Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.081
Filtrar
Más filtros

Intervalo de año de publicación
1.
Hippocampus ; 34(9): 464-490, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38949057

RESUMEN

Olfactory oscillations may enhance cognitive processing through coupling with beta (ß, 15-30 Hz) and gamma (γ, 30-160 Hz) activity in the hippocampus (HPC). We hypothesize that coupling between olfactory bulb (OB) and HPC oscillations is increased by cholinergic activation in control rats and is reduced in kainic-acid-treated epileptic rats, a model of temporal lobe epilepsy. OB γ2 (63-100 Hz) power was higher during walking and immobility-awake (IMM) compared to sleep, while γ1 (30-57 Hz) power was higher during grooming than other behavioral states. Muscarinic cholinergic agonist pilocarpine (25 mg/kg ip) with peripheral muscarinic blockade increased OB power and OB-HPC coherence at ß and γ1 frequency bands. A similar effect was found after physostigmine (0.5 mg/kg ip) but not scopolamine (10 mg/kg ip). Pilocarpine increased bicoherence and cross-frequency coherence (CFC) between OB slow waves (SW, 1-5 Hz) and hippocampal ß, γ1 and γ2 waves, with stronger coherence at CA1 alveus and CA3c than CA1 stratum radiatum. Bicoherence further revealed a nonlinear interaction of ß waves in OB with ß waves at the CA1-alveus. Beta and γ1 waves in OB or HPC were segregated at one phase of the OB-SW, opposite to the phase of γ2 and γ3 (100-160 Hz) waves, suggesting independent temporal processing of ß/γ1 versus γ2/γ3 waves. At CA1 radiatum, kainic-acid-treated epileptic rats compared to control rats showed decreased theta power, theta-ß and theta-γ2 CFC during baseline walking, decreased CFC of HPC SW with γ2 and γ3 waves during baseline IMM, and decreased coupling of OB SW with ß and γ2 waves at CA1 alveus after pilocarpine. It is concluded that ß and γ waves in the OB and HPC are modulated by a slow respiratory rhythm, in a cholinergic and behavior-dependent manner, and OB-HPC functional connectivity at ß and γ frequencies may enhance cognitive functions.


Asunto(s)
Ritmo beta , Ritmo Gamma , Hipocampo , Bulbo Olfatorio , Pilocarpina , Animales , Ritmo Gamma/efectos de los fármacos , Ritmo Gamma/fisiología , Masculino , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/fisiopatología , Bulbo Olfatorio/fisiología , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Hipocampo/fisiología , Ratas , Pilocarpina/farmacología , Ritmo beta/efectos de los fármacos , Ritmo beta/fisiología , Ácido Kaínico/farmacología , Agonistas Muscarínicos/farmacología , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/fisiopatología , Epilepsia del Lóbulo Temporal/inducido químicamente , Escopolamina/farmacología , Fisostigmina/farmacología , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Antagonistas Muscarínicos/farmacología
2.
J Pharmacol Exp Ther ; 389(3): 258-267, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38135508

RESUMEN

The cognitive impairments that are often observed in patients with alcohol use disorder (AUD) partially contribute to the extremely low rates of treatment initiation and adherence. Brain acetylcholine receptors (AChR) mediate and modulate cognitive and reward-related behavior, and their distribution can be altered by long-term heavy drinking. Therefore, AChRs are promising pharmacotherapeutic targets for treating the cognitive symptoms of AUD. In the present study, the procognitive efficacy of two AChR agonists, xanomeline and varenicline, were evaluated in group-housed monkeys who self-administered ethanol for more than 1 year. The muscarinic AChR antagonist scopolamine was used to disrupt performance of a serial stimulus discrimination and reversal (SDR) task designed to probe cognitive flexibility, defined as the ability to modify a previously learned behavior in response to a change in reinforcement contingencies. The ability of xanomeline and varenicline to remediate the disruptive effects of scopolamine was compared between socially dominant and subordinate monkeys, with lighter and heavier drinking histories, respectively. We hypothesized that subordinate monkeys would be more sensitive to all three drugs. Scopolamine dose-dependently impaired performance on the serial SDR task in all monkeys at doses lower than those that produced nonspecific impairments (e.g., sedation); its potency did not differ between dominant and subordinate monkeys. However, both AChR agonists were effective in remediating the scopolamine-induced deficit in subordinate monkeys but not in dominant monkeys. These findings suggest xanomeline and varenicline may be effective for enhancing cognitive flexibility in individuals with a history of heavy drinking. SIGNIFICANCE STATEMENT: Procognitive effects of two acetylcholine (ACh) receptor agonists were assessed in group-housed monkeys who had several years' experience drinking ethanol. The muscarinic ACh receptor agonist xanomeline and the nicotinic ACh receptor agonist varenicline reversed a cognitive deficit induced by the muscarinic ACh receptor antagonist scopolamine. However, this effect was observed only in lower-ranking (subordinate) monkeys and not higher-ranking (dominant monkeys). Results suggest that ACh agonists may effectively remediate alcohol-induced cognitive deficits in a subpopulation of those with alcohol use disorder.


Asunto(s)
Etanol , Macaca fascicularis , Escopolamina , Animales , Masculino , Etanol/farmacología , Escopolamina/farmacología , Cognición/efectos de los fármacos , Consumo de Bebidas Alcohólicas/tratamiento farmacológico , Consumo de Bebidas Alcohólicas/psicología , Vareniclina/farmacología , Agonistas Colinérgicos/farmacología , Nootrópicos/farmacología
3.
Mol Biol Rep ; 51(1): 572, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722394

RESUMEN

BACKGROUND: Alzheimer's disease is a leading neurological disorder that gradually impairs memory and cognitive abilities, ultimately leading to the inability to perform even basic daily tasks. Teriflunomide is known to preserve neuronal activity and protect mitochondria in the brain slices exposed to oxidative stress. The current research was undertaken to investigate the teriflunomide's cognitive rescuing abilities against scopolamine-induced comorbid cognitive impairment and its influence on phosphatidylinositol-3-kinase (PI3K) inhibition-mediated behavior alteration in mice. METHODS: Swiss albino mice were divided into 7 groups; vehicle control, scopolamine, donepezil + scopolamine, teriflunomide (10 mg/kg) + scopolamine; teriflunomide (20 mg/kg) + scopolamine, LY294002 and LY294002 + teriflunomide (20 mg/kg). Mice underwent a nine-day protocol, receiving scopolamine injections (2 mg/kg) for the final three days to induce cognitive impairment. Donepezil, teriflunomide, and LY294002 treatments were given continuously for 9 days. MWM, Y-maze, OFT and rota-rod tests were conducted on days 7 and 9. On the last day, blood samples were collected for serum TNF-α analysis, after which the mice were sacrificed, and brain samples were harvested for oxidative stress analysis. RESULTS: Scopolamine administration for three consecutive days increased the time required to reach the platform in the MWM test, whereas, reduced the percentage of spontaneous alternations in the Y-maze, number of square crossing in OFT and retention time in the rota-rod test. In biochemical analysis, scopolamine downregulated the brain GSH level, whereas it upregulated the brain TBARS and serum TNF-α levels. Teriflunomide treatment effectively mitigated all the behavioral and biochemical alterations induced by scopolamine. Furthermore, LY294002 administration reduced the memory function and GSH level, whereas, uplifted the serum TNF-α levels. Teriflunomide abrogated the memory-impairing, GSH-lowering, and TNF-α-increasing effects of LY294002. CONCLUSION: Our results delineate that the improvement in memory, locomotion, and motor coordination might be attributed to the oxidative and inflammatory stress inhibitory potential of teriflunomide. Moreover, PI3K inhibition-induced memory impairment might be attributed to reduced GSH levels and increased TNF-α levels.


Asunto(s)
Disfunción Cognitiva , Crotonatos , Hidroxibutiratos , Nitrilos , Estrés Oxidativo , Toluidinas , Animales , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Conducta Animal/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Cromonas/farmacología , Cognición/efectos de los fármacos , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Crotonatos/farmacología , Modelos Animales de Enfermedad , Donepezilo/farmacología , Hidroxibutiratos/farmacología , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Morfolinas/farmacología , Nitrilos/farmacología , Estrés Oxidativo/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Escopolamina/farmacología , Toluidinas/farmacología
4.
Mol Biol Rep ; 51(1): 864, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073463

RESUMEN

BACKGROUND: The study investigated the effect of co-administration of curcumin and donepezil on several markers of cognitive function (such as spatial memory, astrocyte activation, cholinesterase expressions) in the brain cortex and hippocampus of scopolamine-treated rats. METHOD AND RESULTS: For seven consecutive days, a pre-treatment of curcumin (50 mg/kg) and/or donepezil (2.5 mg/kg) was administered. On the seventh day, scopolamine (1 mg/kg) was administered to elicit cognitive impairment, 30 min before memory test was conducted. This was followed by evaluating changes in spatial memory, cholinesterase, and adenosine deaminase (ADA) activities, as well as nitric oxide (NO) level were determined. Additionally, RT-qPCR for glial fibrillary acidic protein (GFAP) and cholinesterase gene expressions was performed in the brain cortex and hippocampus. Also, GFAP immunohistochemistry  of the brain tissues for neuronal injury were performed in the brain cortex and hippocampus. In comparison to the control group, rats given scopolamine had impaired memory, higher levels of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and ADA activities, as well as elevated markers of oxidative stress. In addition to enhanced GFAP immunoreactivity, there was also overexpression of the GFAP and BChE genes in the brain tissues. The combination of curcumin and donepezil was, however, observed to better ameliorate these impairments in comparison to the donepezil-administered rat group. CONCLUSION: Hence, this evidence provides more mechanisms to support the hypothesis that the concurrent administration of curcumin and donepezil mitigates markers of cognitive dysfunction in scopolamine-treated rat model.


Asunto(s)
Acetilcolinesterasa , Astrocitos , Curcumina , Donepezilo , Proteína Ácida Fibrilar de la Glía , Hipocampo , Escopolamina , Memoria Espacial , Animales , Donepezilo/farmacología , Curcumina/farmacología , Curcumina/administración & dosificación , Escopolamina/farmacología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Ratas , Masculino , Memoria Espacial/efectos de los fármacos , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/genética , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Ratas Wistar , Estrés Oxidativo/efectos de los fármacos , Colinesterasas/metabolismo , Adenosina Desaminasa/metabolismo , Adenosina Desaminasa/genética , Butirilcolinesterasa/metabolismo , Butirilcolinesterasa/genética , Óxido Nítrico/metabolismo , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/administración & dosificación
5.
J Obstet Gynaecol Can ; 46(2): 102292, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37993100

RESUMEN

OBJECTIVE: The current meta-analysis was designed to investigate the impact of Hyoscine N-butyl bromide (HBB) rectal on labour duration and the rate of cervical dilatation by consolidating the available data. METHODS: The search of Medline through the PubMed interface, Scopus, ScienceDirect, and the Cochrane Central Register of Controlled Trials (CENTRAL) was performed for original articles concerning the effects of HBB rectal on the duration of labour published prior to 26 June 2023. Search terms were based on Medical Subject Headings without time and language restrictions. They included: Hyoscine, Scopolamine, HBB, Buscopan, Buscolysin, Buscapine, rectal, suppository, childbirth, delivery, active phase, second stage, cervical dilatation, labour, labour, and duration of labour. The Comprehensive Meta-Analysis V3 software was used for all analyses. RESULTS: Five randomized control trials and 1 non-randomized study involving 1310 women were included in the systematic review. Two studies were excluded from the meta-analysis because of heterogeneous interventions and a lack of mean and SD results. The results determined that HBB rectal administration significantly decreased the duration of the active phase (pooled mean difference -193.893; 95% CI -229.173 to -158.613, P < 0.001; I2 squares = 90.097%) and second stage of labour (pooled mean difference -2.911; 95% CI -5.486 to -0.336, P = 0.027; I2 squares = 90.097%). Also, the cervical dilatation rate in the active phase of labour was 0.981 cm/h higher than in the control group (I2 = 0.0%; P < 0.001). CONCLUSION: This meta-analysis found that HBB rectal administration shortened the active labour phase and second stage and increased the rate of cervix dilatation; consequently, it can be used as a cost-effective intervention for low-risk pregnant women during labour. However, our findings also suggest that more robust clinical trials are required to generate evidence and confirm the use of HBB during labour for clinical practice guidelines.


Asunto(s)
Bromuro de Butilescopolamonio , Hidrocarburos Bromados , Trabajo de Parto , Embarazo , Femenino , Humanos , Bromuro de Butilescopolamonio/farmacología , Primer Periodo del Trabajo de Parto , Escopolamina/farmacología , Ensayos Clínicos Controlados Aleatorios como Asunto
6.
Environ Toxicol ; 39(5): 3198-3210, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38351887

RESUMEN

In this presentation, we explored the molecular mechanisms of N. nucifera leaf water extracts (NLWEs) and polyphenol extract (NLPE) on scopolamine-induced cell apoptosis and cognition defects. The administration of NLWE and NLPE did not alter the body weight and serum biomarker rs and significantly ameliorated scopolamine-induced cognition impairment according to Y-maze test analysis. In mice, treatment with scopolamine disrupted normal histoarchitecture in the hippocampus, whereas the administration of NLWE and NLPE reversed the phenomenon. Western blot analysis revealed that scopolamine mitigated the expression of doublecortin (DCX), nestin, and NeuN, and cotreatment with NLWE or NLPE significantly recovered the expression of these proteins. NLWE and NLPE upregulated DCX and NeuN expression in the hippocampus region, as evidenced by immunohistochemical staining analysis of scopolamine-treated mice. NLWE and NLPE obviously elevated brain-derived neurotrophic factor (BDNF) and enhanced its downstream proteins activity. NLWE and NLPE attenuated scopolamine-induced apoptosis by reducing Bax and increased Bcl-2 expression. In addition, scopolamine also triggered apoptosis in human neuroblastoma SH-SY5Y cells whereas co-treatment with NLWE or quercetin-3-glucuronide (Q3G) reversed the phenomenon. NLWE or Q3G enhanced Bcl-2 and reduced Bax expression in the presence of scopolamine in SH-SY5Y cells. NLWE or Q3G recovered the inhibitory effects of scopolamine on neurogenesis and BDNF signals in SH-SY5Y cells. Overall, our results revealed that N. nucifera leaf extracts and Q3G promoted adult hippocampus neurogenesis and prevented apoptosis to mitigate scopolamine-induced cognition dysfunction through the regulation of BDNF signaling pathway.


Asunto(s)
Nelumbo , Neuroblastoma , Ratones , Humanos , Animales , Escopolamina/farmacología , Escopolamina/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Nelumbo/química , Nelumbo/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Neuroblastoma/metabolismo , Hipocampo/metabolismo , Neurogénesis , Aprendizaje por Laberinto , Extractos Vegetales/química , Cognición
7.
Molecules ; 29(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38338372

RESUMEN

The role of endothelial nitric oxide synthase (eNOS) in the regulation of a variety of biological processes is well established, and its dysfunction contributes to brain pathologies, including schizophrenia or Alzheimer's disease (AD). Positive allosteric modulators (PAMs) of metabotropic glutamate (mGlu) receptors were shown to be effective procognitive compounds, but little is known about their impact on eNOS expression and stability. Here, we investigated the influence of the acute and chronic administration of LY487379 or CDPPB (mGlu2 and mGlu5 PAMs), on eNOS expression in the mouse brain and the effect of the joint administration of the ligands with nitric oxide (NO) releasers, spermineNONOate or DETANONOate, in different combinations of doses, on MK-801- or scopolamine-induced amnesia in the novel object recognition (NOR) test. Our results indicate that both compounds provoked eNOS monomer formation, and CDPPB at a dose of 5 mg/kg exaggerated the effect of MK-801 or scopolamine. The coadministration of spermineNONOate or DETANONOate enhanced the antiamnesic effect of CDPPB or LY487379. The best activity was observed for ineffective or moderate dose combinations. The results indicate that treatment with mGluR2 and mGluR5 PAMs may be burdened with the risk of promoting eNOS uncoupling through the induction of dimer dissociation. Administration of the lowest possible doses of the compounds with NO• donors, which themselves have procognitive efficacy, may be proposed for the treatment of schizophrenia or AD.


Asunto(s)
Benzamidas , Disfunción Cognitiva , Maleato de Dizocilpina , Compuestos Nitrosos , Pirazoles , Piridinas , Sulfonamidas , Ratones , Animales , Maleato de Dizocilpina/farmacología , Óxido Nítrico/farmacología , Escopolamina/farmacología , Óxido Nítrico Sintasa de Tipo III , Disfunción Cognitiva/tratamiento farmacológico , Encéfalo , Regulación Alostérica
8.
Neurobiol Learn Mem ; 205: 107821, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37666411

RESUMEN

Destabilization of previously consolidated memories places them in a labile state in which they are open to modification. However, strongly encoded fear memories tend to be destabilization-resistant and the conditions required to destabilize such memories remain poorly understood. Our lab has previously shown that exposure to salient novel contextual cues during memory reactivation can destabilize strongly encoded object location memories and that activity at muscarinic cholinergic receptors is critical for this effect. In the current study, we similarly targeted destabilization-resistant fear memories, hypothesizing that exposure to salient novelty at the time of reactivation would induce destabilization of strongly encoded fear memories in a muscarinic receptor-dependent manner. First, we show that contextual fear memories induced by 3 context-shock pairings readily destabilize upon memory reactivation, and that this destabilization is blocked by systemic (ip) administration of the muscarinic receptor antagonist scopolamine (0.3 mg/kg) in male rats. Following that, we confirm that this effect is dorsal hippocampus (dHPC)-dependent by targeting M1 receptors in the CA1 region with pirenzepine. Next, we show that more strongly encoded fear memories (induced with 5 context-shock pairings) resist destabilization. Consistent with our previous work, however, we report that salient novelty (a change in floor texture) presented during the reactivation session promotes destabilization of resistant contextual fear memories in a muscarinic receptor-dependent manner. Finally, the effect of salient novelty on memory destabilization was mimicked by stimulating muscarinic receptors with the selective M1 agonist CDD-0102A (ip, 0.3 mg/kg). These findings reveal further generalizability of our previous results implicating novel cues and M1 muscarinic signaling in promoting destabilization of resistant memories and suggest possible therapeutic options for disorders characterized by persistent, maladaptive fear memories such as PTSD and phobias.


Asunto(s)
Memoria , Receptor Muscarínico M1 , Ratas , Masculino , Animales , Memoria/fisiología , Miedo/fisiología , Antagonistas Muscarínicos/farmacología , Escopolamina/farmacología
9.
Int J Neuropsychopharmacol ; 26(1): 80-90, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36402549

RESUMEN

BACKGROUND: Reward-related learning, where animals form associations between rewards and stimuli (i.e., conditioned stimuli [CS]) that predict or accompany those rewards, is an essential adaptive function for survival. METHODS: In this study, we investigated the mechanisms underlying the acquisition and performance of conditioned approach learning with a focus on the role of muscarinic acetylcholine (mACh) and NMDA glutamate receptors in the substantia nigra (SN), a brain region implicated in reward and motor processes. RESULTS: Using RNAscope in situ hybridization assays, we found that dopamine neurons of the SN express muscarinic (mACh5), NMDA2a, NMDA2b, and NMDA2d receptor mRNA but not mACh4. NMDA, but not mACh5, receptor mRNA was also found on SN GABA neurons. In a conditioned approach paradigm, rats were exposed to 3 or 7 conditioning sessions during which light/tone (CS) presentations were paired with delivery of food pellets, followed by a test session with CS-only presentations. Intra-SN microinjections of scopolamine (a mACh receptor antagonist) or AP-5 (a NMDA receptor antagonist) were made either prior to each conditioning session (to test their effects on acquisition) or prior to the CS-only test (to test their effects on expression of the learned response). Scopolamine and AP-5 produced dose-dependent significant reductions in the acquisition, but not performance, of conditioned approach. CONCLUSIONS: These results suggest that SN mACh and NMDA receptors are key players in the acquisition, but not the expression, of reward-related learning. Importantly, these findings redefine the role of the SN, which has traditionally been known for its involvement in motor processes, and suggest that the SN possesses attributes consistent with a function as a hub of integration of primary reward and CS signals.


Asunto(s)
N-Metilaspartato , Receptores de N-Metil-D-Aspartato , Ratas , Animales , Receptores de N-Metil-D-Aspartato/metabolismo , Recompensa , Escopolamina/farmacología , Colinérgicos , Sustancia Negra/metabolismo
10.
Mol Biol Rep ; 50(10): 7967-7979, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37535247

RESUMEN

BACKGROUND: Millions of people around the globe are affected by Alzheimer's disease (AD). This crippling condition has no treatment despite intensive studies. Some phytocompounds have been shown to protect against Alzheimer's in recent studies. METHODS: Thus, this work aimed to examine Bacopa monnieri phytocompounds' synergistic effects on neurodegeneration, antioxidant activity, and cognition in the scopolamine-induced AD mice model. The toxicity study of two phytocompounds: quercetin and bacopaside X revealed an LD50 of more than 2000 mg/kg since no deaths occurred. RESULTS: The neuroprotection experiment consists of 6 groups i.e., control (saline), scopolamine (1 mg/kg), donepezil (5 mg/kg), Q (25 mg/kg), BX (20 mg/kg), and Q + BX (25 mg/kg + 20 mg/kg). Visual behavioral assessment using the Morris water maze showed that animals in the diseased model group (scopolamine) moved more slowly toward the platform and exhibited greater thigmotaxis behavior than the treatment and control groups. Likewise, the concentration of biochemical NO, GSH, and MDA improved in treatment groups concerning the diseased group. mRNA levels of different marker genes including ChAT, IL-1α, IL-1 ß, TNF α, tau, and ß secretase (BACE1) improved in treatment groups with respect to the disease group. CONCLUSION: Both bacopaside X and quercetin synergistically have shown promising results in neuroprotection. Therefore, it is suggested that Q and BX may work synergistically due to their antioxidant and neuroprotective property.


Asunto(s)
Enfermedad de Alzheimer , Bacopa , Fármacos Neuroprotectores , Humanos , Ratones , Animales , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Escopolamina/farmacología , Escopolamina/uso terapéutico , Bacopa/química , Secretasas de la Proteína Precursora del Amiloide , Quercetina/farmacología , Quercetina/uso terapéutico , Neuroprotección , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ácido Aspártico Endopeptidasas , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Aprendizaje por Laberinto
11.
Ear Hear ; 44(6): 1404-1409, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37221635

RESUMEN

OBJECTIVE: The therapeutic effects of antimotion sickness medications involve suppression of several components along the vestibular system. Scopolamine-based medications have proved to be the most effective anti-seasickness agents. However, there is high variability in individual responses. The vestibular nuclei, in which the vestibular time constant is modulated, contain acetylcholine receptors which are affected by scopolamine. The hypothesis of the study was that successful seasickness prevention by scopolamine requires vestibular suppression to be reflected by the shortening of the vestibular time constant. DESIGN: Subjects were 30 naval crew members suffering from severe seasickness and were treated with oral scopolamine. The study participants were defined as responsive or non-responsive to the anti-seasickness medication according to the clinical outcome: successful response to scopolamine was defined as a reduction of seasickness severity from the highest score of 7 according to the Wiker scale to 4 or less. Scopolamine and placebo were assigned to each subject in a crossover, double-blind design. The horizontal semicircular canal time constant was evaluated by a computerized rotatory chair before, 1 and 2 hours after drug or placebo administration. RESULTS: The vestibular time constant was significantly shortened from 16.01 ± 3.43 seconds to 12.55 ± 2.40 seconds ( p < 0.001) in the scopolamine-responsive group but not in the nonresponsive group. In contrast, vestibular time constant values were 13.73 ± 4.08 and 12.89 ± 4.48 for baseline and 2 hours measurements, respectively. This change was not statistically significant. CONCLUSIONS: Reduction in the vestibular time constant after scopolamine administration can be used to predict whether motion sickness alleviation will occur. This will enable the administration of appropriate pharmaceutical treatment without the need for prior exposure to sea conditions.


Asunto(s)
Mareo por Movimiento , Vestíbulo del Laberinto , Humanos , Escopolamina/uso terapéutico , Escopolamina/farmacología , Mareo por Movimiento/tratamiento farmacológico , Mareo por Movimiento/prevención & control , Canales Semicirculares , Preparaciones Farmacéuticas
12.
Metab Brain Dis ; 38(4): 1261-1272, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36735154

RESUMEN

The blackberry (Rubus sp.) is a popular fruit that has a high concentration of phenolic compounds. Pharmacological investigations have demonstrated the important biological activities of the blackberry extract, such as neuroprotective actions. This study aimed to evaluate the effects of blackberry extract on memory and neurochemical parameters in rats subjected to scopolamine (SCO)-induced amnesia. Male rats were divided into five groups: I, control (saline); II, SCO; III, SCO + Rubus sp. (100 mg/kg); IV, SCO + Rubus sp. (200 mg/kg); and V, SCO + donepezil (5 mg/kg). Blackberry extract and donepezil were orally administered for 10 days. On day 11, group I received saline, and groups II, III, IV, and V received SCO (1 mg/kg) intraperitoneally after object recognition behavioral training. Twenty-four hours after the training session, animals were subjected to an object recognition test. Finally, the animals were euthanized, and the cerebral cortex, hippocampus, and cerebellum were collected to evaluate the oxidative stress and acetylcholinesterase (AChE) activity. Rubus sp. extract prevented memory impairment induced by SCO in a manner similar to that of donepezil. Additionally, Rubus sp. extract and donepezil prevented the increase in AChE activity induced by SCO in all the evaluated brain structures. SCO induced oxidative damage in the cerebral cortex, hippocampus, and cerebellum, which was prevented by Rubus sp. and donepezil. Our results suggest that the antioxidant and anticholinesterase activities of Rubus sp. are associated with memory improvement; hence, it can potentially be used for the treatment of neurodegenerative diseases.


Asunto(s)
Rubus , Ratas , Masculino , Animales , Rubus/metabolismo , Acetilcolinesterasa/metabolismo , Donepezilo/farmacología , Donepezilo/uso terapéutico , Amnesia/inducido químicamente , Amnesia/tratamiento farmacológico , Amnesia/prevención & control , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/inducido químicamente , Escopolamina/farmacología , Hipocampo/metabolismo , Corteza Cerebral/metabolismo , Estrés Oxidativo , Antioxidantes/farmacología , Cerebelo/metabolismo , Aprendizaje por Laberinto
13.
Int Ophthalmol ; 43(2): 463-473, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35908134

RESUMEN

PURPOSE: Dry eye disease (DED) is a disease with tear film instability because of multiple factors. This study was conducted to explore roles of occludin and MUC5AC in tear film instability in DED rat model. METHODS: A total of 20 SD rats were divided into DED group (n = 10) and normal control (NC) group (n = 10). DED rat model was established by subcutaneously injecting with scopolamine hydrobromide. Clinical examinations, including tear breakup time (tBUT), Schirmer's test and corneal fluorescein staining, were conducted to determine corneal functions. Transmission electron microscopy was used to measure the ultrastructures of corneal epithelial cells. Western blotting assay was used to identify occludin expression in corneal tissues of DED rats. Real-time PCR (RT-PCR) was performed to verify gene transcription of occludin and MUC5AC. Colocalization between occludin and MUC5AC was identified with confocal fluorescence microscopy. RESULTS: Tear breakup time was significantly shorter, and corneal fluorescein staining score was predominantly higher in DED rats compared to those in normal rats (P < 0.05). Normal rats showed a steady tear secretion throughout the whole experiments, while DED rats showed a dramatic reduction on day 14. DED rats demonstrated ultrastructural damage of Golgi apparatus and endoplasmic reticulum in corneal epithelial cells. Occludin and MUC5AC expressions were significantly downregulated in corneal tissue of DED rats compared with those of normal rats (P < 0.05). Percentage of occludin-MUC5AC-colocalized corneal epithelial cells in DED rats was significantly less compared with those in normal rats (P < 0.01). CONCLUSIONS: Tear film stability was damaged in scopolamine-induced DED rats because of the weakened colocalization between occludin and MUC5AC molecule. This study would provide a potential clue for the pathogenesis and a promising theoretical basis for clinical work of DED.


Asunto(s)
Síndromes de Ojo Seco , Escopolamina , Ratas , Animales , Escopolamina/farmacología , Escopolamina/análisis , Escopolamina/metabolismo , Ocludina/análisis , Ocludina/metabolismo , Ratas Sprague-Dawley , Lágrimas/metabolismo , Fluoresceína , Síndromes de Ojo Seco/etiología , Mucina 5AC/análisis , Mucina 5AC/metabolismo
14.
Pak J Pharm Sci ; 36(5(Special)): 1609-1618, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38008959

RESUMEN

Melissa officinalis and Panax ginseng extracts were investigated to determine combinatorial effects on cognitive behaviors' of albino-rats. The study was prospective-experimental; lasted from June-2022 to March-2023. Learning and memory measurements were done by animal-models. Data analyzed by 22nd version of SPSS. In Passive-avoidance-test both doses of Melissa officinalis and Panax ginseng (100/100mg/kg and 200/200mg/kg) showed significant differences in number of acquisition-trial between groups (p<0.001); drug treated groups showed longer latency-period compared to control and scopolamine (p<0.001). In time-spent-in-dark-chamber treated groups spent less-time in dark-chamber as compared to control and scopolamine (p<0.001). In Morris-water-maze-task treatment groups (100/100mg/kg and 200/200mg/kg) showed significant (p<0.001) decrease in escape-latency compared with control and scopolamine. Spatial-memory-probe showed significant interaction between drugs and days (p<0.001); time-spent in platform region is significantly increased (p<0.001) in both treatment groups compared with control and scopolamine. 8-arm-radial-maze-test showed the significant increase (p<0.05) in total number of correct responses in treatment groups (100/100mg/kg and 200/200mg/kg) compared to control and scopolamine. In-vitro studies revealed acetyl-choline-esterase inhibition by 36.40% from Melissa officinalis and Panax ginseng combination. Study concluded that combination of M. officinalis and P. ginseng extracts may significantly improve the effects on memory and cognition.


Asunto(s)
Melissa , Panax , Animales , Estudios Prospectivos , Escopolamina/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Aprendizaje por Laberinto , Cognición , Trastornos de la Memoria/tratamiento farmacológico
15.
J Neurophysiol ; 127(4): 1098-1116, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35294308

RESUMEN

Mechanisms of rhythm generation have been extensively studied in motor systems that control locomotion over terrain in limbed animals; however, much less is known about rhythm generation in soft-bodied terrestrial animals. Here we explored how muscarinic acetylcholine receptor (mAChR)-modulated rhythm-generating networks are distributed in the central nervous system (CNS) of soft-bodied Drosophila larvae. We measured fictive motor patterns in isolated CNS preparations, using a combination of Ca2+ imaging and electrophysiology while manipulating mAChR signaling pharmacologically. Bath application of the mAChR agonist oxotremorine potentiated bilaterally asymmetric activity in anterior thoracic regions and promoted bursting in posterior abdominal regions. Application of the mAChR antagonist scopolamine suppressed rhythm generation in these regions and blocked the effects of oxotremorine. Oxotremorine triggered fictive forward crawling in preparations without brain lobes. Oxotremorine also potentiated rhythmic activity in isolated posterior abdominal CNS segments as well as isolated anterior brain and thoracic regions, but it did not induce rhythmic activity in isolated anterior abdominal segments. Bath application of scopolamine to reduced preparations lowered baseline Ca2+ levels and abolished rhythmic activity. Overall, these results suggest that mAChR signaling plays a role in enabling rhythm generation at multiple sites in the larval CNS. This work furthers our understanding of motor control in soft-bodied locomotion and provides a foundation for study of rhythm-generating networks in an emerging genetically tractable locomotor system.NEW & NOTEWORTHY Using a combination of pharmacology, electrophysiology, and Ca2+ imaging, we find that signaling through mACh receptors plays a critical role in rhythmogenesis in different regions of the Drosophila larval CNS. mAChR-dependent rhythm generators reside in distal regions of the larval CNS and provide functional substrates for central pattern-generating networks (CPGs) underlying headsweep behavior and forward locomotion. This provides new insights into locomotor CPG operation in soft-bodied animals that navigate over terrain.


Asunto(s)
Proteínas de Drosophila , Drosophila , Locomoción , Receptores Muscarínicos , Acetilcolina/farmacología , Animales , Proteínas de Drosophila/fisiología , Larva/fisiología , Locomoción/fisiología , Oxotremorina/farmacología , Receptores Muscarínicos/fisiología , Escopolamina/farmacología
16.
Hippocampus ; 32(10): 731-751, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36123765

RESUMEN

We hypothesize that hippocampal local field potentials in acetylcholine (ACh)-deficient mutant mice, compared to wild-type (WT) mice, will show lower sensitivity to muscarinic cholinergic antagonist scopolamine (5 mg/kg i.p.) but higher sensitivity to NMDA receptor antagonist 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP, 10 mg/kg i.p.). Recordings were made during walk and awake-immobility (IMM) in WT mice, and in mice with forebrain knockout (KO) of the vesicular acetylcholine transporter (VAChT) gene, or heterozygous knockdown of VAChT gene (KD). Scopolamine or CPP did not significantly alter walk theta frequency, which was higher in KD than WT/KO mice. Scopolamine decreased theta power peak rise during walk in WT/KD mice but not in KO mice, while CPP suppressed theta peak rise more in WT/KO mice than KD mice. During IMM, scopolamine decreased gamma1 (γ1, 30-58 Hz) power more in KD/WT mice than KO mice, while delta (1-4 Hz) power and delta-gamma cross-frequency coherence (CFC) were increased in all mouse groups during IMM or walk. During walk, scopolamine increased delta and beta (13-30 Hz) power and decreased gamma2 (γ2, 62-100 Hz) power and theta-γ2 CFC more in WT/KD than KO mice. Theta-γ2, but not theta-γ1, CFC increased with theta-peak-frequency in WT/KD mice, and was suppressed by scopolamine at high theta (8-10 Hz) frequency; theta-γ2 CFC in KO mice was not significantly altered by scopolamine. CPP decreased beta and gamma power more in KD/KO mice compared to WT mice, while delta power and delta-gamma CFC were increased in all mouse groups. ACh deficiency exacerbates the attenuation of beta and gamma power by CPP. We conclude that both muscarinic and NMDA transmission contribute toward hippocampal theta, beta, and gamma power, and a decrease in gamma power or theta-gamma CFC may be associated with loss of arousal and cognitive functions.


Asunto(s)
Acetilcolina , Receptores de N-Metil-D-Aspartato , Animales , Hipocampo/fisiología , Ratones , Ratones Noqueados , Antagonistas Muscarínicos/farmacología , N-Metilaspartato , Escopolamina/farmacología , Proteínas de Transporte Vesicular de Acetilcolina
17.
Neurochem Res ; 47(2): 446-460, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34623562

RESUMEN

This study investigated the effects of inosine on memory acquisition and consolidation, cholinesterases activities, redox status and Na+, K+-ATPase activity in a rat model of scopolamine-induced cognitive impairment. Adult male rats were divided into four groups: control (saline), scopolamine (1 mg/kg), scopolamine plus inosine (50 mg/kg), and scopolamine plus inosine (100 mg/kg). Inosine was pre-administered for 7 days, intraperitoneally. On day 8, scopolamine was administered pre (memory acquisition protocol) or post training (memory consolidation protocol) on inhibitory avoidance tasks. The animals were subjected to the step-down inhibitory avoidance task 24 hours after the training. Scopolamine induced impairment in the acquisition and consolidation phases; however, inosine was able to prevent only the impairment in memory consolidation. Also, scopolamine increased the activity of acetylcholinesterase and reduced the activity of Na+, K+-ATPase and the treatment with inosine protected against these alterations in consolidation protocol. In the animals treated with scopolamine, inosine improved the redox status by reducing the levels of reactive oxygen species and thiobarbituric acid reactive substances and restoring the activity of the antioxidant enzymes, superoxide dismutase and catalase. Our findings suggest that inosine may offer protection against scopolamine-induced memory consolidation impairment by modulating brain redox status, cholinergic signaling and ion pump activity. This compound may provide an interesting approach in pharmacotherapy and as a prophylactic against neurodegenerative mechanisms involved in Alzheimer's disease.


Asunto(s)
Disfunción Cognitiva , Consolidación de la Memoria , Acetilcolinesterasa/metabolismo , Animales , Colinérgicos/efectos adversos , Inosina/efectos adversos , Bombas Iónicas/farmacología , Bombas Iónicas/uso terapéutico , Masculino , Aprendizaje por Laberinto , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/prevención & control , Oxidación-Reducción , Estrés Oxidativo , Ratas , Ratas Wistar , Escopolamina/farmacología
18.
Biomarkers ; 27(8): 773-783, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35950787

RESUMEN

Background:Alzheimer's disease is a debilitating neurological brain disease with memory impairment among the first signs. Scopolamine (SCO), a muscarinic receptor antagonist that disrupts cognition and memory acquisition, is considered a psychopharmacological AD model. We investigate the effectiveness of medicinal plants in mitigating the SCO-induced neurobehavioural damage in rats. Materials and Methods: Animals were injected with Scopolamine hydrobromide trihydrate (2.2 mg/kg IP.) daily for 2 months. Each treatment group was administered one of four medicinal spice extracts (Nigella sativa, 400 mg/kg; rosemary, 200 mg/kg; sage, 600 mg/kg and ginseng; 200 mg/kg 90 minutes after SCO injection. Animals were subjected to cognitive-behavioural tests (NOR, Y-maze and MWM). After the experiment, we extracted the brains for histopathological examination and biochemical assessment for oxidative stress (levels of TT, CAT and TBARS) and gene expression of acetylcholinesterase and brain monoamines. Results: As expected, SCO treatment impaired memory and cognition, increased oxidative stress, decreased neurotransmitters and caused severe neurodegenerative changes in the brain. Conclusion: Surprisingly, these effects were measurably moderated by the administration of all four plant extracts, indicating a neuroprotective action that we suggest could alleviate AD disease manifestations.


Asunto(s)
Enfermedad de Alzheimer , Plantas Medicinales , Animales , Ratas , Escopolamina/farmacología , Extractos Vegetales/farmacología , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Plantas Medicinales/metabolismo , Aprendizaje por Laberinto , Estrés Oxidativo
19.
Behav Pharmacol ; 33(4): 231-237, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35621168

RESUMEN

Scopolamine has been used as a pharmacologic model for cognitive impairments in dementia and Alzheimer's disease. The validity of this model seems to be limited because findings in animals do not readily translate to novel treatments in humans. Biperiden is also a cholinergic deficit model for cognitive impairments but specifically blocks muscarinic M1 receptors. The effects of scopolamine and biperiden (and pirenzepine) are compared in animal studies and related to findings in humans. It is concluded that the effects on cognitive functions are different for scopolamine and biperiden, and they should be considered as different cognitive deficit models. Scopolamine may model more advanced stages of Alzheimer's disease whereas biperiden may model the early deficits in declarative memory in aging and mild cognitive impairment.


Asunto(s)
Enfermedad de Alzheimer , Biperideno , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Biperideno/farmacología , Humanos , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Antagonistas Muscarínicos/farmacología , Escopolamina/farmacología
20.
Exp Brain Res ; 240(11): 2989-2997, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36198843

RESUMEN

Healthy aging is associated with a functional reduction of the basal forebrain (BF) system that supplies the neurochemical acetylcholine (ACh) to the cortex, and concomitant challenges to cognition. It remains unclear how aging and ACh loss interact to shape cognition in the aging brain. We used a proactive interference (PI) odor discrimination task, shown to depend on the BF in young adults, wherein rats acquired new associations that conflicted with past learning or associations that did not conflict. This manipulation allowed independent assessment of encoding alone vs. encoding in the face of interference. Adult (9.8 ± 1.3 months) or aged male Long-Evans rats (20.7 ± 0.5 months) completed the PI task with systemic administration of a muscarinic cholinergic antagonist, scopolamine, or a pharmacological control. Aged rats were less able to resolve PI than adult rats. Moreover, while scopolamine reduced efficient PI resolution in adult rats, this cholinergic antagonism had no additional effect on aged rat performance, counter to our expectation that scopolamine would further increase perseveration in the aged group. Scopolamine did not impair encoding of non-interfering associations regardless of age. These data suggest that natural aging changes the effect of cholinergic pharmacology on encoding efficiency when past learning interferes.


Asunto(s)
Acetilcolina , Escopolamina , Animales , Ratas , Masculino , Acetilcolina/farmacología , Ratas Long-Evans , Escopolamina/farmacología , Antagonistas Muscarínicos/farmacología , Cognición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA