Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.757
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Virol ; 98(6): e0025024, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38742875

RESUMEN

Equine herpesvirus type 1 (EHV-1) is a contagious respiratory pathogen that infects the mucosa of the upper respiratory tract (URT). Mucosal immune responses at the URT provide the first line of defense against EHV-1 and are crucial for orchestrating immunity. To define host-pathogen interactions, we characterized B-cell responses, antibody isotype functions, and EHV-1 replication of susceptible (non-immune) and clinically protected (immune) horses after experimental EHV-1 infection. Nasal secretion and nasal wash samples were collected and used for the isolation of DNA, RNA, and mucosal antibodies. Shedding of infectious virus, EHV-1 copy numbers, viral RNA expression, and host B-cell activation in the URT were compared based on host immune status. Mucosal EHV-1-specific antibody responses were associated with EHV-1 shedding and viral RNA transcription. Finally, mucosal immunoglobulin G (IgG) and IgA isotypes were purified and tested for neutralizing capabilities. IgG1 and IgG4/7 neutralized EHV-1, while IgG3/5, IgG6, and IgA did not. Immune horses secreted high amounts of mucosal EHV-1-specific IgG4/7 antibodies and quickly upregulated B-cell pathway genes, while EHV-1 was undetected by virus isolation and PCR. RNA transcription analysis reinforced incomplete viral replication in immune horses. In contrast, complete viral replication with high viral copy numbers and shedding of infectious viruses was characteristic for non-immune horses, together with low or absent EHV-1-specific neutralizing antibodies during viral replication. These data confirm that pre-existing mucosal IgG1 and IgG4/7 and rapid B-cell activation upon EHV-1 infection are essential for virus neutralization, regulation of viral replication, and mucosal immunity against EHV-1.IMPORTANCEEquine herpesvirus type 1 (EHV-1) causes respiratory disease, abortion storms, and neurologic outbreaks known as equine herpes myeloencephalopathy (EHM). EHV-1 is transmitted with respiratory secretions by nose-to-nose contact or via fomites. The virus initially infects the epithelium of the upper respiratory tract (URT). Host-pathogen interactions and mucosal immunity at the viral entry site provide the first line of defense against the EHV-1. Robust mucosal immunity can be essential in protecting against EHV-1 and to reduce EHM outbreaks. It has previously been shown that immune horses do not establish cell-associated viremia, the prerequisite for EHM. Here, we demonstrate how mucosal antibodies can prevent the replication of EHV-1 at the epithelium of the URT and, thereby, the progression of the virus to the peripheral blood. The findings improve the mechanistic understanding of mucosal immunity against EHV-1 and can support the development of enhanced diagnostic tools, vaccines against EHM, and the management of EHV-1 outbreaks.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infecciones por Herpesviridae , Herpesvirus Équido 1 , Enfermedades de los Caballos , Inmunoglobulina G , Replicación Viral , Animales , Herpesvirus Équido 1/inmunología , Caballos , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/virología , Anticuerpos Antivirales/inmunología , Anticuerpos Neutralizantes/inmunología , Enfermedades de los Caballos/virología , Enfermedades de los Caballos/inmunología , Inmunoglobulina G/inmunología , Inmunidad Mucosa , Esparcimiento de Virus/inmunología , Linfocitos B/inmunología , Linfocitos B/virología , Interacciones Huésped-Patógeno/inmunología
2.
Emerg Infect Dis ; 30(9): 1834-1840, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39173662

RESUMEN

Western equine encephalitis virus (WEEV) is a mosquitoborne virus that reemerged in December 2023 in Argentina and Uruguay, causing a major outbreak. We investigated the outbreak using epidemiologic, entomological, and genomic analyses, focusing on WEEV circulation near the Argentina‒Uruguay border in Rio Grande do Sul state, Brazil. During November 2023‒April 2024, the outbreak in Argentina and Uruguay resulted in 217 human cases, 12 of which were fatal, and 2,548 equine cases. We determined cases on the basis of laboratory and clinical epidemiologic criteria. We characterized 3 fatal equine cases caused by a novel WEEV lineage identified through a nearly complete coding sequence analysis, which we propose as lineage C. Our findings highlight the importance of continued surveillance and equine vaccination to control future WEEV outbreaks in South America.


Asunto(s)
Brotes de Enfermedades , Virus de la Encefalitis Equina del Oeste , Epidemiología Molecular , Filogenia , Animales , Virus de la Encefalitis Equina del Oeste/genética , Humanos , Caballos , Uruguay/epidemiología , América del Sur/epidemiología , Enfermedades de los Caballos/epidemiología , Enfermedades de los Caballos/virología , Masculino , Encefalomielitis Equina del Oeste/epidemiología , Encefalomielitis Equina del Oeste/virología , Femenino , Argentina/epidemiología , Encefalomielitis Equina/epidemiología , Encefalomielitis Equina/virología , Encefalomielitis Equina/veterinaria , Adulto
3.
J Gen Virol ; 105(5)2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38767608

RESUMEN

Herpesviruses establish a well-adapted balance with their host's immune system. Despite this co-evolutionary balance, infections can lead to severe disease including neurological disorders in their natural host. In horses, equine herpesvirus 1 (EHV-1) causes respiratory disease, abortions, neonatal foal death and myeloencephalopathy (EHM) in ~10 % of acute infections worldwide. Many aspects of EHM pathogenesis and protection from EHM are still poorly understood. However, it has been shown that the incidence of EHM increases to >70 % in female horses >20 years of age. In this study we used old mares as an experimental equine EHV-1 model of EHM to identify host-specific factors contributing to EHM. Following experimental infection with the neuropathogenic strain EHV-1 Ab4, old mares and yearling horses were studied for 21 days post-infection. Nasal viral shedding and cell-associated viremia were assessed by quantitative PCR. Cytokine/chemokine responses were evaluated in nasal secretions and cerebrospinal fluid (CSF) by Luminex assay and in whole blood by quantitative real-time PCR. EHV-1-specific IgG sub-isotype responses were measured by ELISA. All young horses developed respiratory disease and a bi-phasic fever post-infection, but only 1/9 horses exhibited ataxia. In contrast, respiratory disease was absent in old mares, but all old mares developed EHM that resulted in euthanasia in 6/9 old mares. Old mares also presented significantly decreased nasal viral shedding but higher viremia coinciding with a single fever peak at the onset of viremia. According to clinical disease manifestation, horses were sorted into an EHM group (nine old horses and one young horse) and a non-EHM group (eight young horses) for assessment of host immune responses. Non-EHM horses showed an early upregulation of IFN-α (nasal secretions), IRF7/IRF9, IL-1ß, CXCL10 and TBET (blood) in addition to an IFN-γ upregulation during viremia (blood). In contrast, IFN-α levels in nasal secretions of EHM horses were low and peak levels of IRF7, IRF9, CXCL10 and TGF-ß (blood) coincided with viremia. Moreover, EHM horses showed significantly higher IL-10 levels in nasal secretions, peripheral blood mononuclear cells and CSF and higher serum IgG3/5 antibody titres compared to non-EHM horses. These results suggest that protection from EHM depends on timely induction of type 1 IFN and upregulation cytokines and chemokines that are representative of cellular immunity. In contrast, induction of regulatory or TH-2 type immunity appeared to correlate with an increased risk for EHM. It is likely that future vaccine development for protection from EHM must target shifting this 'at-risk' immunophenotype.


Asunto(s)
Citocinas , Infecciones por Herpesviridae , Herpesvirus Équido 1 , Enfermedades de los Caballos , Animales , Caballos , Herpesvirus Équido 1/inmunología , Femenino , Enfermedades de los Caballos/virología , Enfermedades de los Caballos/inmunología , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología , Citocinas/sangre , Citocinas/inmunología , Anticuerpos Antivirales/sangre , Esparcimiento de Virus , Viremia/inmunología , Viremia/veterinaria , Inmunoglobulina G/sangre
4.
J Gen Virol ; 105(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39163114

RESUMEN

Equine rotavirus species A (ERVA) G3P[12] and G14P[12] are two dominant genotypes that cause foal diarrhoea with a significant economic impact on the global equine industry. ERVA can also serve as a source of novel (equine-like) rotavirus species A (RVA) reassortants with zoonotic potential as those identified previously in 2013-2019 when equine G3-like RVA was responsible for worldwide outbreaks of severe gastroenteritis and hospitalizations in children. One hurdle to ERVA research is that the standard cell culture system optimized for human rotavirus replication is not efficient for isolating ERVA. Here, using an engineered cell line defective in antiviral innate immunity, we showed that both equine G3P[12] and G14P[12] strains can be rapidly isolated from diarrhoeic foals. The genome sequence analysis revealed that both G3P[12] and G14P[12] strains share the identical genotypic constellation except for VP7 and VP6 segments in which G3P[12] possessed VP7 of genotype G3 and VP6 of genotype I6 and G14P[12] had the combination of VP7 of genotype G14 and VP6 of genotype I2. Further characterization demonstrated that two ERVA genotypes have a limited cross-neutralization. The lack of an in vitro broad cross-protection between both genotypes supported the increased recent diarrhoea outbreaks due to equine G14P[12] in foals born to dams immunized with the inactivated monovalent equine G3P[12] vaccine. Finally, using the structural modelling approach, we provided the genetic basis of the antigenic divergence between ERVA G3P[12] and G14P[12] strains. The results of this study will provide a framework for further investigation of infection biology, pathogenesis and cross-protection of equine rotaviruses.


Asunto(s)
Antígenos Virales , Diarrea , Genotipo , Enfermedades de los Caballos , Infecciones por Rotavirus , Rotavirus , Animales , Caballos , Rotavirus/genética , Rotavirus/inmunología , Rotavirus/aislamiento & purificación , Rotavirus/clasificación , Infecciones por Rotavirus/veterinaria , Infecciones por Rotavirus/virología , Infecciones por Rotavirus/inmunología , Enfermedades de los Caballos/virología , Enfermedades de los Caballos/inmunología , Diarrea/virología , Diarrea/veterinaria , Antígenos Virales/genética , Antígenos Virales/inmunología , Genoma Viral/genética , Filogenia , Línea Celular
5.
Microb Pathog ; 193: 106755, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38897362

RESUMEN

Equid herpesviruses (EHVs) are a group of highly impactful viral pathogens that affect horses, presenting a substantial risk to the global equine industry. Among these, equid herpesvirus-1 (EHV-1) primarily causes respiratory infections. However, its ability to spread to distant organs can lead to severe consequences such as abortion and neurological diseases. These viruses can enter a dormant phase, with minimal activity, and later reactivate to trigger active infections at any time. Recently, there has been a notable rise in the prevalence of a particularly devastating strains of EHV-1 known as equid herpesviral myeloencephalopathy (EHM). In the light of dynamic nature of EHV-1, this review provides a thorough overview of EHV-1 and explores how advances in viral biology affect the pathophysiology of viral infection. The information presented here is crucial for understanding the dynamics of EHV-1 infections and creating practical plans to stop the virus's global spread among equid populations.


Asunto(s)
Infecciones por Herpesviridae , Herpesvirus Équido 1 , Enfermedades de los Caballos , Animales , Caballos/virología , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/virología , Enfermedades de los Caballos/virología
6.
Vet Res ; 55(1): 135, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39390558

RESUMEN

In this study, equine intestinal enteroids (EIEs) were generated from the duodenum, jejunum, and ileum and inoculated with equine coronavirus (ECoV) to investigate their suitability as in vitro models with which to study ECoV infection. Immunohistochemistry revealed that the EIEs were composed of various cell types expressed in vivo in the intestinal epithelium. Quantitative reverse-transcription PCR (qRT-PCR) and virus titration showed that ECoV had infected and replicated in the EIEs. These results were corroborated by electron microscopy. This study suggests that EIEs can be novel in vitro tools for studying the interaction between equine intestinal epithelium and ECoV.


Asunto(s)
Enfermedades de los Caballos , Animales , Caballos , Enfermedades de los Caballos/virología , Replicación Viral , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Mucosa Intestinal/virología , Betacoronavirus 1/fisiología
7.
Vet Res ; 55(1): 30, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493107

RESUMEN

Epithelial damage due to gastrointestinal disorders frequently causes severe disease in horses. To study the underlying pathophysiological processes, we aimed to establish equine jejunum and colon enteroids (eqJE, eqCE) mimicking the in vivo epithelium. Therefore, enteroids were cultivated in four different media for differentiation and subsequently characterized histomorphologically, on mRNA and on protein level in comparison to the native epithelium of the same donor horses to identify ideal culture conditions for an in vitro model system. With increasing enterocyte differentiation, the enteroids showed a reduced growth rate as well as a predominantly spherical morphology and less budding compared to enteroids in proliferation medium. Combined or individual withdrawal of stem cell niche pathway components resulted in lower mRNA expression levels of stem cell markers and concomitant differentiation of enterocytes, goblet cells and enteroendocrine cells. For eqCE, withdrawal of Wnt alone was sufficient for the generation of differentiated enterocytes with a close resemblance to the in vivo epithelium. Combined removal of Wnt, R-spondin and Noggin and the addition of DAPT stimulated differentiation of eqJE at a similar level as the in vivo epithelium, particularly with regard to enterocytes. In summary, we successfully defined a medium composition that promotes the formation of eqJE and eqCE consisting of multiple cell types and resembling the in vivo epithelium. Our findings emphasize the importance of adapting culture conditions to the respective species and the intestinal segment. This in vitro model will be used to investigate the pathological mechanisms underlying equine gastrointestinal disorders in future studies.


Asunto(s)
Enfermedades Gastrointestinales , Enfermedades de los Caballos , Animales , Caballos , Mucosa Intestinal , Intestinos , Diferenciación Celular , Enfermedades Gastrointestinales/veterinaria , ARN Mensajero
8.
Vet Res ; 55(1): 32, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493182

RESUMEN

Outbreaks of West Nile virus (WNV) occur periodically, affecting both human and equine populations. There are no vaccines for humans, and those commercialised for horses do not have sufficient coverage. Specific antiviral treatments do not exist. Many drug discovery studies have been conducted, but since rodent or primate cell lines are normally used, results cannot always be transposed to horses. There is thus a need to develop relevant equine cellular models. Here, we used induced pluripotent stem cells to develop a new in vitro model of WNV-infected equine brain cells suitable for microplate assay, and assessed the cytotoxicity and antiviral activity of forty-one chemical compounds. We found that one nucleoside analog, 2'C-methylcytidine, blocked WNV infection in equine brain cells, whereas other compounds were either toxic or ineffective, despite some displaying anti-viral activity in human cell lines. We also revealed an unexpected proviral effect of statins in WNV-infected equine brain cells. Our results thus identify a potential lead for future drug development and underscore the importance of using a tissue- and species-relevant cellular model for assessing the activity of antiviral compounds.


Asunto(s)
Enfermedades de los Caballos , Células Madre Pluripotentes Inducidas , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Caballos , Humanos , Fiebre del Nilo Occidental/veterinaria , Fiebre del Nilo Occidental/epidemiología , Encéfalo , Antivirales/farmacología , Antivirales/uso terapéutico , Enfermedades de los Caballos/tratamiento farmacológico
9.
Vet Res ; 55(1): 108, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39252070

RESUMEN

Antimicrobial resistance is a global threat, and pet-associated strains may pose a risk to human health. Equine veterinarians are at high risk of carrying methicillin-resistant staphylococci (MRS), but specific risk factors remain elusive, and few data are available for other personnel involved in the horse industry. The prevalence, characteristics, and risk factors for nasal carriage of MRS in horses and their caregivers were studied in northwestern Italy. Nasal swabs from 110 asymptomatic horses housed at 21 barns and 34 human caregivers were collected. Data on barns, horses, and personnel were acquired through questionnaires. The samples were incubated in selective media, and the bacterial isolates were identified by mass spectrometry. Risk factors were investigated by Poisson regression. MRS were isolated from 33 horses (30%), 11 humans (32.4%) and 3 environmental samples (14.2%). Most isolates were multidrug resistant (MDRS). The prevalence of MRS and MDRS was greater in racehorses and their personnel than in pleasurable and jumping/dressing horses. MRS carriage in caregivers was associated with an increased prevalence of MRS carriage in horses. The frequency of antimicrobial treatments administered in the barn during the last 12 months was a risk factor for MRS carriage in horses [prevalence ratio (PR) 3.97, 95% CI 1.11, 14.13] and caregivers (PR 2.00, 95% CI 1.05, 3.82), whereas a good ventilation index of the horse tabling environment was a protective factor (PR 0.43, 95% CI 0.20, 0.92). Our data reveal relevant interactions occurring between bacterial communities of horses and humans that share the same environment, suggesting that One Health surveillance programs should be implemented.


Asunto(s)
Portador Sano , Enfermedades de los Caballos , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Caballos , Factores de Riesgo , Enfermedades de los Caballos/microbiología , Enfermedades de los Caballos/epidemiología , Prevalencia , Infecciones Estafilocócicas/veterinaria , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/microbiología , Portador Sano/veterinaria , Portador Sano/epidemiología , Portador Sano/microbiología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Italia/epidemiología , Humanos , Femenino , Masculino , Cuidadores
10.
Vet Res ; 55(1): 36, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38520035

RESUMEN

Equine influenza virus (EIV) remains a threat to horses, despite the availability of vaccines. Strategies to monitor the virus and prevent potential vaccine failure revolve around serological assays, RT-qPCR amplification, and sequencing the viral hemagglutinin (HA) and neuraminidase (NA) genes. These approaches overlook the contribution of other viral proteins in driving virulence. This study assesses the potential of long-read nanopore sequencing for fast and precise sequencing of circulating equine influenza viruses. Therefore, two French Florida Clade 1 strains, including the one circulating in winter 2018-2019 exhibiting more pronounced pathogenicity than usual, as well as the two currently OIE-recommended vaccine strains, were sequenced. Our results demonstrated the reliability of this sequencing method in generating accurate sequences. Sequence analysis of HA revealed a subtle antigenic drift in the French EIV strains, with specific substitutions, such as T163I in A/equine/Paris/1/2018 and the N188T mutation in post-2015 strains; both substitutions were in antigenic site B. Antigenic site E exhibited modifications in post-2018 strains, with the N63D substitution. Segment 2 sequencing also revealed that the A/equine/Paris/1/2018 strain encodes a longer variant of the PB1-F2 protein when compared to other Florida clade 1 strains (90 amino acids long versus 81 amino acids long). Further biological and biochemistry assays demonstrated that this PB1-F2 variant has enhanced abilities to abolish the mitochondrial membrane potential ΔΨm and permeabilize synthetic membranes. Altogether, our results highlight the interest in rapidly characterizing the complete genome of circulating strains with next-generation sequencing technologies to adapt vaccines and identify specific virulence markers of EIV.


Asunto(s)
Enfermedades de los Caballos , Subtipo H3N8 del Virus de la Influenza A , Infecciones por Orthomyxoviridae , Vacunas , Animales , Aminoácidos/genética , Genómica , Caballos , Subtipo H3N8 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/veterinaria , Reproducibilidad de los Resultados , Análisis de Secuencia/veterinaria , Factores de Virulencia
11.
Med Mycol ; 62(8)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39104225

RESUMEN

Epizootic lymphangitis (EL) is a highly prevalent and contagious infectious disease affecting horses in many parts of Ethiopia caused by Histoplasma capsulatum sensu lato ('var. farciminosum'). In this study, 12 suspected isolates of H. capsulatum sensu lato or yeasts unidentified by conventional biochemical tests isolated from Ethiopian horses with EL were characterised by internal transcribed spacer sequencing. Six of the 12 isolates were identified to be members of H. capsulatum sensu lato and the other six were Pichia kudriavzevii (synonym: Candida krusei) (n = 3), Trichosporon asahii (n = 1), Geotrichum silvicola (n = 1) and Moesziomyces aphidis (n = 1), respectively. The six H. capsulatum sensu lato isolates were further characterised by multilocus sequence analysis. Four distinct gene loci (arf [462 bases], H-anti [410 bases], ole1 [338 bases] and tub1 [272 bases]) of these six isolates as well as those of two H. capsulatum sensu lato ('var. farciminosum') reference strains (ATCC 58332 and ATCC 28798) were polymerase chain reaction (PCR)-amplified and sequenced. Phylogenetic analyses of their concatenated nucleotide sequences showed that three of the isolates and the reference strain ATCC 58332 were identical and belonged to the Eurasia clade within Latin American (LAm) A (H. suramericanum), and those of the other three isolates and the reference strain ATCC 28798 were identical and belonged to the Africa clade. At least two distinct phylogenetic clades of H. capsulatum sensu lato were circulating in Ethiopian horses with EL. Advanced molecular technologies and bioinformatics tools are crucial for the accurate identification and typing of pathogens as well as the discovery of novel microorganisms in veterinary microbiology.


Using multilocus sequence analysis with four concatenated housekeeping gene loci, at least two distinct phylogenetic clades, namely Eurasia clade and Africa clade, of Histoplasma capsulatum sensu lato were confirmed to be circulating in Ethiopian horses with epizootic lymphangitis.


Asunto(s)
ADN de Hongos , Histoplasma , Histoplasmosis , Enfermedades de los Caballos , Tipificación de Secuencias Multilocus , Filogenia , Animales , Histoplasma/genética , Histoplasma/clasificación , Histoplasma/aislamiento & purificación , Etiopía , Histoplasmosis/microbiología , Histoplasmosis/veterinaria , Caballos/microbiología , Enfermedades de los Caballos/microbiología , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Análisis de Secuencia de ADN , Técnicas de Tipificación Micológica
12.
Virus Genes ; 60(5): 559-562, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39028407

RESUMEN

The Equid alphaherpesvirus type 1 (EHV-1) infection can have devastating economic consequences in the horse industry due to large-scale outbreaks of abortions, perinatal foal mortality, and myeloencephalopathy. The present study analyzed the genome of two isolates obtained from aborted fetuses in Argentina, E/745/99 and E/1297/07. The E745/99 genome shares 98.2% sequence identity with Ab4, a reference EHV-1 strain. The E/1297/07 genome shares 99.8% identity with NY03, a recombinant strain containing part of ORF64 and part of the intergenic region from Equid alphaherpesvirus-4 (EHV-4). The E/1297/07 genome has the same breakpoints as other United States and Japanese recombinants, including NY03. The recombinant regions have varying numbers of tandem repeat sequences and different minor parental sequences (EHV-4), suggesting distinct origins of the recombinant events. These are the first complete genomes of EHV-1 from Argentina and South America available in the Databases.


Asunto(s)
Genoma Viral , Infecciones por Herpesviridae , Herpesvirus Équido 1 , Filogenia , Argentina , Herpesvirus Équido 1/genética , Herpesvirus Équido 1/aislamiento & purificación , Herpesvirus Équido 1/clasificación , Animales , Genoma Viral/genética , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/virología , Caballos/virología , Recombinación Genética , Enfermedades de los Caballos/virología , Sistemas de Lectura Abierta/genética , Secuenciación Completa del Genoma , ADN Viral/genética
13.
Epidemiol Infect ; 152: e67, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38606586

RESUMEN

Ross River virus (RRV), the most medically and economically important arbovirus in Australia, has been the most prevalent arbovirus infections in humans for many years. Infected humans and horses often suffer similar clinical symptoms. We conducted a prospective longitudinal study over a 3.5-year period to investigate the exposure dynamics of RRV in three foal cohorts (n = 32) born in a subtropical region of South East Queensland, Australia, between 2020 and 2022. RRV-specific seroconversion was detected in 56% (n = 18) of foals with a median time to seroconversion, after waning of maternal antibodies, of 429 days (95% CI: 294-582). The median age at seroconversion was 69 weeks (95% CI: 53-57). Seroconversion events were only detected between December and March (Southern Hemisphere summer) over the entire study period. Cox proportion hazards regression analyses revealed that seroconversions were significantly (p < 0.05) associated with air temperature in the month of seroconversion. Time-lags in meteorological variables were not significantly (p > 0.05) associated with seroconversion, except for relative humidity (p = 0.036 at 2-month time-lag). This is in contrast to research results of RRV infection in humans, which peaked between March and May (Autumn) and with a 0-3 month time-lag for various meteorological risk factors. Therefore, horses may be suitable sentinels for monitoring active arbovirus circulation and could be used for early arbovirus outbreak detection in human populations.


Asunto(s)
Infecciones por Alphavirus , Enfermedades de los Caballos , Virus del Río Ross , Animales , Virus del Río Ross/aislamiento & purificación , Caballos , Enfermedades de los Caballos/epidemiología , Enfermedades de los Caballos/virología , Infecciones por Alphavirus/epidemiología , Infecciones por Alphavirus/veterinaria , Infecciones por Alphavirus/virología , Queensland/epidemiología , Estudios Prospectivos , Estudios Longitudinales , Femenino , Seroconversión , Masculino , Estaciones del Año , Anticuerpos Antivirales/sangre
14.
Mol Biol Rep ; 51(1): 932, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39180621

RESUMEN

BACKGROUND: Ocular setariasis is an ectopic infection caused by a parasite under the genus Setaria. Adult worms belong to the Setariidae family and typically reside in the peritoneal cavity of ungulates. However, immature forms of these species may aberrantly migrate to the eyes of cattle, buffalo, goats, horses and several other hosts, leading to corneal opacity and blindness. Here, we have distinguished the Setaria digitata collected from both equine and buffalo hosts based on the morphology, molecular profiling of mitochondrial cytochrome c oxidase subunit 1 (Cox1), cytochrome c oxidase subunit 3 (Cox3) and, Nicotinamide Adenine Dinucleotide dehydrogenase subunit 1 (NAD1) genes. METHODS AND RESULTS: A single filarial worm was collected from the eye of one equine and one bovine host. These worms were then processed for morphological examination and DNA isolation. Cox1, Cox3 and NAD1 genes were amplified using specific primers and subjected to custom sequencing. The sequences were then used for multiple sequence alignment, assessment of entropy, similarity and haplotype diversity analysis. Key morphological features confirmed the worms collected were male and female Setaria digitata from equine and buffalo hosts, respectively. Cox1, Cox3 and NAD1 gene sequence analysis showed a close association of S.digitata Indian isolates with its counterparts from Sri Lanka and China isolates. CONCLUSION: The phylogram of bovine S. digitata sequences shows a close relationship to other equine S. digitata sequences, indicating the need for further in-depth studies on the prevalence of infection across various host species and intermediate hosts. Although the sequence results suggest that S. digitata is likely the causative agent of ocular setariasis in India, additional samples are needed to confirm this conclusion. Comprehensive analysis of the transcriptome and proteome of S. digitata from both bovine and equine hosts is necessary to explore variations in host-parasite interactions. These findings will aid in future parasite identification, investigations into vector prevalence in India, and the development of control measures against ocular setariasis.


Asunto(s)
Genes Mitocondriales , Variación Genética , Filogenia , Setaria (Nematodo) , Setariasis , Animales , Caballos/parasitología , Bovinos , India , Setaria (Nematodo)/genética , Genes Mitocondriales/genética , Setariasis/genética , Setariasis/parasitología , Complejo IV de Transporte de Electrones/genética , Femenino , Masculino , Enfermedades de los Caballos/parasitología , Enfermedades de los Caballos/genética , Búfalos/parasitología , Búfalos/genética , Enfermedades de los Bovinos/parasitología , Enfermedades de los Bovinos/genética
15.
Parasitology ; 151(6): 579-586, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38629125

RESUMEN

Equine strongylid parasites are ubiquitous around the world and are main targets of parasite control programmes. In recent years, automated fecal egg counting systems based on image analysis have become available allowing for collection and analysis of large-scale egg count data. This study aimed to evaluate equine strongylid fecal egg count (FEC) data generated with an automated system over three years in the US with specific attention to seasonal and regional trends in egg count magnitude and sampling activity. Five US regions were defined; North East, South East, North Central, South Central and West. The data set included state, region and zip code for each FEC. The number of FECs falling in each of the following categories were recorded: (1) 0 eggs per gram (EPG), (2) 1 ⩽ 200 EPG, (3) 201 ⩽ 500 EPG and (4) >500 EPG. The data included 58 329 FECs. A fixed effects model was constructed fitting the number of samples analysed per month, year and region, and a mixed effects model was constructed to fit the number of FECs falling in each of the 4 egg count categories defined above. The overall proportion of horses responsible for 80% of the total FEC output was 18.1%, and this was consistent across years, months and all regions except West, where the proportion was closer to 12%. Statistical analyses showed significant seasonal trends and regional differences of sampling frequency and FEC category. The data demonstrated that veterinarians tended to follow a biphasic pattern when monitoring strongylid FECs in horses, regardless of location.


Asunto(s)
Heces , Enfermedades de los Caballos , Recuento de Huevos de Parásitos , Estaciones del Año , Animales , Caballos , Recuento de Huevos de Parásitos/veterinaria , Heces/parasitología , Estados Unidos , Enfermedades de los Caballos/parasitología , Enfermedades de los Caballos/epidemiología , Infecciones Equinas por Strongyloidea/parasitología , Infecciones Equinas por Strongyloidea/epidemiología , Infecciones por Strongylida/veterinaria , Infecciones por Strongylida/parasitología , Infecciones por Strongylida/epidemiología , Strongyloidea
16.
BMC Vet Res ; 20(1): 78, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38413934

RESUMEN

BACKGROUND: Due to the increasing prevalence of equine non-infectious respiratory disease, the air contamination in equine housing (Stables A-C) and training facilities (indoor riding arenas A - C) was investigated. The aim of the study was to monitor gaseous pollutants, bioaerosols, and dust concentrations at three different sites (stables and riding halls), where different floor materials were used in the riding halls. MATERIALS AND METHODS: Air quality was monitored in housing for horses and in riding halls in terms of dust concentration, the presence of gaseous chemical pollutants, and concentrations of biological aerosol. Statistical analysis was performed using analysis of variance (ANOVA). The levels obtained were compared with acceptable limits. RESULTS: Among the gaseous pollutants identified, the highest concentration was obtained for ammonia in stables B and C (16.37 and 22.39 mg/m3, respectively). Standards for total dust were exceeded in stables B and C and in riding halls B and C. The highest numbers of bacteria and fungi were recorded in stables A and C and in riding hall B. Ulocladium sp. had the highest percentage share among the moulds identified. CONCLUSIONS: The results confirm that the wrong choice of bedding in the stable and indoor riding arenas may contribute, even in short training periods, to equine non-infectious respiratory disease (equine asthma). Bioaerosol suspended in the air together with released gaseous pollutants can exacerbate this phenomenon, which even in the case of short training periods can lead to equine asthma of varying degrees of severity. For this reason, the choice of floor material in riding halls should be treated as a priority, as the wrong decision can shorten the period during which the horse can be used for recreational purposes.


Asunto(s)
Asma , Enfermedades de los Caballos , Caballos , Animales , Polvo/análisis , Bacterias , Hongos , Asma/veterinaria , Aerosoles y Gotitas Respiratorias , Enfermedades de los Caballos/inducido químicamente , Enfermedades de los Caballos/epidemiología
17.
BMC Vet Res ; 20(1): 103, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491518

RESUMEN

BACKGROUND: Salmonella enterica subspecies enterica serovar abortus equi (S. abortus equi) is one of the main pathogens that causes abortion in pregnant horses and donkeys, which was highly infectious and greatly restricts the healthy development of the horse industry. OBJECTIVES: In order to investigate the prevalence and biological characteristics of S. abortus equi in different regions and breeds of horses in Xinjiang. METHODS: This study conducted ELISA detection of S. abortus equi antibodies on serum samples of 971 horses collected from three large-scale horse farms and five free-range horse farms in Yili Prefecture and Bayingol Mongolian Autonomous Prefecture of Xinjiang from 2020 to 2023. On this basis, bacterial isolation, culture, identification, and drug sensitivity tests were conducted on 42 samples of aborted foal tissues and 23 mare vaginal swabs. RESULTS: The results showed that the positive rate of S. abortus equi antibody was as high as 20.91% in 971 horse serum samples. Among them, the positive rate in the Ili region (29.09%) was significantly higher than that in the Bayingole region (11.24%), and the positive rate in mares (22.45%) was higher than that in stallions (14.05%). In terms of horse breeds, the positive rates of self-propagating thoroughbred horses, half-bred horses, Ili horses and Yanqi horses were 43.22%, 28.81%, 14.72% and 11.24% respectively. In addition, S. abortus equi was more susceptible to juvenile and elderly horses, with positive rates of 70.00%and 41.86%, respectively, both of which were significantly higher than young (10.97%) and adult (19.79%) horses. Further, 9 strains of S. abortus equi were obtained through bacterial isolation, culture and identification, which were resistant to five antibiotics (Clarithromycin, Clindamycin, penicillin, Sulfamethoxazole and Rifampicin), and sensitive to 13 antimicrobial agents (Amoxicillin, Ciprofloxacin and Gentamicin, et al.). CONCLUSION: There was a high infection rate of S. abortus equi in Ili Prefecture and self-propagating thoroughbred horses, and juvenile or old mares were more susceptible, which will provide scientific basis for the prevention of S. abortus equi infection in different regions and breeds of horses in Xinjiang.


Asunto(s)
Aborto Veterinario , Enfermedades de los Caballos , Embarazo , Caballos , Animales , Femenino , Masculino , Aborto Veterinario/epidemiología , Equidae , Ensayo de Inmunoadsorción Enzimática/veterinaria , Salmonella , Enfermedades de los Caballos/epidemiología , Enfermedades de los Caballos/microbiología
18.
BMC Vet Res ; 20(1): 27, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38243346

RESUMEN

BACKGROUND: Epizootic lymphangitis is an infectious and chronically debilitating disease of the equines. Histoplasma capsulatum var. farciminosum, a thermally dimorphic fungi, is the causative agent for the disease. In Ethiopia, the disease significantly affects carthorses, posing threats to animal welfare, and resulting in substantial economic losses. Limited availability of widely accessible antifungals in addition to the chronic nature of the disease is the major challenge against management of epizootic lymphangitis. This study aimed to assess the in vitro efficacy of specific local medicinal plant extracts against the mycelial phase development of H. capsulatum var. farciminosum in southern Ethiopia. The leaves of Xanthium strumarium, Kanda (Family Rubiaceae), Croton macrostachyus (Bisana in Amharic), and Centella Asiatica (Echere waye as a local name in Zeyissegna) that are traditionally used for the treatment of different skin ailments were collected and extracted for the in vitro trial. RESULTS: The study revealed that methanol extracts of Xanthium strumarium, Kanda, Croton macrostachyus, and Centella Asiatica, at minimum inhibitory concentrations of 1.25 mg/ml, 2.5 mg/ml, 2.5 mg/ml, and 5 mg/ml, respectively, inhibited the growth of H. capsulatum var. farciminosum. CONCLUSION: This in vitro finding could serve as significant preliminary data in the exploration of effective alternative treatment options for epizootic lymphangitis. This study provides a crucial foundation for further research aimed at determining the chemical components and in vivo effectiveness of these plant extracts against both the mycelial and yeast forms of Histoplasma capsulatum var. farciminosum.


Asunto(s)
Histoplasmosis , Enfermedades de los Caballos , Linfangitis , Plantas Medicinales , Caballos , Animales , Histoplasma , Linfangitis/veterinaria , Etiopía , Histoplasmosis/veterinaria , Equidae , Enfermedades de los Caballos/microbiología
19.
BMC Vet Res ; 20(1): 201, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38750534

RESUMEN

BACKGROUND: To determine whether sensory nerve conduction stimulus threshold measurements of the infraorbital nerve are able to differentiate horses with idiopathic trigeminal-mediated headshaking (i-TMHS) from healthy horses and from horses with secondary trigeminal-mediated headshaking (s-TMHS). In a prospective trial, headshaking horses were examined using a standardized diagnostic protocol, including advanced diagnostics such as computed tomography and 3-Tesla-magnetic resonance imaging (MRI), to differentiate s-TMHS from i-TMHS. Clinically healthy horses served as controls. Within this process, patients underwent general anesthesia, and the minimal sensory nerve conduction stimulus threshold (SNCT) of the infraorbital nerve was measured using a bipolar concentric needle electrode. Sensory nerve action potentials (SNAP) were assessed in 2.5-5 mA intervals. Minimal SNCT as well as additional measurements were calculated. RESULTS: In 60 horses, SNAP could be recorded, of which 43 horses had i-TMHS, six had suspected s-TMHS, three horses had non-facial headshaking, and eight healthy horses served as controls. Controls had a minimal SNCT ≥ 15 mA, whereas 14/43 horses with i-TMHS and 2/6 horses with s-TMHS showed a minimal SNCT ≤ 10 mA. Minimal SNCT ≤ 10 mA showed 100% specificity to distinguish TMHS from controls, but the sensitivity was only 41%. CONCLUSION: A minimal SNCT of the infraorbital nerve ≤ 10 mA was able to differentiate healthy horses from horses with TMHS. Nevertheless, a higher minimal SNCT did not exclude i-TMHS or s-TMHS and minimal SNCT does not distinguish s-TMHS from i-TMHS.


Asunto(s)
Enfermedades de los Caballos , Conducción Nerviosa , Animales , Caballos , Enfermedades de los Caballos/diagnóstico , Femenino , Masculino , Conducción Nerviosa/fisiología , Cabeza , Estudios Prospectivos , Nervio Trigémino/fisiología
20.
BMC Vet Res ; 20(1): 172, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702691

RESUMEN

BACKGROUND: Lameness examinations are commonly performed in equine medicine. Advancements in digital technology have increased the use of video recordings for lameness assessment, however, standardization of ideal video angle is not available yielding videos of poor diagnostic quality. The objective of this study was to evaluate the effect of video angle on the subjective assessment of front limb lameness. A randomized, blinded, crossover study was performed. Six horses with and without mechanically induced forelimb solar pain were recorded using 9 video angles including horses trotting directly away and towards the video camera, horses trotting away and towards a video camera placed to the left and right side of midline, and horses trotting in a circle with the video camera placed on the inside and outside of the circle. Videos were randomized and assessed by three expert equine veterinarians using a 0-5 point scoring system. Objective lameness parameters were collected using a body-mounted inertial sensor system (Lameness Locator®, Equinosis LLC). Interobserver agreement for subjective lameness scores and ease of grading scores were determined. RESULTS: Induction of lameness was successful in all horses. There was excellent agreement between objective lameness parameters and subjective lameness scores (AUC of the ROC = 0.87). For horses in the "lame" trials, interobserver agreement was moderate for video angle 2 when degree of lameness was considered and perfect for video angle 2 and 9 when lameness was considered as a binary outcome. All other angles had no to fair agreement. For horses in the "sound" trials, interobserver agreement was perfect for video angle 5. All other video angles had slight to moderate agreement. CONCLUSIONS: When video assessment of forelimb lameness is required, a video of the horse trotting directly towards the video camera at a minimum is recommended. Other video angles may provide supportive information regarding lameness characteristics.


Asunto(s)
Estudios Cruzados , Enfermedades de los Caballos , Cojera Animal , Grabación en Video , Animales , Caballos , Cojera Animal/diagnóstico , Enfermedades de los Caballos/diagnóstico , Miembro Anterior , Femenino , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA