinas/genética , Toxinas de Bacillus thuringiensis , Plantas Modificadas Genéticamente/genética , Proteínas Hemolisinas/genética , Proteínas Bacterianas/genética , China , Insecticidas/farmacología , Control Biológico de Vectores , Inocuidad de los AlimentosRESUMEN
Bacillus thuringiensis (Bt)-secreted crystal (Cry) toxins form oligomeric pores in host cell membranes and are a common element in generating insect-resistant transgenic crops. Although Cry toxin function has been well documented, cellular defences against pore-formation have not been as well developed. Elucidation of the processes underlying this defence, however, could contribute to the development of enhanced Bt crops. Here, we demonstrate that Cry1Ca-mediated downregulation of microRNA-7322-5p (miR-7322-5p), which binds to the 3' untranslated region of p38, negatively regulates the susceptibility of Chilo suppressalis to Cry1Ca. Moreover, Cry1Ca exposure enhanced phosphorylation of Hsp19, and hsp19 downregulation increased susceptibility to Cry1Ca. Further, Hsp19 phosphorylation occurs downstream of p38, and pull-down assays confirmed the interactions between Hsp19 and Cry1Ca, suggesting that activation of Hsp19 by the miR-7322-5p/p38/Hsp19 pathway promotes Cry1Ca sequestration. To assess the efficacy of targeting this pathway in planta, double-stranded RNA (dsRNA) targeting C. suppressalis p38 (dsp38) was introduced into a previously generated cry1Ca-expressing rice line (1CH1-2) to yield a single-copy cry1Ca/dsp38 rice line (p38-rice). Feeding on this rice line triggered a significant reduction in C. suppressalis p38 expression and the line was more resistant to C. suppressalis than 1CH1-2 in both short term (7-day) and continuous feeding bioassays as well as field trials. These findings provide new insights into invertebrate epithelium cellular defences and demonstrate a potential new pyramiding strategy for Bt crops.