Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 176(3): 468-478.e11, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30639099

RESUMEN

"Biased" G protein-coupled receptor (GPCR) agonists preferentially activate pathways mediated by G proteins or ß-arrestins. Here, we use double electron-electron resonance spectroscopy to probe the changes that ligands induce in the conformational distribution of the angiotensin II type I receptor. Monitoring distances between 10 pairs of nitroxide labels distributed across the intracellular regions enabled mapping of four underlying sets of conformations. Ligands from different functional classes have distinct, characteristic effects on the conformational heterogeneity of the receptor. Compared to angiotensin II, the endogenous agonist, agonists with enhanced Gq coupling more strongly stabilize an "open" conformation with an accessible transducer-binding site. ß-arrestin-biased agonists deficient in Gq coupling do not stabilize this open conformation but instead favor two more occluded conformations. These data suggest a structural mechanism for biased ligand action at the angiotensin receptor that can be exploited to rationally design GPCR-targeting drugs with greater specificity of action.


Asunto(s)
Angiotensinas/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Antagonistas de Receptores de Angiotensina/metabolismo , Arrestinas/metabolismo , Línea Celular , Humanos , Ligandos , Conformación Proteica , Receptores de Angiotensina/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Espectroscopía de Pérdida de Energía de Electrones/métodos , beta-Arrestinas/metabolismo
2.
Proc Natl Acad Sci U S A ; 113(39): 10797-801, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27601646

RESUMEN

Biologically formed nanoparticles of the strongly magnetic mineral, magnetite, were first detected in the human brain over 20 y ago [Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ (1992) Proc Natl Acad Sci USA 89(16):7683-7687]. Magnetite can have potentially large impacts on the brain due to its unique combination of redox activity, surface charge, and strongly magnetic behavior. We used magnetic analyses and electron microscopy to identify the abundant presence in the brain of magnetite nanoparticles that are consistent with high-temperature formation, suggesting, therefore, an external, not internal, source. Comprising a separate nanoparticle population from the euhedral particles ascribed to endogenous sources, these brain magnetites are often found with other transition metal nanoparticles, and they display rounded crystal morphologies and fused surface textures, reflecting crystallization upon cooling from an initially heated, iron-bearing source material. Such high-temperature magnetite nanospheres are ubiquitous and abundant in airborne particulate matter pollution. They arise as combustion-derived, iron-rich particles, often associated with other transition metal particles, which condense and/or oxidize upon airborne release. Those magnetite pollutant particles which are <∼200 nm in diameter can enter the brain directly via the olfactory bulb. Their presence proves that externally sourced iron-bearing nanoparticles, rather than their soluble compounds, can be transported directly into the brain, where they may pose hazard to human health.


Asunto(s)
Contaminación del Aire/análisis , Encéfalo/metabolismo , Nanopartículas de Magnetita/química , Encéfalo/ultraestructura , Humanos , Nanopartículas de Magnetita/ultraestructura , México , Tamaño de la Partícula , Espectrometría por Rayos X , Espectroscopía de Pérdida de Energía de Electrones , Reino Unido
3.
Angew Chem Int Ed Engl ; 58(11): 3438-3443, 2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30614604

RESUMEN

Boron has been employed in materials science as a marker for imaging specific structures by electron energy loss spectroscopy (EELS) or secondary ion mass spectrometry (SIMS). It has a strong potential in biological analyses as well; however, the specific coupling of a sufficient number of boron atoms to a biological structure has proven challenging. Herein, we synthesize tags containing closo-1,2-dicarbadodecaborane, coupled to soluble peptides, which were integrated in specific proteins by click chemistry in mammalian cells and were also coupled to nanobodies for use in immunocytochemistry experiments. The tags were fully functional in biological samples, as demonstrated by nanoSIMS imaging of cell cultures. The boron signal revealed the protein of interest, while other SIMS channels were used for imaging different positive ions, such as the cellular metal ions. This allows, for the first time, the simultaneous imaging of such ions with a protein of interest and will enable new biological applications in the SIMS field.


Asunto(s)
Compuestos de Boro/síntesis química , Sondas Moleculares/síntesis química , Nanopartículas/química , Péptidos/química , Proteínas/análisis , Compuestos de Boro/metabolismo , Línea Celular , Química Clic , Imagen Molecular/métodos , Sondas Moleculares/metabolismo , Proteínas/inmunología , Espectrometría de Masa de Ion Secundario , Espectroscopía de Pérdida de Energía de Electrones
4.
Biochim Biophys Acta Bioenerg ; 1859(5): 394-399, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29524382

RESUMEN

The binding site of the extrinsic protein PsbP in plant photosystem II was mapped by pulsed electron-electron double resonance, using mutant spinach PsbP (Pro20Cys, Ser82Cys, Ala111Cys, and Ala186Cys) labeled with 4-maleimido-TEMPO (MSL) spin label. The distances between the spin label and the Tyr160 neutral radical (YD) in PsbD, the D2 subunit of plant photosystem II, were 50.8 ±â€¯3.5 Å, 54.9 ±â€¯4.0 Å, 57.8 ±â€¯4.9 Å, and 58.4 ±â€¯14.1 Å, respectively. The geometry inferred from these distances was fitted to the PsbP crystal structure (PDB: 4RTI) to obtain the coordinates of YD relative to PsbP. These coordinates were then fitted under boundary conditions to the structure of cyanobacterial photosystem II (PDB: 4UB6), by rotating on Euler angles centered at fixed YD coordinates. The result proposed two models which show possible acidic amino acid residues in CP43, CP47 and D2 that can bind the basic amino acids Arg48, Lys143, and Lys160 in PsbP.


Asunto(s)
Complejo de Proteína del Fotosistema II/química , Spinacia oleracea/enzimología , Sustitución de Aminoácidos , Mutación Missense , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Espectroscopía de Pérdida de Energía de Electrones , Spinacia oleracea/genética
5.
Artículo en Inglés | MEDLINE | ID: mdl-29303426

RESUMEN

Organophosphorus flame retardants (PFRs) are extensively used as alternatives to banned polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCD). In this study, we analyzed 14 PFRs by means of four mass-spectrometry-based methods: gas chromatography combined with electron-impact mass spectrometry (GC-EI-MS) or negative-chemical-ionization mass spectrometry (GC-NCI-MS) and liquid chromatography combined with tandem mass spectrometry using electrospray ionization (LC-ESI-MS/MS) or atmospheric pressure chemical ionization (LC-APCI-MS/MS). The limits of quantification (LOQs) for LC-ESI-MS/MS and LC-APCI-MS/MS (0.81-970 pg) were 1-2 orders of magnitude lower than the LOQs for GC-EI-MS and GC-NCI-MS (2.3-3900 pg). LC-APCI-MS/MS showed the lowest LOQs (mean = 41 pg; median = 3.4 pg) for all but two of the PFRs targeted in this study. For LC-APCI-MS/MS, the lowest LOQ was observed for tributyl phosphate (TBP) (0.81 pg), and the highest was observed for tris(butoxyethyl) phosphate (TBOEP) (36 pg). The results of this study indicate that LC-APCI-MS/MS is the optimum analytical method for the target PFRs, at least in terms of LOQ.


Asunto(s)
Retardadores de Llama/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Organofosfatos/análisis , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida , Éteres Difenilos Halogenados/análisis , Hidrocarburos Bromados/análisis , Espectroscopía de Pérdida de Energía de Electrones
6.
Biochim Biophys Acta Gen Subj ; 1861(6): 1578-1586, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27919801

RESUMEN

BACKGROUND: This work is focused on mechanisms of uptake in cancer cells of rationally designed, covalently assembled nanoparticles, made of superparamagnetic iron oxide nanoparticles (SPIONs), fluorophores (doxorubicin or Nile Blue), polyethylene glycol (PEG) and folic acid (FA), referred hereinafter as SFP-FA. METHODS: SFP-FA were characterized by DLS, zetametry and fluorescence spectroscopy. The SFP-FA uptake in cancer cells was monitored using fluorescence-based methods like fluorescence-assisted cell sorting, CLSM with single-photon and two-photon excitation. The SFP-FA endocytosis was also analyzed with electron microscopy approaches: TEM, HAADF-STEM and EELS. RESULTS: The SFP-FA have zeta potential below -6mW and stable hydrodynamic diameter close to 100nm in aqueous suspensions of pH range from 5 to 8. They contain ca. 109 PEG-FA, 480 PEG-OCH3 and 22-27 fluorophore molecules per SPION. The fluorophores protected under the PEG shell allows a reliable detection of intracellular NPs. SFP-FA readily enter into all the cancer cell lines studied and accumulate in lysosomes, mostly via clathrin-dependent endocytosis, whatever the FR status on the cells. CONCLUSIONS: The present study highlights the advantages of rational design of nanosystems as well as the possible involvement of direct molecular interactions of PEG and FA with cellular membranes, not limited to FA-FR recognition, in the mechanisms of their endocytosis. GENERAL SIGNIFICANCE: Composition, magnetic and optical properties of the SFP-FA as well their ability to enter cancer cells are promising for their applications in cancer theranosis. Combination of complementary analytical approaches is relevant to understand the nanoparticles behavior in suspension and in contact with cells.


Asunto(s)
Antibióticos Antineoplásicos/metabolismo , Neoplasias de la Mama/metabolismo , Clatrina/metabolismo , Doxorrubicina/metabolismo , Portadores de Fármacos , Endocitosis , Ácido Fólico/metabolismo , Magnetismo/métodos , Nanopartículas de Magnetita , Nanomedicina/métodos , Polietilenglicoles/química , Neoplasias del Cuello Uterino/metabolismo , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Caveolas/metabolismo , Vesículas Cubiertas por Clatrina/metabolismo , Doxorrubicina/química , Doxorrubicina/farmacología , Endosomas/metabolismo , Femenino , Ácido Fólico/química , Células HeLa , Humanos , Lisosomas/metabolismo , Células MCF-7 , Nanopartículas de Magnetita/química , Microscopía Confocal , Microscopía Electrónica de Transmisión de Rastreo , Microscopía de Fluorescencia por Excitación Multifotónica , Espectroscopía de Pérdida de Energía de Electrones , Neoplasias del Cuello Uterino/tratamiento farmacológico
7.
Environ Sci Technol ; 51(14): 8010-8016, 2017 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-28618231

RESUMEN

Ceria nanoparticles (NPs) rapidly and easily cycle between Ce(III) and Ce(IV) oxidation states, making them prime candidates for commercial and other applications. Increased commercial use has resulted in increased discharge to the environment and increased associated risk. Once in complex media such as environmental waters or toxicology exposure media, the same redox transformations can occur, causing altered behavior and effects compared to the pristine NPs. This study used high resolution scanning transmission electron microscopy and electron energy loss spectroscopy to investigate changes in structure and oxidation state of small, polymer-coated ceria suspensions in complex media. NPs initially in either the III or IV oxidation states, but otherwise identical, were used. Ce(IV) NPs were changed to mixed (III, IV) NPs at high ionic strengths, while the presence of natural organic macromolecules (NOM) stabilized the oxidation state and increased crystallinity. The Ce(III) NPs remained as Ce(III) at high ionic strengths, but were modified by the presence of NOM, causing reduced crystallinity and degradation of the NPs. Subtle changes to NP properties upon addition to environmental or ecotoxicology media suggest that there may be small but important effects on fate and effects of NPs compared to their pristine form.


Asunto(s)
Cerio , Nanopartículas , Ecotoxicología , Espectroscopía de Pérdida de Energía de Electrones , Suspensiones
8.
Environ Sci Technol ; 50(5): 2183-90, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26792384

RESUMEN

Nanoparticles (NPs) are defined as particles with at least one dimension between 1 and 100 nm or with properties that differ from their bulk material, which possess unique properties. The extensive use of NPs means that discharge to the environment is likely increasing, but fate, behavior, and effects under environmentally relevant conditions are insufficiently studied. This paper focuses on the transformations of silver nanoparticles (AgNPs) under simulated but realistic environmental conditions. High resolution aberration-corrected scanning transmission electron microscopy (HAADF STEM) coupled with electron energy loss spectroscopy (EELS) and UV-vis were used within a multimethod approach to study morphology, surface chemistry transformations, and corona formation. Although loss, most likely by dissolution, was observed, there was no direct evidence of oxidation from the STEM-EELS. However, in the presence of fulvic acid (FA), a 1.3 nm oxygen-containing corona was observed around the AgNPs in water; modeled data based on the HAADF signal at near atomic resolution suggest this was an FA corona was formed and was not silver oxide, which was coherent (i.e., fully coated in FA), where observed. The corona further colloidally stabilized the NPs for periods of weeks to months, dependent on the solution conditions.


Asunto(s)
Sustancias Húmicas , Nanopartículas del Metal/química , Microscopía Electrónica de Transmisión de Rastreo/métodos , Plata/química , Espectroscopía de Pérdida de Energía de Electrones/métodos , Benzopiranos/química , Agua Dulce/química , Luz , Oxidación-Reducción , Óxidos/química , Compuestos de Plata/química , Espectrofotometría Ultravioleta , Contaminantes Químicos del Agua/química
9.
Exp Parasitol ; 161: 40-7, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26708933

RESUMEN

Mosquitoes (Diptera: Culicidae) represent a key threat for millions of people worldwide, since they act as vectors for devastating parasites and pathogens. In this scenario, eco-friendly control tools against mosquito vectors are a priority. Green synthesis of silver nanoparticles (AgNP) using a cheap, aqueous leaf extract of Anisomeles indica by reduction of Ag(+) ions from silver nitrate solution has been investigated. Bio-reduced AgNP were characterized by UV-visible spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX) and X-ray diffraction analysis (XRD). The acute toxicity of A. indica leaf extract and biosynthesized AgNP was evaluated against larvae of the malaria vector Anopheles subpictus, the dengue vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. Both the A. indica leaf extract and AgNP showed dose dependent larvicidal effect against all tested mosquito species. Compared to the leaf aqueous extract, biosynthesized AgNP showed higher toxicity against An. subpictus, Ae. albopictus, and Cx. tritaeniorhynchus with LC50 values of 31.56, 35.21 and 38.08 µg/mL, respectively. Overall, this study firstly shed light on the mosquitocidal potential of A. indica, a potential bioresource for rapid, cheap and effective AgNP synthesis.


Asunto(s)
Culicidae , Insectos Vectores , Insecticidas , Lamiaceae/química , Nanopartículas del Metal , Extractos Vegetales , Animales , Dengue/prevención & control , Dengue/transmisión , Encefalitis Japonesa/prevención & control , Encefalitis Japonesa/transmisión , Malaria/prevención & control , Malaria/transmisión , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Hojas de la Planta/química , Plata , Organismos Libres de Patógenos Específicos , Espectrofotometría Ultravioleta , Espectroscopía de Pérdida de Energía de Electrones , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
10.
Microsc Microanal ; 22(1): 219-29, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26914999

RESUMEN

A new approach is presented to introduce the fine structure of core-loss excitations into the electron energy-loss spectra of ionization edges by Monte Carlo simulations based on an optical oscillator model. The optical oscillator strength is refined using the calculated electron energy-loss near-edge structure by density functional theory calculations. This approach can predict the effects of multiple scattering and thickness on the fine structure of ionization edges. In addition, effects of the fitting range for background removal and the integration range under the ionization edge on signal-to-noise ratio are investigated.


Asunto(s)
Procesamiento Automatizado de Datos , Espectroscopía de Pérdida de Energía de Electrones/métodos , Método de Montecarlo
11.
Langmuir ; 31(50): 13528-34, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26606369

RESUMEN

Aromatic self-assembled monolayers (SAMs) can serve as platforms for development of supramolecular assemblies driven by surface templates. For many applications, electron processing is used to locally reinforce the layer. To achieve better control of the irradiation step, chemical transformations induced by electron impact at 50 eV of terphenylthiol SAMs are studied, with these SAMs serving as model aromatic SAMs. High-resolution electron energy loss spectroscopy (HREELS) and electron-stimulated desorption (ESD) of neutral fragment measurements are combined to investigate electron-induced chemical transformation of the layer. The decrease of the CH stretching HREELS signature is mainly attributed to dehydrogenation, without a noticeable hybridization change of the hydrogenated carbon centers. Its evolution as a function of the irradiation dose gives an estimate of the effective hydrogen content loss cross-section, σ = 2.7-4.7 × 10(-17) cm(2). Electron impact ionization is the major primary mechanism involved, with the impact electronic excitation contributing only marginally. Therefore, special attention is given to the contribution of the low-energy secondary electrons to the induced chemistry. The effective cross-section related to dissociative secondary electron attachment at 6 eV is estimated to be 1 order of magnitude smaller. The 1 eV electrons do not induce significant chemical modification for a 2.5 mC cm(-2) dose, excluding their contribution.


Asunto(s)
Electrones , Compuestos de Sulfhidrilo/química , Hidrógeno/química , Espectroscopía de Pérdida de Energía de Electrones , Compuestos de Sulfhidrilo/síntesis química
12.
J Chem Phys ; 143(14): 144308, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26472380

RESUMEN

The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5-10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.


Asunto(s)
Furaldehído/química , Teoría Cuántica , Espectroscopía de Pérdida de Energía de Electrones , Electrones , Espectrofotometría Ultravioleta
13.
Proc Natl Acad Sci U S A ; 109(13): E738-47, 2012 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-22392980

RESUMEN

We report the discovery in Lake Cuitzeo in central Mexico of a black, carbon-rich, lacustrine layer, containing nanodiamonds, microspherules, and other unusual materials that date to the early Younger Dryas and are interpreted to result from an extraterrestrial impact. These proxies were found in a 27-m-long core as part of an interdisciplinary effort to extract a paleoclimate record back through the previous interglacial. Our attention focused early on an anomalous, 10-cm-thick, carbon-rich layer at a depth of 2.8 m that dates to 12.9 ka and coincides with a suite of anomalous coeval environmental and biotic changes independently recognized in other regional lake sequences. Collectively, these changes have produced the most distinctive boundary layer in the late Quaternary record. This layer contains a diverse, abundant assemblage of impact-related markers, including nanodiamonds, carbon spherules, and magnetic spherules with rapid melting/quenching textures, all reaching synchronous peaks immediately beneath a layer containing the largest peak of charcoal in the core. Analyses by multiple methods demonstrate the presence of three allotropes of nanodiamond: n-diamond, i-carbon, and hexagonal nanodiamond (lonsdaleite), in order of estimated relative abundance. This nanodiamond-rich layer is consistent with the Younger Dryas boundary layer found at numerous sites across North America, Greenland, and Western Europe. We have examined multiple hypotheses to account for these observations and find the evidence cannot be explained by any known terrestrial mechanism. It is, however, consistent with the Younger Dryas boundary impact hypothesis postulating a major extraterrestrial impact involving multiple airburst(s) and and/or ground impact(s) at 12.9 ka.


Asunto(s)
Sedimentos Geológicos/química , Geología , Meteoroides , Modelos Teóricos , Carbono/análisis , Carbón Orgánico/análisis , Europa (Continente) , Groenlandia , Historia Antigua , Lagos/química , Magnetismo , México , Microscopía Electrónica de Rastreo , Nanodiamantes/análisis , América del Norte , Polen/fisiología , Hollín/análisis , Espectroscopía de Pérdida de Energía de Electrones , Temperatura , Factores de Tiempo , Difracción de Rayos X
14.
Proc Natl Acad Sci U S A ; 109(35): 14170-5, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22879397

RESUMEN

Mineralization is a ubiquitous process in the animal kingdom and is fundamental to human development and health. Dysfunctional or aberrant mineralization leads to a variety of medical problems, and so an understanding of these processes is essential to their mitigation. Osteoblasts create the nano-composite structure of bone by secreting a collagenous extracellular matrix (ECM) on which apatite crystals subsequently form. However, despite their requisite function in building bone and decades of observations describing intracellular calcium phosphate, the precise role osteoblasts play in mediating bone apatite formation remains largely unknown. To better understand the relationship between intracellular and extracellular mineralization, we combined a sample-preparation method that simultaneously preserved mineral, ions, and ECM with nano-analytical electron microscopy techniques to examine osteoblasts in an in vitro model of bone formation. We identified calcium phosphate both within osteoblast mitochondrial granules and intracellular vesicles that transported material to the ECM. Moreover, we observed calcium-containing vesicles conjoining mitochondria, which also contained calcium, suggesting a storage and transport mechanism. Our observations further highlight the important relationship between intracellular calcium phosphate in osteoblasts and their role in mineralizing the ECM. These observations may have important implications in deciphering both how normal bone forms and in understanding pathological mineralization.


Asunto(s)
Apatitas/metabolismo , Calcificación Fisiológica/fisiología , Fosfatos de Calcio/metabolismo , Osteoblastos/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Apatitas/química , Transporte Biológico/fisiología , Fosfatos de Calcio/química , Cristalización , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/ultraestructura , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestructura , Ratones , Microscopía Electrónica de Transmisión , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Osteoblastos/citología , Osteoblastos/ultraestructura , Cráneo/citología , Espectroscopía de Pérdida de Energía de Electrones
15.
Artículo en Inglés | MEDLINE | ID: mdl-26030689

RESUMEN

Excessive agriculture, transport and mining often lead to the contamination of valuable water resources. Communities using this water for drinking, washing, bathing and the irrigation of crops are continuously being exposed to these heavy metals. The most vulnerable is the developing fetus. Cadmium (Cd) and chrome (Cr) were identified as two of the most prevalent heavy metal water contaminants in South Africa. In this study, chicken embryos at the stage of early organogenesis were exposed to a single dosage of 0.430 µM physiological dosage (PD) and 430 µM (×1000 PD) CdCl2, as well as 0.476 µM (PD) and 746 µM (×1000 PD) K2Cr2O7. At day 14, when all organ systems were completely developed, the embryos were terminated and the effect of these metals on liver tissue and cellular morphology was determined with light- and transmission electron microscopy (TEM). The intracellular localization of these metals was determined using electron energy-loss spectroscopy (EELS). With light microscopy, the PD of both Cd and Cr had no effect on liver tissue or cellular morphology. At ×1000 PD both Cd and Cr caused sinusoid dilation and tissue necrosis. With TEM analysis, Cd exposed hepatocytes presented with irregular chromatin condensation, ruptured cellular membranes and damaged or absent organelles. In contrast Cr caused only slight mitochondrial damage. EELS revealed the bio-accumulation of Cd and Cr along the cristae of the mitochondria and chromatin of the nuclei.


Asunto(s)
Cadmio/toxicidad , Embrión de Pollo/efectos de los fármacos , Cromo/toxicidad , Hígado/efectos de los fármacos , Óvulo/efectos de los fármacos , Óvulo/ultraestructura , Contaminantes Químicos del Agua/toxicidad , Animales , Embrión de Pollo/ultraestructura , Metales Pesados/toxicidad , Microscopía Electrónica de Transmisión , Microscopía de Polarización , Modelos Animales , Sudáfrica , Espectroscopía de Pérdida de Energía de Electrones
16.
J Chem Phys ; 141(7): 074314, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25149793

RESUMEN

We present experimental electron-energy loss spectra (EELS) that were measured at impact energies of 20 and 30 eV and at angles of 90° and 10°, respectively, with energy resolution ∼70 meV. EELS for 250 eV incident electron energy over a range of angles between 3° and 50° have also been measured at a moderate energy resolution (∼0.9 eV). The latter spectra were used to derive differential cross sections and generalised oscillator strengths (GOS) for the dipole-allowed electronic transitions, through normalization to data for elastic electron scattering from benzene. Theoretical calculations were performed using time-dependent density functional theory and single-excitation configuration interaction methods. These calculations were used to assign the experimentally measured spectra. Calculated optical oscillator strengths were also compared to those derived from the GOS data. This provides the first investigation of all singlet and triplet excited electronic states of phenol up to the first ionization potential.


Asunto(s)
Electrones , Modelos Moleculares , Fenol/química , Espectroscopía de Pérdida de Energía de Electrones , Conformación Molecular
17.
Proc Natl Acad Sci U S A ; 108(1): 40-4, 2011 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-21173270

RESUMEN

Microstructural, δ(13)C isotope and C/N ratio investigations were conducted on excavated material from the black Younger Dryas boundary in Lommel, Belgium, aiming for a characterisation of the carbon content and structures. Cubic diamond nanoparticles are found in large numbers. The larger ones with diameters around or above 10 nm often exhibit single or multiple twins. The smaller ones around 5 nm in diameter are mostly defect-free. Also larger flake-like particles, around 100 nm in lateral dimension, with a cubic diamond structure are observed as well as large carbon onion structures. The combination of these characteristics does not yield unique evidence for an exogenic impact related to the investigated layer.


Asunto(s)
Isótopos de Carbono/análisis , Diamante , Sedimentos Geológicos/análisis , Meteoroides , Nanopartículas/ultraestructura , Bélgica , Microscopía Electrónica de Transmisión , Nitrógeno/análisis , Espectroscopía de Pérdida de Energía de Electrones
18.
Microsc Microanal ; 20(3): 807-14, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24685359

RESUMEN

An electron energy-loss spectroscopic (EELS) study using a monochromator transmission electron microscope was conducted for investigating the dielectric response of isolated single-walled carbon nanotubes (SWCNTs) owing to interband transitions characteristic to chiral structures. Individual chiral structures of the SWCNTs were determined by electron diffraction patterns. EELS spectra obtained from isolated SWCNTs showed sharp peaks below π plasmon energy of 5 eV, which were attributed to the characteristic interband transitions of SWCNTs. In addition, unexpected shoulder structures were observed at the higher energy side of each sharp peak. Simulations of EELS spectra by using the continuum dielectric theory showed that an origin of the shoulder structures was because of the surface dipole mode along the circumference direction of the SWCNT. It was noticed that the electron excitation energies obtained by EELS were slightly higher than those of optical studies, which might be because of the inelastic scattering process with the momentum transfers. To interpret the discrepancy between the EELS and optical experiments, it is necessary to conduct more accurate simulation including the first principle calculation for the band structure of SWCNTs.


Asunto(s)
Nanotubos de Carbono/análisis , Espectroscopía de Pérdida de Energía de Electrones/métodos , Microscopía Electrónica de Transmisión
19.
Microsc Microanal ; 20(3): 784-97, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24685384

RESUMEN

We present a theoretical framework for calculating probe-position-dependent electron energy-loss near-edge structure for the scanning transmission electron microscope by combining density functional theory with dynamical scattering theory. We show how simpler approaches to calculating near-edge structure fail to include the fundamental physics needed to understand the evolution of near-edge structure as a function of probe position and investigate the dependence of near-edge structure on probe size. It is within this framework that density functional theory should be presented, in order to ensure that variations of near-edge structure are truly due to local electronic structure and how much from the diffraction and focusing of the electron beam.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Electrónica de Transmisión de Rastreo/métodos , Espectroscopía de Pérdida de Energía de Electrones , Modelos Teóricos , Óxidos/análisis , Estroncio/análisis , Titanio/análisis
20.
Nano Lett ; 13(2): 716-21, 2013 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-23276278

RESUMEN

Quantum dots (QDs) allow for manipulation of the position and energy levels of electrons at sub-10 nm length scales through control of material chemistry, size, and shape. It is known from optical studies that the bandgap of semiconductor QDs increases as their size decreases due to the narrowing of the quantum confinement potential. The mechanism of quantum confinement also indicates that the localized properties within individual QDs should depend on their shape in addition to their size, but direct observations of this effect have proven challenging due to the limited spatial resolution of measurement techniques at this scale and the ability to remove contributions from the surroundings. Here we present experimental evidence of spatial variations in the lowest available electron transition energy within a series of single electrically isolated QDs due to a dome-shaped geometry, measured using electron energy-loss spectroscopy in a (scanning) transmission electron microscope [(S)TEM-EELS]. We observe a consistent increase in the energy onset of electronic excitations from the lateral center of the dot toward the edges, which we attribute purely to shape. This trend is in qualitative agreement with a simple quantum simulation of the local density of states in a dome-shaped QD.


Asunto(s)
Electrones , Puntos Cuánticos , Teoría Cuántica , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Espectroscopía de Pérdida de Energía de Electrones , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA