Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.489
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 172(4): 758-770.e14, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29425492

RESUMEN

The means by which the physicochemical properties of different cellular components together determine bacterial cell shape remain poorly understood. Here, we investigate a programmed cell-shape change during Bacillus subtilis sporulation, when a rod-shaped vegetative cell is transformed to an ovoid spore. Asymmetric cell division generates a bigger mother cell and a smaller, hemispherical forespore. The septum traps the forespore chromosome, which is translocated to the forespore by SpoIIIE. Simultaneously, forespore size increases as it is reshaped into an ovoid. Using genetics, timelapse microscopy, cryo-electron tomography, and mathematical modeling, we demonstrate that forespore growth relies on membrane synthesis and SpoIIIE-mediated chromosome translocation, but not on peptidoglycan or protein synthesis. Our data suggest that the hydrated nucleoid swells and inflates the forespore, displacing ribosomes to the cell periphery, stretching septal peptidoglycan, and reshaping the forespore. Our results illustrate how simple biophysical interactions between core cellular components contribute to cellular morphology.


Asunto(s)
División Celular Asimétrica/fisiología , Bacillus subtilis/fisiología , Cromosomas Bacterianos/metabolismo , Esporas Bacterianas/metabolismo , Translocación Genética , Bacillus subtilis/ultraestructura , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos/genética , Peptidoglicano/biosíntesis , Peptidoglicano/genética , Biosíntesis de Proteínas/fisiología , Esporas Bacterianas/genética , Esporas Bacterianas/ultraestructura
2.
Annu Rev Biochem ; 86: 777-797, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28654321

RESUMEN

Severe changes in the environmental redox potential, and resulting alterations in the oxidation states of intracellular metabolites and enzymes, have historically been considered negative stressors, requiring responses that are strictly defensive. However, recent work in diverse organisms has revealed that more subtle changes in the intracellular redox state can act as signals, eliciting responses with benefits beyond defense and detoxification. Changes in redox state have been shown to influence or trigger chromosome segregation, sporulation, aerotaxis, and social behaviors, including luminescence as well as biofilm establishment and dispersal. Connections between redox state and complex behavior allow bacteria to link developmental choices with metabolic state and coordinate appropriate responses. Promising future directions for this area of study include metabolomic analysis of species- and condition-dependent changes in metabolite oxidation states and elucidation of the mechanisms whereby the redox state influences circadian regulation.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas de la Membrana/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Esporas Bacterianas/metabolismo , Aliivibrio fischeri/genética , Aliivibrio fischeri/crecimiento & desarrollo , Aliivibrio fischeri/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/crecimiento & desarrollo , Bacillus subtilis/metabolismo , Caulobacter crescentus/genética , Caulobacter crescentus/crecimiento & desarrollo , Caulobacter crescentus/metabolismo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Glutatión/metabolismo , Proteínas de la Membrana/genética , Oxidación-Reducción , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/metabolismo , Transducción de Señal , Esporas Bacterianas/genética , Esporas Bacterianas/crecimiento & desarrollo , Streptomyces/genética , Streptomyces/crecimiento & desarrollo , Streptomyces/metabolismo
3.
Genes Dev ; 38(1-2): 1-3, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38316519

RESUMEN

Germination is the process by which spores emerge from dormancy. Although spores can remain dormant for decades, the study of germination is an active field of research. In this issue of Genes & Development, Gao and colleagues (pp. 31-45) address a perplexing question: How can a dormant spore initiate germination in response to environmental cues? Three distinct complexes are involved: GerA, a germinant-gated ion channel; 5AF/FigP, a second ion channel required for amplification; and SpoVA, a channel for dipicolinic acid (DPA). DPA release is followed by rehydration of the spore core, thus allowing the resumption of metabolic activity.


Asunto(s)
Proteínas Bacterianas , Esporas Bacterianas , Esporas Bacterianas/genética , Esporas Bacterianas/metabolismo , Proteínas Bacterianas/metabolismo , Esporas/metabolismo , Canales Iónicos/metabolismo , Bacillus subtilis/metabolismo
4.
Genes Dev ; 38(1-2): 31-45, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38242633

RESUMEN

Bacterial spores can remain dormant for decades yet rapidly germinate and resume growth in response to nutrients. GerA family receptors that sense and respond to these signals have recently been shown to oligomerize into nutrient-gated ion channels. Ion release initiates exit from dormancy. Here, we report that a distinct ion channel, composed of SpoVAF (5AF) and its newly discovered partner protein, YqhR (FigP), amplifies the response. At high germinant concentrations, 5AF/FigP accelerate germination; at low concentrations, this complex becomes critical for exit from dormancy. 5AF is homologous to the channel-forming subunit of GerA family receptors and is predicted to oligomerize around a central pore. 5AF mutations predicted to widen the channel cause constitutive germination during spore formation and membrane depolarization in vegetative cells. Narrow-channel mutants are impaired in germination. A screen for suppressors of a constitutively germinating 5AF mutant identified FigP as an essential cofactor of 5AF activity. We demonstrate that 5AF and FigP interact and colocalize with GerA family receptors in spores. Finally, we show that 5AF/FigP accelerate germination in B. subtilis spores that have nutrient receptors from another species. Our data support a model in which nutrient-triggered ion release by GerA family receptors activates 5AF/FigP ion release, amplifying the response to germinant signals.


Asunto(s)
Bacillus subtilis , Proteínas de la Membrana , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de la Membrana/genética , Esporas Bacterianas/genética , Esporas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Canales Iónicos/genética , Canales Iónicos/metabolismo
5.
Mol Cell ; 83(22): 4158-4173.e7, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37949068

RESUMEN

Sporulating bacteria can retreat into long-lasting dormant spores that preserve the capacity to germinate when propitious. However, how the revival transcriptional program is memorized for years remains elusive. We revealed that in dormant spores, core RNA polymerase (RNAP) resides in a central chromosomal domain, where it remains bound to a subset of intergenic promoter regions. These regions regulate genes encoding for most essential cellular functions, such as rRNAs and tRNAs. Upon awakening, RNAP recruits key transcriptional components, including sigma factor, and progresses to express the adjacent downstream genes. Mutants devoid of spore DNA-compacting proteins exhibit scattered RNAP localization and subsequently disordered firing of gene expression during germination. Accordingly, we propose that the spore chromosome is structured to preserve the transcriptional program by halting RNAP, prepared to execute transcription at the auspicious time. Such a mechanism may sustain long-term transcriptional programs in diverse organisms displaying a quiescent life form.


Asunto(s)
Bacillus subtilis , Esporas Bacterianas , Esporas Bacterianas/genética , Esporas Bacterianas/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Factor sigma/genética , Factor sigma/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo
6.
Cell ; 158(5): 1136-1147, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25171413

RESUMEN

The cyclic dinucleotide c-di-GMP is a signaling molecule with diverse functions in cellular physiology. Here, we report that c-di-GMP can assemble into a tetramer that mediates the effective dimerization of a transcription factor, BldD, which controls the progression of multicellular differentiation in sporulating actinomycete bacteria. BldD represses expression of sporulation genes during vegetative growth in a manner that depends on c-di-GMP-mediated dimerization. Structural and biochemical analyses show that tetrameric c-di-GMP links two subunits of BldD through their C-terminal domains, which are otherwise separated by ~10 Å and thus cannot effect dimerization directly. Binding of the c-di-GMP tetramer by BldD is selective and requires a bipartite RXD-X8-RXXD signature. The findings indicate a unique mechanism of protein dimerization and the ability of nucleotide signaling molecules to assume alternative oligomeric states to effect different functions.


Asunto(s)
Proteínas Bacterianas/metabolismo , GMP Cíclico/análogos & derivados , Streptomyces/crecimiento & desarrollo , Streptomyces/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Cristalografía por Rayos X , GMP Cíclico/metabolismo , Dimerización , Modelos Moleculares , Datos de Secuencia Molecular , Alineación de Secuencia , Esporas Bacterianas/metabolismo , Streptomyces/citología , Factores de Transcripción/química
7.
Nature ; 619(7970): 500-505, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37286609

RESUMEN

Hygroscopic biological matter in plants, fungi and bacteria make up a large fraction of Earth's biomass1. Although metabolically inert, these water-responsive materials exchange water with the environment and actuate movement2-5 and have inspired technological uses6,7. Despite the variety in chemical composition, hygroscopic biological materials across multiple kingdoms of life exhibit similar mechanical behaviours including changes in size and stiffness with relative humidity8-13. Here we report atomic force microscopy measurements on the hygroscopic spores14,15 of a common soil bacterium and develop a theory that captures the observed equilibrium, non-equilibrium and water-responsive mechanical behaviours, finding that these are controlled by the hydration force16-18. Our theory based on the hydration force explains an extreme slowdown of water transport and successfully predicts a strong nonlinear elasticity and a transition in mechanical properties that differs from glassy and poroelastic behaviours. These results indicate that water not only endows biological matter with fluidity but also can-through the hydration force-control macroscopic properties and give rise to a 'hydration solid' with unusual properties. A large fraction of biological matter could belong to this distinct class of solid matter.


Asunto(s)
Esporas Bacterianas , Agua , Humectabilidad , Transporte Biológico , Hongos/química , Hongos/metabolismo , Microscopía de Fuerza Atómica , Agua/metabolismo , Plantas/química , Plantas/metabolismo , Bacterias/química , Bacterias/citología , Bacterias/metabolismo , Esporas Bacterianas/química , Esporas Bacterianas/metabolismo , Humedad , Elasticidad
8.
Mol Cell ; 77(3): 586-599.e6, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31810759

RESUMEN

Streptomyces are our primary source of antibiotics, produced concomitantly with the transition from vegetative growth to sporulation in a complex developmental life cycle. We previously showed that the signaling molecule c-di-GMP binds BldD, a master repressor, to control initiation of development. Here we demonstrate that c-di-GMP also intervenes later in development to control differentiation of the reproductive hyphae into spores by arming a novel anti-σ (RsiG) to bind and sequester a sporulation-specific σ factor (σWhiG). We present the structure of the RsiG-(c-di-GMP)2-σWhiG complex, revealing an unusual, partially intercalated c-di-GMP dimer bound at the RsiG-σWhiG interface. RsiG binds c-di-GMP in the absence of σWhiG, employing a novel E(X)3S(X)2R(X)3Q(X)3D motif repeated on each helix of a coiled coil. Further studies demonstrate that c-di-GMP is essential for RsiG to inhibit σWhiG. These findings reveal a newly described control mechanism for σ-anti-σ complex formation and establish c-di-GMP as the central integrator of Streptomyces development.


Asunto(s)
GMP Cíclico/análogos & derivados , Factor sigma/metabolismo , Streptomyces/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , GMP Cíclico/metabolismo , GMP Cíclico/fisiología , Proteínas de Unión al ADN/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Dominios Proteicos , ARN Bacteriano/metabolismo , Esporas Bacterianas/metabolismo , Streptomyces/genética
9.
EMBO J ; 42(12): e112858, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37140366

RESUMEN

The obligate anaerobic, enteric pathogen Clostridioides difficile persists in the intestinal tract by forming antibiotic-resistant endospores that contribute to relapsing and recurrent infections. Despite the importance of sporulation for C. difficile pathogenesis, environmental cues and molecular mechanisms that regulate sporulation initiation remain ill-defined. Here, by using RIL-seq to globally capture the Hfq-dependent RNA-RNA interactome, we discovered a network of small RNAs that bind to mRNAs encoding sporulation-related genes. We show that two of these small RNAs, SpoX and SpoY, regulate translation of the master regulator of sporulation, Spo0A, in an opposing manner, which ultimately leads to altered sporulation rates. Infection of antibiotic-treated mice with SpoX and SpoY deletion mutants revealed a global effect on gut colonization and intestinal sporulation. Our work uncovers an elaborate RNA-RNA interactome controlling the physiology and virulence of C. difficile and identifies a complex post-transcriptional layer in the regulation of spore formation in this important human pathogen.


Asunto(s)
Clostridioides difficile , Clostridioides , Animales , Humanos , Ratones , Clostridioides/genética , Clostridioides/metabolismo , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Antibacterianos , ARN/metabolismo , Esporas Bacterianas/genética , Esporas Bacterianas/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
10.
Proc Natl Acad Sci U S A ; 121(13): e2400584121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38502707

RESUMEN

When faced with starvation, the bacterium Bacillus subtilis transforms itself into a dormant cell type called a "spore". Sporulation initiates with an asymmetric division event, which requires the relocation of the core divisome components FtsA and FtsZ, after which the sigma factor σF is exclusively activated in the smaller daughter cell. Compartment-specific activation of σF requires the SpoIIE phosphatase, which displays a biased localization on one side of the asymmetric division septum and associates with the structural protein DivIVA, but the mechanism by which this preferential localization is achieved is unclear. Here, we isolated a variant of DivIVA that indiscriminately activates σF in both daughter cells due to promiscuous localization of SpoIIE, which was corrected by overproduction of FtsA and FtsZ. We propose that the core components of the redeployed cell division machinery drive the asymmetric localization of DivIVA and SpoIIE to trigger the initiation of the sporulation program.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Bacillus subtilis/metabolismo , Activación Transcripcional , Proteínas Bacterianas/metabolismo , Esporas Bacterianas/genética , Esporas Bacterianas/metabolismo , División Celular/genética , Factor sigma/genética , Factor sigma/metabolismo
11.
Proc Natl Acad Sci U S A ; 121(43): e2414737121, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39405354

RESUMEN

Bacillus subtilis spores are produced inside the cytosol of a mother cell. Spore surface assembly requires the SpoVK protein in the mother cell, but its function is unknown. Here, we report that SpoVK is a sporulation-specific, forespore-localized putative chaperone from a distinct higher-order clade of AAA+ ATPases that promotes the peptidoglycan glycosyltransferase activity of MurG during sporulation, even though MurG does not normally require activation during vegetative growth. MurG redeploys to the forespore surface during sporulation, where we show that the local pH is reduced and propose that this change in cytosolic nanoenvironment abrogates MurG function. Further, we show that SpoVK participates in a developmental checkpoint in which improper spore surface assembly mis-localizes SpoVK, which leads to sporulation arrest. The AAA+ ATPase clade containing SpoVK includes specialized chaperones involved in secretion, cell envelope biosynthesis, and carbohydrate metabolism, suggesting that such fine-tuning might be a widespread feature of different subcellular nanoenvironments.


Asunto(s)
Adenosina Trifosfatasas , Bacillus subtilis , Proteínas Bacterianas , Esporas Bacterianas , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Bacillus subtilis/metabolismo , Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Peptidoglicano Glicosiltransferasa/metabolismo , Peptidoglicano Glicosiltransferasa/genética , Esporas Bacterianas/metabolismo
12.
PLoS Pathog ; 20(8): e1012507, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39213448

RESUMEN

Clostridioides difficile is a pathogen whose transmission relies on the formation of dormant endospores. Spores are highly resilient forms of bacteria that resist environmental and chemical insults. In recent work, we found that C. difficile SspA and SspB, two small acid-soluble proteins (SASPs), protect spores from UV damage and, interestingly, are necessary for the formation of mature spores. Here, we build upon this finding and show that C. difficile sspA and sspB are required for the formation of the spore cortex layer. Moreover, using an EMS mutagenesis selection strategy, we identified mutations that suppressed the defect in sporulation of C. difficile SASP mutants. Many of these strains contained mutations in CDR20291_0714 (spoIVB2) revealing a connection between the SpoIVB2 protease and the SASPs in the sporulation pathway. This work builds upon the hypothesis that the small acid-soluble proteins can regulate gene expression.


Asunto(s)
Proteínas Bacterianas , Clostridioides difficile , Regulación Bacteriana de la Expresión Génica , Esporas Bacterianas , Esporas Bacterianas/metabolismo , Esporas Bacterianas/genética , Clostridioides difficile/metabolismo , Clostridioides difficile/genética , Clostridioides difficile/fisiología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Mutación
13.
PLoS Biol ; 21(4): e3002042, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37079504

RESUMEN

The biophysical properties of the cytoplasm are major determinants of key cellular processes and adaptation. Many yeasts produce dormant spores that can withstand extreme conditions. We show that spores of Saccharomyces cerevisiae exhibit extraordinary biophysical properties, including a highly viscous and acidic cytosol. These conditions alter the solubility of more than 100 proteins such as metabolic enzymes that become more soluble as spores transit to active cell proliferation upon nutrient repletion. A key regulator of this transition is the heat shock protein, Hsp42, which shows transient solubilization and phosphorylation, and is essential for the transformation of the cytoplasm during germination. Germinating spores therefore return to growth through the dissolution of protein assemblies, orchestrated in part by Hsp42 activity. The modulation of spores' molecular properties are likely key adaptive features of their exceptional survival capacities.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Proteoma/metabolismo , Solubilidad , Saccharomycetales/metabolismo , Esporas Fúngicas , Citoplasma/metabolismo , Saccharomyces cerevisiae/metabolismo , Esporas Bacterianas/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Nucleic Acids Res ; 52(12): 7112-7128, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38783097

RESUMEN

Streptomyces are soil bacteria with complex life cycle. During sporulation Streptomyces linear chromosomes become highly compacted so that the genetic material fits within limited spore volume. The key players in this process are nucleoid-associated proteins (NAPs). Among them, HU (heat unstable) proteins are the most abundant NAPs in the cell and the most conserved in bacteria. HupS, one of the two HU homologues encoded by the Streptomyces genome, is the best-studied spore-associated NAP. In contrast to other HU homologues, HupS contains a long, C-terminal domain that is extremely rich in lysine repeats (LR domain) similar to eukaryotic histone H2B and mycobacterial HupB protein. Here, we have investigated, whether lysine residues in HupS are posttranslationally modified by reversible lysine acetylation. We have confirmed that Streptomyces venezuelae HupS is acetylated in vivo. We showed that HupS binding to DNA in vitro is controlled by the acetylation. Moreover, we identified that CobB1, one of two Sir2 homologues in Streptomyces, controls HupS acetylation levels in vivo. We demonstrate that the elimination of CobB1 increases HupS mobility, reduces chromosome compaction in spores, and affects spores maturation. Thus, our studies indicate that HupS acetylation affects its function by diminishing DNA binding and disturbing chromosome organization.


Asunto(s)
Proteínas Bacterianas , Esporas Bacterianas , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Esporas Bacterianas/genética , Esporas Bacterianas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Acetilación , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , ADN Bacteriano/metabolismo , ADN Bacteriano/genética , Unión Proteica , Lisina/metabolismo
15.
Proc Natl Acad Sci U S A ; 120(20): e2304110120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155891

RESUMEN

Clostridioides difficile infection (CDI) is the most lethal of the five CDC urgent public health treats, resulting in 12,800 annual deaths in the United States alone [Antibiotic Resistance Threats in the United States, 2019 (2019), www.cdc.gov/DrugResistance/Biggest-Threats.html]. The high recurrence rate and the inability of antibiotics to treat such infections mandate discovery of new therapeutics. A major challenge with CDI is the production of spores, leading to multiple recurrences of infection in 25% of patients [C. P. Kelly, J. T. LaMont, N. Engl. J. Med. 359, 1932-1940 (2008)], with potentially lethal consequence. Herein, we describe the discovery of an oxadiazole as a bactericidal anti-C. difficile agent that inhibits both cell-wall peptidoglycan biosynthesis and spore germination. We document that the oxadiazole binds to the lytic transglycosylase SleC and the pseudoprotease CspC for prevention of spore germination. SleC degrades the cortex peptidoglycan, a critical step in the initiation of spore germination. CspC senses germinants and cogerminants. Binding to SleC is with higher affinity than that to CspC. Prevention of spore germination breaks the nefarious cycles of CDI recurrence in the face of the antibiotic challenge, which is a primary cause of therapeutic failure. The oxadiazole exhibits efficacy in a mouse model of recurrent CDI and holds promise in clinical treatment of CDI.


Asunto(s)
Clostridioides difficile , Clostridioides , Animales , Ratones , Clostridioides/metabolismo , Clostridioides difficile/metabolismo , Peptidoglicano/metabolismo , Esporas Bacterianas/metabolismo , Proteínas Bacterianas/metabolismo
16.
PLoS Genet ; 19(10): e1010841, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37844084

RESUMEN

The ability to form a dormant spore is essential for the survival of the anaerobic pathogen, Clostridioides difficile, outside of the mammalian gastrointestinal tract. The initiation of sporulation is governed by the master regulator of sporulation, Spo0A, which is activated by phosphorylation. Multiple sporulation factors control Spo0A phosphorylation; however, this regulatory pathway is not well defined in C. difficile. We discovered that RgaS and RgaR, a conserved orphan histidine kinase and orphan response regulator, function together as a cognate two-component regulatory system to directly activate transcription of several genes. One of these targets, agrB1D1, encodes gene products that synthesize and export a small quorum-sensing peptide, AgrD1, which positively influences expression of early sporulation genes. Another target, a small regulatory RNA now known as SpoZ, impacts later stages of sporulation through a small hypothetical protein and an additional, unknown regulatory mechanism(s). Unlike Agr systems in many organisms, AgrD1 does not activate the RgaS-RgaR two-component system, and thus, is not responsible for autoregulating its own production. Altogether, we demonstrate that C. difficile utilizes a conserved two-component system that is uncoupled from quorum-sensing to promote sporulation through two distinct regulatory pathways.


Asunto(s)
Clostridioides difficile , Animales , Clostridioides difficile/fisiología , Clostridioides/metabolismo , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Fosforilación , Percepción de Quorum/genética , Esporas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Mamíferos/metabolismo
17.
J Biol Chem ; 300(6): 107339, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705388

RESUMEN

During sporulation, Bacillus subtilis forms an asymmetric septum, dividing the cell into two compartments, a mother cell and a forespore. The site of asymmetric septation is linked to the membrane where FtsZ and SpoIIE initiate the formation of the Z-ring and the E-ring, respectively. These rings then serve as a scaffold for the other cell division and peptidoglycan synthesizing proteins needed to build the septum. However, despite decades of research, not enough is known about how the asymmetric septation site is determined. Here, we identified and characterized the interaction between SpoIIE and RefZ. We show that these two proteins transiently colocalize during the early stages of asymmetric septum formation when RefZ localizes primarily from the mother cell side of the septum. We propose that these proteins and their interplay with the spatial organization of the chromosome play a role in controlling asymmetric septum positioning.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Esporas Bacterianas , Bacillus subtilis/metabolismo , Bacillus subtilis/fisiología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Esporas Bacterianas/metabolismo , División Celular , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética
18.
Mol Microbiol ; 122(4): 534-548, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-39258427

RESUMEN

YabG is a sporulation-specific protease that is conserved among sporulating bacteria. Clostridioides difficile YabG processes the cortex destined proteins preproSleC into proSleC and CspBA to CspB and CspA. YabG also affects synthesis of spore coat/exosporium proteins CotA and CdeM. In prior work that identified CspA as the co-germinant receptor, mutations in yabG were found which altered the co-germinants required to initiate spore germination. To understand how these mutations in the yabG locus contribute to C. difficile spore germination, we introduced these mutations into an isogenic background. Spores derived from C. difficile yabGC207A (a catalytically inactive allele), C. difficile yabGA46D, C. difficile yabGG37E, and C. difficile yabGP153L strains germinated in response to taurocholic acid alone. Recombinantly expressed and purified preproSleC incubated with E. coli lysate expressing wild type YabG resulted in the removal of the presequence from preproSleC. Interestingly, only YabGA46D showed any activity toward purified preproSleC. Mutation of the YabG processing site in preproSleC (R119A) led to YabG shifting its processing to R115 or R112. Finally, changes in yabG expression under the mutant promoters were analyzed using a SNAP-tag and revealed expression differences at early and late stages of sporulation. Overall, our results support and expand upon the hypothesis that YabG is important for germination and spore assembly and, upon mutation of the processing site, can shift where it cleaves substrates.


Asunto(s)
Proteínas Bacterianas , Clostridioides difficile , Mutación , Esporas Bacterianas , Clostridioides difficile/genética , Clostridioides difficile/fisiología , Clostridioides difficile/crecimiento & desarrollo , Clostridioides difficile/metabolismo , Esporas Bacterianas/genética , Esporas Bacterianas/crecimiento & desarrollo , Esporas Bacterianas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Péptido Hidrolasas/metabolismo , Péptido Hidrolasas/genética , Proteínas Portadoras
19.
Mol Microbiol ; 121(5): 1002-1020, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38525557

RESUMEN

Upon starvation, rod-shaped Myxococcus xanthus bacteria form mounds and then differentiate into round, stress-resistant spores. Little is known about the regulation of late-acting operons important for spore formation. C-signaling has been proposed to activate FruA, which binds DNA cooperatively with MrpC to stimulate transcription of developmental genes. We report that this model can explain regulation of the fadIJ operon involved in spore metabolism, but not that of the spore coat biogenesis operons exoA-I, exoL-P, and nfsA-H. Rather, a mutation in fruA increased the transcript levels from these operons early in development, suggesting negative regulation by FruA, and a mutation in mrpC affected transcript levels from each operon differently. FruA bound to all four promoter regions in vitro, but strikingly each promoter region was unique in terms of whether or not MrpC and/or the DNA-binding domain of Nla6 bound, and in terms of cooperative binding. Furthermore, the DevI component of a CRISPR-Cas system is a negative regulator of all four operons, based on transcript measurements. Our results demonstrate complex regulation of sporulation genes by three transcription factors and a CRISPR-Cas component, which we propose produces spores suited to withstand starvation and environmental insults.


Asunto(s)
Proteínas Bacterianas , Sistemas CRISPR-Cas , Regulación Bacteriana de la Expresión Génica , Myxococcus xanthus , Operón , Regiones Promotoras Genéticas , Esporas Bacterianas , Factores de Transcripción , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Myxococcus xanthus/crecimiento & desarrollo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Operón/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Esporas Bacterianas/genética , Esporas Bacterianas/metabolismo , Esporas Bacterianas/crecimiento & desarrollo , Regiones Promotoras Genéticas/genética , Mutación , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética
20.
Mol Microbiol ; 122(2): 213-229, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38922761

RESUMEN

In the model organism Bacillus subtilis, a signaling protease produced in the forespore, SpoIVB, is essential for the activation of the sigma factor σK, which is produced in the mother cell as an inactive pro-protein, pro-σK. SpoIVB has a second function essential to sporulation, most likely during cortex synthesis. The cortex is composed of peptidoglycan (PG) and is essential for the spore's heat resistance and dormancy. Surprisingly, the genome of the intestinal pathogen Clostridioides difficile, in which σK is produced without a pro-sequence, encodes two SpoIVB paralogs, SpoIVB1 and SpoIVB2. Here, we show that spoIVB1 is dispensable for sporulation, while a spoIVB2 in-frame deletion mutant fails to produce heat-resistant spores. The spoIVB2 mutant enters sporulation, undergoes asymmetric division, and completes engulfment of the forespore by the mother cell but fails to synthesize the spore cortex. We show that SpoIIP, a PG hydrolase and part of the engulfasome, the machinery essential for engulfment, is cleaved by SpoIVB2 into an inactive form. Within the engulfasome, the SpoIIP amidase activity generates the substrates for the SpoIID lytic transglycosylase. Thus, following engulfment completion, the cleavage and inactivation of SpoIIP by SpoIVB2 curtails the engulfasome hydrolytic activity, at a time when synthesis of the spore cortex peptidoglycan begins. SpoIVB2 is also required for normal late gene expression in the forespore by a currently unknown mechanism. Together, these observations suggest a role for SpoIVB2 in coordinating late morphological and gene expression events between the forespore and the mother cell.


Asunto(s)
Proteínas Bacterianas , Clostridioides difficile , N-Acetil Muramoil-L-Alanina Amidasa , Peptidoglicano , Esporas Bacterianas , Esporas Bacterianas/metabolismo , Esporas Bacterianas/genética , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Clostridioides difficile/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/genética , Peptidoglicano/metabolismo , Regulación Bacteriana de la Expresión Génica , Factor sigma/metabolismo , Factor sigma/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bacillus subtilis/enzimología , Péptido Hidrolasas/metabolismo , Péptido Hidrolasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA