Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 335
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Arch Microbiol ; 206(4): 174, 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38493436

RESUMEN

The present study focuses on investigating 60 strains of yeast isolated from the natural fermentation broth of Vitis labruscana Baily × Vitis vinifera L. These strains underwent screening using lysine culture medium and esculin culture medium, resulting in the identification of 27 local non-Saccharomyces yeast strains exhibiting high ß-glucosidase production. Subsequent analysis of their fermentation characteristics led to the selection of four superior strains (Z-6, Z-11, Z-25, and Z-58) with excellent ß-glucosidase production and fermentation performance. Notably, these selected strains displayed a dark coloration on esculin medium and exhibited robust gas production during Duchenne tubules' fermentation test. Furthermore, all four non-Saccharomyces yeast strains demonstrated normal growth under specific conditions including SO2 mass concentration ranging from 0.1 to 0.3 g/L, temperature between 25 and 30 °C, glucose mass concentration ranging from 200 to 400 g/L, and ethanol concentration at approximately 4%. Molecular biology identification confirmed that all selected strains belonged to Pichia kudriavzevii species which holds great potential for wine production.


Asunto(s)
Vitis , Vino , Saccharomyces cerevisiae/metabolismo , Fermentación , beta-Glucosidasa/metabolismo , Esculina/análisis , Levaduras/metabolismo , Vino/análisis , Pichia/metabolismo
2.
J Sep Sci ; 47(1): e2300664, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38010472

RESUMEN

Chicory, renowned for its multifaceted benefits, houses two vital coumarins, esculetin and esculin, both instrumental in reducing uric acid. This study emphasizes the metabolic pathways of esculetin and esculin under both standard and hyperuricemia conditions. Hyperuricemia was induced in Sprague-Dawley rats using oxonic acid potassium salt (300 mg·kg-1 ) and a 10% fructose water regimen over 21 days. Leveraging the ultra-high-performance liquid chromatography-Q Exactive hybrid quadrupole-orbitrap high resolution mass spectrometry, we analyzed the fragmentation behaviors of esculetin and esculin in rat bio-samples. Post oral-intake of esculetin or esculin, a notable dip in serum uric acid levels was observed in hyperuricemia rats. The investigation unveiled 24 esculetin metabolites and 14 for esculin. The metabolic pathways of both compounds were hydrolysis, hydroxylation, hydrogenation, dehydroxylation, glucuronidation, sulfation, and methylation. Interestingly, certain metabolites presented variations between standard and hyperuricemia rats, indicating that elevated levels of uric acid may affect enzyme activity linked to these metabolic reactions. This is the first systematic study on comparison of metabolic profiles of esculetin and esculin in both normal and hyperuricemia states, which was helpful to enrich our understanding of the complicated structure-activity relationships between esculin and esculetin and shed light to their action mechanism.


Asunto(s)
Cichorium intybus , Hiperuricemia , Umbeliferonas , Ratas , Animales , Esculina/análisis , Esculina/química , Esculina/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Ratas Sprague-Dawley , Ácido Úrico , Espectrometría de Masas/métodos
3.
Xenobiotica ; 54(5): 233-247, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38638108

RESUMEN

This study explored the distribution of esculin microspheres in rabbit brain tissue following intravitreal injection and investigated the possibility of direct entry of the drug into the brain through the eye, to develop a formulation with enhanced therapeutic efficacy against Parkinson's disease.Chitosan microspheres of esculin were prepared via an emulsification cross-linking method and their characteristics were evaluated, including angle of repose, bulk density, and swelling ratio. Furthermore, the pharmacokinetic parameters and brain tissue distribution in rabbits were compared among groups administered esculin eye drops, intravitreal esculin solution, and intravitreal esculin microspheres, to determine whether esculin could enter the brain through an ocular route.The results showed that the prepared esculin microspheres were spherical and had good fluidity. Notably, intravitreal administration enhanced the area under the curve (AUC) of esculin in the thalamus. Delivery through microspheres prolonged the drug retention time in both rabbit plasma and brain tissues, as well as the brain-targeting efficiency of esculin.The collective findings indicated that there may be a direct eye-brain pathway facilitating enter of esculin microspheres into brain tissue after intravitreal injection, supporting the utility of intravitreal esculin microspheres as an effective therapeutic formulation for Parkinson's disease, a long-term chronic condition.


Asunto(s)
Encéfalo , Esculina , Inyecciones Intravítreas , Microesferas , Animales , Conejos , Encéfalo/metabolismo , Esculina/farmacocinética , Esculina/administración & dosificación , Distribución Tisular
4.
J Exp Bot ; 74(21): 6677-6691, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37668473

RESUMEN

The vasculature along conifer needles is fundamentally different from that in angiosperm leaves as it contains a unique transfusion tissue inside the bundle sheath. In this study, we used specific tracers to identify the pathway of photoassimilates from mesophyll to phloem, and the opposing pathway of nutrients from xylem to mesophyll. For symplasmic transport we applied esculin to the tip of attached pine needles and followed its movement down the phloem. For apoplasmic transport we let detached needles take up a membrane-impermeable contrast agent and used micro-X-ray computed tomography to map critical water exchange interfaces and domain borders. Microscopy and segmentation of the X-ray data enabled us to render and quantify the functional 3D structure of the water-filled apoplasm and the complementary symplasmic domain. The transfusion tracheid system formed a sponge-like apoplasmic domain that was blocked at the bundle sheath. Transfusion parenchyma cell chains bridged this domain as tortuous symplasmic pathways with strong local anisotropy which, as evidenced by the accumulation of esculin, pointed to the phloem flanks as the preferred phloem-loading path. Simple estimates supported a pivotal role of the bundle sheath, showing that a bidirectional movement of nutrient ions and assimilates is feasible and emphasizing the role of the bundle sheath in nutrient and assimilate exchange.


Asunto(s)
Tracheophyta , Tracheophyta/metabolismo , Esculina/metabolismo , Transporte Biológico , Hojas de la Planta/metabolismo , Nutrientes , Agua/metabolismo , Floema/metabolismo
5.
Plant Cell ; 32(11): 3485-3499, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32843436

RESUMEN

Developmental transitions in plants require adequate carbon resources, and organ abscission often occurs due to competition for carbohydrates/assimilates. Physiological studies have indicated that organ abscission may be activated by Suc deprivation; however, an underlying regulatory mechanism that links Suc transport to organ shedding has yet to be identified. Here, we report that transport of Suc and the phytohormone auxin to petals through the phloem of the abscission zone (AZ) decreases during petal abscission in rose (Rosa hybrida), and that auxin regulates Suc transport into the petals. Expression of the Suc transporter RhSUC2 decreased in the AZ during rose petal abscission. Similarly, silencing of RhSUC2 reduced the Suc content in the petals and promotes petal abscission. We established that the auxin signaling protein RhARF7 binds to the promoter of RhSUC2, and that silencing of RhARF7 reduces petal Suc contents and promotes petal abscission. Overexpression of RhSUC2 in the petal AZ restored accelerated petal abscission caused by RhARF7 silencing. Moreover, treatment of rose petals with auxin and Suc delayed ethylene-induced abscission, whereas silencing of RhARF7 and RhSUC2 accelerated ethylene-induced petal abscission. Our results demonstrate that auxin modulates Suc transport during petal abscission, and that this process is regulated by a RhARF7-RhSUC2 module in the AZ.


Asunto(s)
Flores/fisiología , Ácidos Indolacéticos/metabolismo , Rosa/fisiología , Sacarosa/metabolismo , Transporte Biológico , Esculina/metabolismo , Etilenos/metabolismo , Etilenos/farmacología , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/genética , Ácidos Indolacéticos/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Rosa/efectos de los fármacos , Sacarosa/farmacología
6.
Plant Cell ; 32(10): 3206-3223, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32769131

RESUMEN

During their first year of growth, overwintering biennial plants transport Suc through the phloem from photosynthetic source tissues to storage tissues. In their second year, they mobilize carbon from these storage tissues to fuel new growth and reproduction. However, both the mechanisms driving this shift and the link to reproductive growth remain unclear. During vegetative growth, biennial sugar beet (Beta vulgaris) maintains a steep Suc concentration gradient between the shoot (source) and the taproot (sink). To shift from vegetative to generative growth, they require a chilling phase known as vernalization. We studied sugar beet sink-source dynamics upon vernalization and showed that before flowering, the taproot underwent a reversal from a sink to a source of carbohydrates. This transition was induced by transcriptomic and functional reprogramming of sugar beet tissue, resulting in a reversal of flux direction in the phloem. In this transition, the vacuolar Suc importers and exporters TONOPLAST SUGAR TRANSPORTER2;1 and SUCROSE TRANSPORTER4 were oppositely regulated, leading to the mobilization of sugars from taproot storage vacuoles. Concomitant changes in the expression of floral regulator genes suggest that these processes are a prerequisite for bolting. Our data will help both to dissect the metabolic and developmental triggers for bolting and to identify potential targets for genome editing and breeding.


Asunto(s)
Beta vulgaris/fisiología , Floema/metabolismo , Proteínas de Plantas/metabolismo , Brotes de la Planta/metabolismo , Metabolismo de los Hidratos de Carbono , Dióxido de Carbono/metabolismo , Frío , Esculina/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Floema/genética , Fotosíntesis/fisiología , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Sacarosa/metabolismo , Azúcares/metabolismo , Vacuolas/genética , Vacuolas/metabolismo
7.
Pestic Biochem Physiol ; 191: 105375, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36963944

RESUMEN

Bioallethrin, a household insecticide, is a member of the pyrethroid family and is known for its adverse effects on human health. Human exposure to pyrethroids is unavoidable due to their widespread use in controlling several fatal vector-borne diseases, mostly in developing nations. Bioallethrin is known to induce oxidative stress in target cells, including erythrocytes. Here we have studied the protective effect of dietary antioxidant esculin on bioallethrin-induced damage in isolated human erythrocytes. The cells were incubated with 200 µM bioallethrin, without or with different concentrations of esculin (200, 400 and 600 µM), and the results compared to the untreated control samples. Bioallethrin-treated erythrocytes showed a significant increase in oxidative stress markers, like protein and lipid oxidation, accompanied by decrease in free amino groups and ratio of reduced to oxidized glutathione. There was enhanced generation of reactive oxygen and nitrogen species with changes in plasma membrane integrity. Bioallethrin oxidized hemoglobin to methemoglobin, which cannot transport oxygen. It altered the activities of antioxidant enzymes and lowered the electron donating and free radical quenching ability of erythrocytes. The cell morphology and redox system of erythrocyte membrane were also altered by bioallethrin. Treatment with esculin, prior to incubation with bioallethrin, led to significant restoration in all these parameters in an esculin concentration-dependent manner. Thus esculin attenuated the biolletherin-induced oxidative damage to erythrocytes. Esculin can, therefore, be an effective chemoprotectant against xenobiotic-induced toxicity in human erythrocytes.


Asunto(s)
Antioxidantes , Esculina , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Esculina/metabolismo , Esculina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Glutatión/metabolismo , Eritrocitos , Estrés Oxidativo , Oxígeno/metabolismo , Oxígeno/farmacología
8.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36268863

RESUMEN

The three novel bacterial strains designated as 3Y2T, 4Y16 and 4Y11T were isolated from an aquaculture farm and characterized using a polyphasic taxonomic approach. These strains were determined to be catalase- and oxidase-positive and to hydrolyze gelatin and aesculin. The results of 16S rRNA gene-based phylogenetic analysis indicated that the three strains were related to members of the genus Ideonella. The phylogenomic results further indicated that the three strains formed two independent branches distinct from reference type strains within this genus. The digital DNA-DNA hybridization (dDDH), average nucleotide identity (ANI) and average amino acid identity (AAI) values between the three strains and their relatives were far below the thresholds of 70 % dDDH, 95-96 % ANI and 95 % AAI for species definition, respectively, indicating that the three strains represent two novel genospecies. The results of chemotaxonomic characterization indicated that the major cellular fatty acids of the three strains were summed feature 3 (C16 : 1ω6c and/or C16 : 1 ω7c) and C16 : 0; the common main polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol; the respiratory quinone was ubiquinone-8. The genomic DNA G+C contents of the three strains were 70.2, 70.1 and 69.7%, respectively. On the basis of the different genotypes and distinctive phenotypes such as the phosphatidylcholine and glycolipid only in 3Y2T and the utilization of malic acid and trisodium citrate only in 4Y11T, strains 3Y2T and 4Y11T are concluded to represent two novel species of the genus Ideonella, for which the names Ideonella alba sp. nov. (type strain 3Y2T = GDMCC 1.2584T = KCTC 82813T) and Ideonella aquatica sp. nov. (type strain 4Y11T = GDMCC 1.1935T = JCM 34285T) are proposed.


Asunto(s)
Burkholderiales , Ubiquinona , ARN Ribosómico 16S/genética , Filogenia , Composición de Base , Ubiquinona/química , Fosfatidiletanolaminas , Catalasa/genética , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Cardiolipinas , Gelatina/genética , Esculina , Ácidos Grasos/química , Análisis de Secuencia de ADN , Fosfolípidos/química , Burkholderiales/genética , Acuicultura , Fosfatidilcolinas , Nucleótidos , Aminoácidos , Glucolípidos
9.
J Appl Microbiol ; 133(3): 1183-1196, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35184359

RESUMEN

BACKGROUND AND AIMS: Clostridium (Clostridiodes) difficile clade 3 ribotype (RT) 023 strains that fail to produce black colonies on bioMérieux ChromID agar have been reported, as well as variant strains of C. difficile that produce only toxin A. We have recently isolated strains of C. difficile from the environment in Western Australia (WA) with similar characteristics. The objective of this study was to characterize these strains. It was hypothesized that a putative ß-glucosidase gene was lacking in these strains of C. difficile, including RT 023, leading to white colonies. METHODS AND RESULTS: A total of 17 environmental isolates of C. difficile from garden soil and compost, and gardening shoe soles in Perth, WA, failed to produce black colonies on ChromID agar. MALDI-TOF MS analysis confirmed these strains as C. difficile. Four strains contained only a tcdA gene (A+ B- CDT- ) by PCR and were a novel RT (QX 597). All isolates were susceptible to all antimicrobials tested except one with low-level resistance to clindamycin (MIC = 8 mg/L). The four tcdA-positive strains were motile. All isolates contained neither bgl locus but only bgl K or a putative ß-glucosidase gene by PCR. Whole-genome sequencing showed the 17 strains belonged to novel multi-locus sequence types 632, 848, 849, 850, 851, 852 and 853, part of the evolutionarily divergent clade C-III. Four isolates carried a full-length tcdA but not tcdB nor binary toxin genes. CONCLUSIONS: ChromID C. difficile agar is used for the specific detection of C. difficile in the samples. To date, all strains except RT 023 strains from clinical samples hydrolyse esculin. This is the first report to provide insights into the identification of esculin hydrolysis negative and TcdA-only producing (A+ B- CDT- ) strains of C. difficile from environmental samples. SIGNIFICANCE AND IMPACT OF THE STUDY: White colonies of C. difficile from environmental samples could be overlooked when using ChromID C. difficile agar, leading to false-negative results, however, whether these strains are truly pathogenic remains to be proven.


Asunto(s)
Toxinas Bacterianas , Celulasas , Clostridioides difficile , Agar , Toxinas Bacterianas/genética , Clostridioides , Clostridioides difficile/genética , Clostridium , Esculina , Hidrólisis , Australia Occidental
10.
J Fish Dis ; 45(1): 59-68, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34536027

RESUMEN

White spot syndrome virus (WSSV) is a pathogenic and threatening virus in shrimp culture for which there is no effective control strategy. Finding antiviral lead compounds for the development of anti-WSSV drugs is urgent and necessary; in this study, esculin from 12 monomeric compounds exhibited an excellent anti-WSSV activity. The results showed that esculin increased the survival rate of WSSV-infected shrimps by 59% and reduced the virus copy number in vivo over 90% at 100 µM. In the pre-treatment and post-treatment experiments, esculin could prevent and treat WSSV infection. Compared with the control group, the virus copy number decreased by 30% after 6 h of esculin pre-incubation with WSSV particles and inhibited horizontal transmission of WSSV to a certain extent. Considering that the antiviral activity of esculin was stable in the aquacultural water for 2 days, we evaluated the dosing pattern of continuous medication changes. Obviously, the survival rate of WSSV-infected shrimps was 0% at 108 h when no esculin exchange was made, while at 120 h the survival rate was over 40% at continuous medicine changes. In addition, esculin significantly increased the expression of antimicrobial peptides and thus improved the ability of shrimp to resist WSSV. Overall, our findings suggest that esculin has the potential to be developed into an anti-WSSV medicine.


Asunto(s)
Antivirales/farmacología , Esculina/farmacología , Enfermedades de los Peces , Penaeidae , Virus del Síndrome de la Mancha Blanca 1 , Animales , Péptidos Antimicrobianos , Acuicultura , Brotes de Enfermedades , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/virología , Penaeidae/virología , Virus del Síndrome de la Mancha Blanca 1/efectos de los fármacos
11.
Phytother Res ; 36(6): 2434-2448, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35599456

RESUMEN

Cortex fraxini is a widely used traditional Chinese medicine. Esculin is one of the main active ingredients of Cortex fraxini and has attracted more and more attention from scholars. The purpose of the review is to systematically review relevant studies on the pharmacological effects and pharmacokinetic characteristics of esculin to support its further application as therapeutic agents. Pharmacological studies have shown that the anti-inflammatory and anti-oxidative stress effects of esculin are outstanding. This indicates that esculin is promising to be used to treat a variety of diseases closely related to inflammation and oxidative damage. Esculin has anti-diabetic effect, which is closely related to improving pancreas damage, promoting insulin release, and enhancing glucose homeostasis. In addition, esculin has anti-cancer, antibiosis, anti-virus, neuroprotection, anti-thrombosis and treating eye diseases properties. Pharmacokinetic studies show that esculin can be quickly and evenly distributed in the body. However, the first pass effect of esculin is serious. In short, esculin is promising to treat many diseases, but further high quality studies are needed to firmly establish the clinical efficacy of esculin.


Asunto(s)
Antiinflamatorios , Esculina , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Esculina/farmacología , Esculina/uso terapéutico , Humanos , Inflamación/tratamiento farmacológico , Insulina , Estrés Oxidativo
12.
Pharm Biol ; 59(1): 922-932, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34243681

RESUMEN

CONTEXT: Esculin, an active coumarin compound, has been demonstrated to exert anti-inflammatory effects. However, its potential role in non-alcoholic steatohepatitis (NASH) remains unclear. OBJECTIVE: This study explored the hepatoprotective effect and the molecular mechanism of esculin in methionine choline-deficient (MCD) diet-induced NASH. MATERIALS AND METHODS: Fifty C57BL/6J mice were divided into five groups: control, model, low dosage esculin (oral, 20 mg/kg), high dosage esculin (oral, 40 mg/kg), and silybin (oral, 105 mg/kg). All animals were fed a MCD diet, except those in the control group (control diet), for 6 weeks. RESULTS: Esculin (20 and 40 mg/kg) inhibited MCD diet-induced hepatic lipid content (triglyceride: 16.95 ± 0.67 and 14.85 ± 0.78 vs. 21.21 ± 1.13 mg/g; total cholesterol: 5.10 ± 0.34 and 4.08 ± 0.47 vs. 7.31 ± 0.58 mg/g), fibrosis, and inflammation (ALT: 379.61 ± 40.30 and 312.72 ± 21.45 vs. 559.51 ± 37.01 U/L; AST: 428.22 ± 34.29 and 328.23 ± 23.21 vs. 579.36 ± 31.93 U/L). In vitro, esculin reduced tumour necrosis factor-α, interleukin-6, fibronectin, and collagen 4A1 levels, but had no effect on lipid levels in HepG2 cells induced by free fatty acid. Esculin increased Sirt1 expression levels and decreased NF-κB acetylation levels in vivo and in vitro. Interfering with Sirt1 expression attenuated the beneficial effect of esculin on inflammatory and fibrotic factor production in HepG2 cells. CONCLUSIONS: These findings demonstrate that esculin ameliorates MCD diet-induced NASH by regulating the Sirt1/ac-NF-κB signalling pathway. Esculin could thus be employed as a therapy for NASH.


Asunto(s)
Esculina/farmacología , FN-kappa B/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Sirtuina 1/metabolismo , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Supervivencia Celular/efectos de los fármacos , Deficiencia de Colina , Citocinas/efectos de los fármacos , Ácidos Grasos no Esterificados , Fibrosis/tratamiento farmacológico , Células Hep G2 , Hepatocitos/efectos de los fármacos , Humanos , Inflamación/tratamiento farmacológico , Lípidos/sangre , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , ARN Interferente Pequeño , Transducción de Señal , Silibina/farmacología , Sirtuina 1/genética
13.
Molecules ; 25(21)2020 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-33171577

RESUMEN

Coumarins, which occur naturally in the plant kingdom, are diverse class of secondary metabolites. With their antiproliferative, chemopreventive and antiangiogenetic properties, they can be used in the treatment of cancer. Their therapeutic potential depends on the type and location of the attachment of substituents to the ring. Therefore, the aim of our study was to investigate the effect of simple coumarins (osthole, umbelliferone, esculin, and 4-hydroxycoumarin) combined with sorafenib (specific inhibitor of Raf (Rapidly Accelerated Fibrosarcoma) kinase) in programmed death induction in human glioblastoma multiforme (T98G) and anaplastic astrocytoma (MOGGCCM) cells lines. Osthole and umbelliferone were isolated from fruits: Mutellina purpurea L. and Heracleum leskowii L., respectively, while esculin and 4-hydroxycoumarin were purchased from Sigma Aldrich (St. Louis, MO, USA). Apoptosis, autophagy and necrosis were identified microscopically after straining with specific fluorochromes. The level of caspase 3, Beclin 1, PI3K (Phosphoinositide 3-kinase), and Raf kinases were estimated by immunoblotting. Transfection with specific siRNA (small interfering RNA) was used to block Bcl-2 (B-cell lymphoma 2), Raf, and PI3K expression. Cell migration was tested with the wound healing assay. The present study has shown that all the coumarins eliminated the MOGGCCM and T98G tumor cells mainly via apoptosis and, to a lesser extent, via autophagy. Osthole, which has an isoprenyl moiety, was shown to be the most effective compound. Sorafenib did not change the proapoptotic activity of this coumarin; however, it reduced the level of autophagy. At the molecular level, the induction of apoptosis was associated with a decrease in the expression of PI3K and Raf kinases, whereas an increase in the level of Beclin 1 was observed in the case of autophagy. Inhibition of the expression of this protein by specific siRNA eliminated autophagy. Moreover, the blocking of the expression of Bcl-2 and PI3K significantly increased the level of apoptosis. Osthole and sorafenib successfully inhibited the migration of the MOGGCCM and T98G cells.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Cumarinas/farmacología , Glioblastoma/tratamiento farmacológico , Magnoliopsida/química , Extractos Vegetales/farmacología , Sorafenib/farmacología , 4-Hidroxicumarinas/farmacología , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Beclina-1/genética , Beclina-1/metabolismo , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Esculina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Necrosis/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Interferente Pequeño/metabolismo , Umbeliferonas/farmacología , Quinasas raf/metabolismo
14.
Zhonghua Zhong Liu Za Zhi ; 42(8): 629-634, 2020 Aug 23.
Artículo en Zh | MEDLINE | ID: mdl-32867453

RESUMEN

Objective: To investigate the effect of esculin on the proliferation of triple negative breast cancer cells and its molecular mechanism. Methods: MDA-MB-231 cells were treated with 28, 56, 112, 225, 450 and 900 µmol/L of esculin for 24, 48 and 72 h, respectively, and the cell viability was detected by cell counting kit 8 (CCK-8) assay. In addition, MDA-MB-231 cells were treated with 0, 225, 450 and 900 µmol/L of esculin for 48 h. And then the changes in cell morphology were observed by inverted microscope. The clone-forming ability was detected by colony formation assay. The mRNA expression levels of FBI-1, p53 and p21 were detected using real-time fluorescence quantitative polymerase chain reaction. The protein expression levels of FBI-1, p53, p21 and Ki67 were detected by western blot. Results: Compared with the blank control group, the cell viability of MDA-MB-231 cells that treated with esculin significantly decreased in a dose-dependent and time-dependent manners. After treatment with esculin, MDA-MB-231 cells shrunk, flattened, adhered poorly to the culture dish and the cell spacing became larger. Meanwhile, shedding and incomplete cells appeared, of which 900 µmol/L of esculin treatment group showed the most dramatic changes. In addition, the colony formation ratios were decreased to (77.18±5.13)%, (65.94±4.98)% and (45.92±3.70)% in the 225, 450 and 900 µmol/L of esculin treatment groups compared with blank control, respectively (P<0.01). Furthermore, the mRNA and protein expressions of FBI-1 increased, while the levels of p53 and p21 mRNA and protein, as well as the protein expression of Ki67 decreased in a concentration-dependent manner (P<0.01). Conclusion: Esculin may regulate cell cycle-related p53-p21 pathway via FBI-1 mediated DNA replication, thus inhibit the proliferation of triple negative breast cancer cells.


Asunto(s)
Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Esculina/farmacología , ARN Mensajero/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama/metabolismo , Ciclo Celular , Línea Celular Tumoral , Proteínas de Unión al ADN , Regulación hacia Abajo/efectos de los fármacos , Femenino , Humanos , Factores de Transcripción , Neoplasias de la Mama Triple Negativas/patología
15.
Plant Physiol ; 178(2): 795-807, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30111635

RESUMEN

The study of phloem transport and its vital roles in long-distance communication and carbon allocation have been hampered by a lack of suitable tools that allow high-throughput, real-time studies. Esculin, a fluorescent coumarin glucoside, is recognized by Suc transporters, including AtSUC2, which loads it into the phloem for translocation to sink tissues. These properties make it an ideal tool for use in live-imaging experiments, where it acts as a surrogate for Suc. Here, we show that esculin is translocated with a similar efficiency to Suc and, because of its ease of application and detection, demonstrate that it is an ideal tool for in vivo studies of phloem transport. We used esculin to determine the effect of different environmental cues on the velocity of phloem transport. We provide evidence that fluctuations in cotyledon Suc levels influence phloem velocity rapidly, supporting the pressure-flow model of phloem transport. Under acute changes in light levels, the phloem velocity mirrored changes in the expression of AtSUC2 This observation suggests that under certain environmental conditions, transcriptional regulation may affect the abundance of AtSUC2 and thus regulate the phloem transport velocity.


Asunto(s)
Arabidopsis/metabolismo , Carbono/metabolismo , Cumarinas/metabolismo , Esculina/metabolismo , Glucósidos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/efectos de la radiación , Transporte Biológico , Ambiente , Proteínas de Transporte de Membrana/genética , Floema/metabolismo , Proteínas de Plantas/genética
16.
J Exp Bot ; 70(20): 5559-5573, 2019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-31232453

RESUMEN

Cassava (Manihot esculenta) is one of the most important staple food crops worldwide. Its starchy tuberous roots supply over 800 million people with carbohydrates. Yet, surprisingly little is known about the processes involved in filling of those vital storage organs. A better understanding of cassava carbohydrate allocation and starch storage is key to improving storage root yield. Here, we studied cassava morphology and phloem sap flow from source to sink using transgenic pAtSUC2::GFP plants, the phloem tracers esculin and 5(6)-carboxyfluorescein diacetate, as well as several staining techniques. We show that cassava performs apoplasmic phloem loading in source leaves and symplasmic unloading into phloem parenchyma cells of tuberous roots. We demonstrate that vascular rays play an important role in radial transport from the phloem to xylem parenchyma cells in tuberous roots. Furthermore, enzymatic and proteomic measurements of storage root tissues confirmed high abundance and activity of enzymes involved in the sucrose synthase-mediated pathway and indicated that starch is stored most efficiently in the outer xylem layers of tuberous roots. Our findings form the basis for biotechnological approaches aimed at improved phloem loading and enhanced carbohydrate allocation and storage in order to increase tuberous root yield of cassava.


Asunto(s)
Manihot/metabolismo , Floema/metabolismo , Raíces de Plantas/metabolismo , Transporte Biológico , Esculina/metabolismo , Regulación de la Expresión Génica de las Plantas , Manihot/fisiología , Floema/fisiología , Proteínas de Plantas/metabolismo , Raíces de Plantas/fisiología , Xilema/metabolismo , Xilema/fisiología
17.
J Pharmacol Sci ; 139(3): 151-157, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30733181

RESUMEN

Glucocorticoids are widely prescribed for lots of pathological conditions, however, can produce 'Cushingoid' side effects including central obesity, glucose intolerance, insulin resistance and so forth. Our study is intended to investigate the improving effects of coumarins on diabetogenic action of dexamethasone in vivo and in vitro and elucidate potential mechanisms. ICR mice treated with dexamethasone for 21 days exhibited decreased body weight, increased blood glucose and impaired glucose tolerance, which were prevented by fraxetin (40 mg/kg/day), esculin (40 mg/kg/day) and osthole (20 mg/kg/day), respectively. Esculin, fraxetin and osthole also could promote glucose uptake in normal C2C12 myotubes, and improve insulin resistance in myotubes induced by dexamethasone. Western blotting results indicated that esculin, fraxetin and osthole could boost Akt activation, stimulate GLUT4 translocation, thus alleviate insulin resistance. Esculin and osthole also could activate AMPK, thereby phosphorylate TBC1D1 at Ser237, and consequently ameliorate diabetogenic action of dexamethasone. Our study indicates coumarins as potential anti-diabetic candidates or leading compounds for drug development.


Asunto(s)
Glucemia/efectos de los fármacos , Cumarinas/farmacología , Dexametasona/toxicidad , Músculo Esquelético/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Western Blotting , Línea Celular , Cumarinas/administración & dosificación , Dexametasona/administración & dosificación , Esculina/farmacología , Glucocorticoides/administración & dosificación , Glucocorticoides/toxicidad , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/farmacología , Masculino , Ratones , Ratones Endogámicos ICR , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos
18.
Microb Pathog ; 125: 418-422, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30290266

RESUMEN

Liver injury is an important cause of serious liver disease and is characterized by inflammatory and oxidative responses. Esculin, a coumarinic derivative found in Aesculus hippocastanum L., has been shown to exhibit anti-inflammatory and anti-oxidative effects. Here, we investigated the effects and molecular mechanism of esculin on Lipopolysaccharide/D-Galactosamine (LPS/D-Gal)-induced acute liver injury. A mouse model for acute liver injury was induced by intraperitoneal injection with D-Gal and LPS, and was assessed by histology, and serum transaminase analyses. The results showed that esculin significantly reduced the pathological symptoms of acute liver injury, as well as serum AST and ALT levels. LPS/D-Gal-induced liver myeloperoxidase (MPO) activity and malondialdehyde (MDA) content were also suppressed by esculin. Furthermore, LPS/D-Gal-induced liver tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) production were attenuated by esculin. Our data demonstrate that esculin can inhibit nuclear factor kappa B (NF-κB) activation as well as increase nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression. In conclusion, this paper demonstrates that esculin protects liver injury induced by LPS/D-Gal via inhibiting inflammatory and oxidative responses.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Esculina/administración & dosificación , Galactosamina/toxicidad , Lipopolisacáridos/toxicidad , Sustancias Protectoras/administración & dosificación , Alanina Transaminasa/sangre , Animales , Antiinflamatorios/administración & dosificación , Antioxidantes/administración & dosificación , Aspartato Aminotransferasas/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Citocinas/análisis , Modelos Animales de Enfermedad , Hígado/patología , Ratones
19.
Lett Appl Microbiol ; 67(1): 72-78, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29604215

RESUMEN

The aim of the present work was to screen a pool of 75 yeasts belonging to the species Saccharomyces cerevisiae and Saccharomyces uvarum in order to select the strains endowed with ß-glucosidase activity. The first screening was a qualitative assay based on chromogenic substrates (arbutin and esculin). The second screening was the quantitative evaluation of the ß-glucosidase activity via a p-nitrophenyl-ß-d-glucopyranoside assay. The measurement was performed on three different cell preparations, including the extracellular compartment, the cell lysates and the whole cells. This study pointed out the high frequency of ß-glucosidase activity in S. uvarum strains. In particular, we retrieved three promising S. uvarum strains, CRY14, VA42 and GRAS14, featuring a high enzymatic activity, exploitable for winemaking. SIGNIFICANCE AND IMPACT OF THE STUDY: In yeasts, ß-glucosidase activity has been extensively described, especially in non-Saccharomyces species, while there is only little evidence of this activity in strains belonging to the Saccharomyces species. In winemaking, ß-glucosidase plays essential roles in the hydrolysis of glyco-conjugated precursors and the release of active aromatic compounds. This study provides new insights into the ß-glucosidase activity in strains belonging to Saccharomyces cerevisiae and Saccharomyces uvarum species, which are the most important strains in wine industry. Our results point out a marked enzymatic activity for the tested S. uvarum strains. These strains could be exploited for their potential ability to enhance the aroma profiles of wine. In addition, they could be potential sources for the commercial production of enzymes to be applied in winemaking.


Asunto(s)
Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Vino/microbiología , beta-Glucosidasa/metabolismo , Arbutina/metabolismo , Esculina/metabolismo , Fermentación , Glucósidos/metabolismo , Odorantes , Saccharomyces cerevisiae/clasificación , Saccharomyces cerevisiae/aislamiento & purificación , Vino/análisis
20.
Aesthetic Plast Surg ; 42(3): 877-885, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29508020

RESUMEN

BACKGROUND: Post-operative oedema and ecchymosis represent early post-operative complications, impacting negatively on the final aesthetic outcome of each surgical procedure. In particular, such complications are very frustrating for patients and-sometimes-are difficult to be managed by surgeons. Several strategies are available for managing oedema, although some side effects have been reported. A new promising compound for the management of oedema is Venoplant, and this study aims to assess its effectiveness in decreasing post-operative oedema. METHODS: Patients were randomly allocated for receiving three different treatments: (1) Venoplant tablets and Venoplant gel; (2) only Venoplant tablets; and (3) not treated with Venoplant. The aesthetical outcome has been evaluated using the Global Aesthetic Improvement Scale (GAIS), compiled by both patient and clinician. The GAIS scale was administered several times: the day following the surgical procedure (T0) after 3 days (T1), after 7 days (T2), after 15 days (T3) and after 1 month (T4). RESULTS: Forty-three patients participated in the study. According to patient's evaluations, at T0 in Group 1 and in Group 2 a significant statistical difference was found compared to the control group (p < 0.001 and p < 0.05, respectively). Over time, a significant reduction in swelling and ecchymosis was reported by patients treated with Venoplant (tablets alone or in combination with gel) compared to the control group. According to the physician's assessment, during the different time points of evaluation, a significant reduction in post-operative oedema in Group 1 and in Group 2 compared to the control group was found. CONCLUSION: Venoplant represents a valid therapeutic strategy for the management of post-operative oedema, guaranteeing a good level of patient satisfaction, in the absence of common side effects which are often associated with other therapies. LEVEL OF EVIDENCE I: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Asunto(s)
Edema/tratamiento farmacológico , Esculina/uso terapéutico , Complicaciones Posoperatorias/tratamiento farmacológico , Cirugía Plástica/efectos adversos , Administración Oral , Administración Tópica , Adolescente , Adulto , Anciano , Edema/etiología , Edema/fisiopatología , Estética , Estudios de Seguimiento , Geles , Humanos , Persona de Mediana Edad , Complicaciones Posoperatorias/diagnóstico , Índice de Severidad de la Enfermedad , Cirugía Plástica/métodos , Resultado del Tratamiento , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA