Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Curr Microbiol ; 81(5): 122, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530471

RESUMEN

The chromosome structure of different bacteria has its unique organization pattern, which plays an important role in maintaining the spatial location relationship between genes and regulating gene expression. Conversely, transcription also plays a global role in regulating the three-dimensional structure of bacterial chromosomes. Therefore, we combine RNA-Seq and Hi-C technology to explore the relationship between chromosome structure changes and transcriptional regulation in E. coli at different growth stages. Transcriptome analysis indicates that E. coli synthesizes many ribosomes and peptidoglycan in the exponential phase. In contrast, E. coli undergoes more transcriptional regulation and catabolism during the stationary phase, reflecting its adaptability to changes in environmental conditions during growth. Analyzing the Hi-C data shows that E. coli has a higher frequency of global chromosomal interaction in the exponential phase and more defined chromosomal interaction domains (CIDs). Still, the long-distance interactions at the replication termination region are lower than in the stationary phase. Combining transcriptome and Hi-C data analysis, we conclude that highly expressed genes are more likely to be distributed in CID boundary regions during the exponential phase. At the same time, most high-expression genes distributed in the CID boundary regions are ribosomal gene clusters, forming clearer CID boundaries during the exponential phase. The three-dimensional structure of chromosome and expression pattern is altered during the growth of E. coli from the exponential phase to the stationary phase, clarifying the synergy between the two regulatory aspects.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Transcriptoma , Cromosomas Bacterianos/metabolismo , Estructuras Cromosómicas/metabolismo , Regulación Bacteriana de la Expresión Génica
2.
PLoS Genet ; 16(3): e1008673, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32203508

RESUMEN

Membraneless pericentromeric heterochromatin (PCH) domains play vital roles in chromosome dynamics and genome stability. However, our current understanding of 3D genome organization does not include PCH domains because of technical challenges associated with repetitive sequences enriched in PCH genomic regions. We investigated the 3D architecture of Drosophila melanogaster PCH domains and their spatial associations with the euchromatic genome by developing a novel analysis method that incorporates genome-wide Hi-C reads originating from PCH DNA. Combined with cytogenetic analysis, we reveal a hierarchical organization of the PCH domains into distinct "territories." Strikingly, H3K9me2-enriched regions embedded in the euchromatic genome show prevalent 3D interactions with the PCH domain. These spatial contacts require H3K9me2 enrichment, are likely mediated by liquid-liquid phase separation, and may influence organismal fitness. Our findings have important implications for how PCH architecture influences the function and evolution of both repetitive heterochromatin and the gene-rich euchromatin.


Asunto(s)
Centrosoma/metabolismo , Eucromatina/genética , Heterocromatina/metabolismo , Animales , Estructuras Cromosómicas/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Eucromatina/metabolismo , Genoma/genética , Heterocromatina/genética , Heterocromatina/ultraestructura , Histonas/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética
3.
Trends Genet ; 35(8): 579-588, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31213386

RESUMEN

Nuclear pore complex (NPC)-mediated nucleocytoplasmic trafficking is essential for key cellular processes, such as cell growth, cell differentiation, and gene regulation. The NPC has also been viewed as a nuclear architectural platform that impacts genome function and gene expression by mediating spatial and temporal coordination between transcription factors, chromatin regulatory proteins, and transcription machinery. Recent findings have uncovered differential and cell type-specific expression and distinct chromatin-binding patterns of individual NPC components known as nucleoporins (Nups). Here, we examine recent studies that investigate the functional roles of NPCs and Nups in transcription, chromatin organization, and epigenetic gene regulation in the context of development and disease.


Asunto(s)
Cromatina/metabolismo , Regulación de la Expresión Génica/genética , Genoma/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/metabolismo , Animales , Cromatina/genética , Estructuras Cromosómicas/genética , Estructuras Cromosómicas/metabolismo , Drosophila/genética , Epigénesis Genética , Humanos , Ratones , Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/genética , Conformación de Ácido Nucleico , Transcripción Genética , Levaduras/genética
4.
PLoS Genet ; 14(10): e1007776, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30379819

RESUMEN

Correct segregation of meiotic chromosomes depends on DNA crossovers (COs) between homologs that culminate into visible physical linkages called chiasmata. COs emerge from a larger population of joint molecules (JM), the remainder of which are repaired as noncrossovers (NCOs) to restore genomic integrity. We present evidence that the RNF212-like C. elegans protein ZHP-4 cooperates with its paralog ZHP-3 to enforce crossover formation at distinct steps during meiotic prophase: in the formation of early JMs and in transition of late CO intermediates into chiasmata. ZHP-3/4 localize to the synaptonemal complex (SC) co-dependently followed by their restriction to sites of designated COs. RING domain mutants revealed a critical function for ZHP-4 in localization of both proteins to the SC and for CO formation. While recombination initiates in zhp-4 mutants, they fail to appropriately acquire pro-crossover factors at abundant early JMs, indicating a function for ZHP-4 in an early step of the CO/NCO decision. At late pachytene stages, hypomorphic mutants exhibit significant levels of crossing over that are accompanied by defects in localization of pro-crossover RMH-1, MSH-5 and COSA-1 to designated crossover sites, and by the appearance of bivalents defective in chromosome remodelling required for segregation. These results reveal a ZHP-4 function at designated CO sites where it is required to stabilize pro-crossover factors at the late crossover intermediate, which in turn are required for the transition to a chiasma that is required for bivalent remodelling. Our study reveals an essential requirement for ZHP-4 in negotiating both the formation of COs and their ability to transition to structures capable of directing accurate chromosome segregation. We propose that ZHP-4 acts in concert with ZHP-3 to propel interhomolog JMs along the crossover pathway by stabilizing pro-CO factors that associate with early and late intermediates, thereby protecting designated crossovers as they transition into the chiasmata required for disjunction.


Asunto(s)
Segregación Cromosómica/genética , Intercambio Genético/genética , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Cromosómicas no Histona/genética , Estructuras Cromosómicas/metabolismo , Intercambio Genético/fisiología , Proteínas de Unión al ADN/genética , Meiosis , Complejo Sinaptonémico/metabolismo
5.
PLoS Genet ; 13(7): e1006886, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28704368

RESUMEN

Koolen-de Vries syndrome (KdVS) is a multi-system disorder characterized by intellectual disability, friendly behavior, and congenital malformations. The syndrome is caused either by microdeletions in the 17q21.31 chromosomal region or by variants in the KANSL1 gene. The reciprocal 17q21.31 microduplication syndrome is associated with psychomotor delay, and reduced social interaction. To investigate the pathophysiology of 17q21.31 microdeletion and microduplication syndromes, we generated three mouse models: 1) the deletion (Del/+); or 2) the reciprocal duplication (Dup/+) of the 17q21.31 syntenic region; and 3) a heterozygous Kansl1 (Kans1+/-) model. We found altered weight, general activity, social behaviors, object recognition, and fear conditioning memory associated with craniofacial and brain structural changes observed in both Del/+ and Dup/+ animals. By investigating hippocampus function, we showed synaptic transmission defects in Del/+ and Dup/+ mice. Mutant mice with a heterozygous loss-of-function mutation in Kansl1 displayed similar behavioral and anatomical phenotypes compared to Del/+ mice with the exception of sociability phenotypes. Genes controlling chromatin organization, synaptic transmission and neurogenesis were upregulated in the hippocampus of Del/+ and Kansl1+/- animals. Our results demonstrate the implication of KANSL1 in the manifestation of KdVS phenotypes and extend substantially our knowledge about biological processes affected by these mutations. Clear differences in social behavior and gene expression profiles between Del/+ and Kansl1+/- mice suggested potential roles of other genes affected by the 17q21.31 deletion. Together, these novel mouse models provide new genetic tools valuable for the development of therapeutic approaches.


Asunto(s)
Anomalías Múltiples/genética , Duplicación Cromosómica/genética , Cognición , Discapacidad Intelectual/genética , Proteínas Nucleares/genética , Animales , Peso Corporal , Encéfalo/metabolismo , Encéfalo/ultraestructura , Deleción Cromosómica , Estructuras Cromosómicas/genética , Estructuras Cromosómicas/metabolismo , Cromosomas Humanos Par 17/genética , Variaciones en el Número de Copia de ADN , Modelos Animales de Enfermedad , Epigénesis Genética , Femenino , Eliminación de Gen , Reordenamiento Génico , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal/genética , Proteínas Nucleares/metabolismo , Transmisión Sináptica/genética , Regulación hacia Arriba
6.
BMC Genomics ; 19(1): 623, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-30134926

RESUMEN

BACKGROUND: Genomic regions repressed for DNA replication, resulting in either delayed replication in S phase or underreplication in polyploid cells, are thought to be controlled by inhibition of replication origin activation. Studies in Drosophila polytene cells, however, raised the possibility that impeding replication fork progression also plays a major role. RESULTS: We exploited genomic regions underreplicated (URs) with tissue specificity in Drosophila polytene cells to analyze mechanisms of replication repression. By localizing the Origin Recognition Complex (ORC) in the genome of the larval fat body and comparing this to ORC binding in the salivary gland, we found that sites of ORC binding show extensive tissue specificity. In contrast, there are common domains nearly devoid of ORC in the salivary gland and fat body that also have reduced density of ORC binding sites in diploid cells. Strikingly, domains lacking ORC can still be replicated in some polytene tissues, showing absence of ORC and origins is insufficient to repress replication. Analysis of the width and location of the URs with respect to ORC position indicates that whether or not a genomic region lacking ORC is replicated is controlled by whether replication forks formed outside the region are inhibited. CONCLUSIONS: These studies demonstrate that inhibition of replication fork progression can block replication across genomic regions that constitutively lack ORC. Replication fork progression can be inhibited in both tissue-specific and genome region-specific ways. Consequently, when evaluating sources of genome instability it is important to consider altered control of replication forks in response to differentiation.


Asunto(s)
Diferenciación Celular/genética , Estructuras Cromosómicas , Replicación del ADN/genética , Organogénesis/genética , Complejo de Reconocimiento del Origen/metabolismo , Origen de Réplica/fisiología , Animales , Sitios de Unión , Estructuras Cromosómicas/química , Estructuras Cromosómicas/genética , Estructuras Cromosómicas/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Embrión no Mamífero , Larva , Especificidad de Órganos/genética
7.
Chromosoma ; 124(4): 491-501, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25845520

RESUMEN

Mutations in the MCPH1 gene result in primary microcephaly in combination with a unique cellular phenotype of defective chromosome condensation. MCPH1 patient cells display premature chromosome condensation in G2 phase of the cell cycle and delayed decondensation in early G1 phase, observable as an increased proportion of cells with prophase-like appearance. MCPH1 deficiency thus appears to uncouple the chromosome cycle from the coordinated series of events that take place during mitosis such as some phases of the centrosome cycle and nuclear envelope breakdown. Here, we provide a further characterization of the effects of MCPH1 loss-of-function on chromosome morphology. In comparison to healthy controls, chromosomes of MCPH1 patients are shorter and display a pronounced coiling of their central chromatid axes. In addition, a substantial fraction of metaphase chromosomes shows apparently unresolved chromatids with twisted appearance. The patient chromosomes also showed signs of defective centromeric cohesion, which become more apparent and pronounced after harsh hypotonic conditions. Taking together, the observed alterations indicate additional so far unknown functions of MCPH1 during chromosome shaping and dynamics.


Asunto(s)
Estructuras Cromosómicas/metabolismo , Microcefalia/genética , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas de Ciclo Celular , Ensamble y Desensamble de Cromatina/genética , Estructuras Cromosómicas/genética , Proteínas del Citoesqueleto , Humanos , Microcefalia/metabolismo , Mitosis
8.
PLoS Genet ; 9(10): e1003879, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24204294

RESUMEN

Retrotransposon sequences are positioned throughout the genome of almost every eukaryote that has been sequenced. As mobilization of these elements can have detrimental effects on the transcriptional regulation and stability of an organism's genome, most organisms have evolved mechanisms to repress their movement. Here, we identify a novel role for the Drosophila melanogaster Condensin II subunit, dCAP-D3 in preventing the mobilization of retrotransposons located in somatic cell euchromatin. dCAP-D3 regulates transcription of euchromatic gene clusters which contain or are proximal to retrotransposon sequence. ChIP experiments demonstrate that dCAP-D3 binds to these loci and is important for maintaining a repressed chromatin structure within the boundaries of the retrotransposon and for repressing retrotransposon transcription. We show that dCAP-D3 prevents accumulation of double stranded DNA breaks within retrotransposon sequence, and decreased dCAP-D3 levels leads to a precise loss of retrotransposon sequence at some dCAP-D3 regulated gene clusters and a gain of sequence elsewhere in the genome. Homologous chromosomes exhibit high levels of pairing in Drosophila somatic cells, and our FISH analyses demonstrate that retrotransposon-containing euchromatic loci are regions which are actually less paired than euchromatic regions devoid of retrotransposon sequences. Decreased dCAP-D3 expression increases pairing of homologous retrotransposon-containing loci in tissue culture cells. We propose that the combined effects of dCAP-D3 deficiency on double strand break levels, chromatin structure, transcription and pairing at retrotransposon-containing loci may lead to 1) higher levels of homologous recombination between repeats flanking retrotransposons in dCAP-D3 deficient cells and 2) increased retrotransposition. These findings identify a novel role for the anti-pairing activities of dCAP-D3/Condensin II and uncover a new way in which dCAP-D3/Condensin II influences local chromatin structure to help maintain genome stability.


Asunto(s)
Adenosina Trifosfatasas/genética , Cromosomas/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Complejos Multiproteicos/genética , Retroelementos/genética , Adenosina Trifosfatasas/biosíntesis , Animales , Estructuras Cromosómicas/genética , Estructuras Cromosómicas/metabolismo , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/biosíntesis , Diploidia , Proteínas de Drosophila/biosíntesis , Drosophila melanogaster , Eucromatina/genética , Regulación de la Expresión Génica , Inestabilidad Genómica , Complejos Multiproteicos/biosíntesis , Análisis de Secuencia por Matrices de Oligonucleótidos
9.
Chromosome Res ; 20(1): 111-25, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22198613

RESUMEN

The genus Tokudaia comprises three species, two of which have lost their Y chromosome and have an XO/XO sex chromosome constitution. Although Tokudaia muenninki (Okinawa spiny rat) retains the Y chromosome, both sex chromosomes are unusually large. We conducted a molecular cytogenetic analysis to characterize the sex chromosomes of T. muenninki. Using cross-species fluorescence in situ hybridization (Zoo-FISH), we found that both short arms of the T. muenninki sex chromosomes were painted by probes from mouse chromosomes 11 and 16. Comparative genomic hybridization analysis was unable to detect sex-specific regions in the sex chromosomes because both sex probes highlighted the large heterochromatic blocks on the Y chromosome as well as five autosomal pairs. We then performed comparative FISH mapping using 29 mouse complementary DNA (cDNA) clones of the 22 X-linked genes and the seven genes linked to mouse chromosome 11 (whose homologue had fused to the sex chromosomes), and FISH mapping using two T. muenninki cDNA clones of the Y-linked genes. This analysis revealed that the ancestral gene order on the long arm of the X chromosome and the centromeric region of the short arm of the Y chromosome were conserved. Whereas six of the mouse chromosome 11 genes were also mapped to Xp and Yp, in addition, one gene, CBX2, was also mapped to Xp, Yp, and chromosome 14 in T. muenninki. CBX2 is the candidate gene for the novel sex determination system in the two other species of Tokudaia, which lack a Y chromosome and SRY gene. Overall, these results indicated that the Y chromosome of T. muenninki avoided a loss event, which occurred in an ancestral lineage of T. osimensis and T. tokunoshimensis, through fusion with an autosome. Despite retaining the Y chromosome, sex determination in T. muenninki might not follow the usual mammalian pattern and deserves further investigation.


Asunto(s)
Fusión Artificial Génica/métodos , Estructuras Cromosómicas/metabolismo , Murinae/genética , Cromosoma Y/genética , Animales , Células Cultivadas , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Mapeo Cromosómico , Pintura Cromosómica/métodos , Estructuras Cromosómicas/genética , Hibridación Genómica Comparativa , Sondas de ADN/metabolismo , ADN Complementario/genética , ADN Complementario/metabolismo , Especies en Peligro de Extinción , Femenino , Duplicación de Gen , Orden Génico , Cariotipo , Masculino , Ratones , Procesos de Determinación del Sexo
10.
FEMS Microbiol Rev ; 47(6)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36549664

RESUMEN

How to adapt to a changing environment is a fundamental, recurrent problem confronting cells. One solution is for cells to organize their constituents into a limited number of spatially extended, functionally relevant, macromolecular assemblies or hyperstructures, and then to segregate these hyperstructures asymmetrically into daughter cells. This asymmetric segregation becomes a particularly powerful way of generating a coherent phenotypic diversity when the segregation of certain hyperstructures is with only one of the parental DNA strands and when this pattern of segregation continues over successive generations. Candidate hyperstructures for such asymmetric segregation in prokaryotes include those containing the nucleoid-associated proteins (NAPs) and the topoisomerases. Another solution to the problem of creating a coherent phenotypic diversity is by creating a growth-environment-dependent gradient of supercoiling generated along the replication origin-to-terminus axis of the bacterial chromosome. This gradient is modulated by transcription, NAPs, and topoisomerases. Here, we focus primarily on two topoisomerases, TopoIV and DNA gyrase in Escherichia coli, on three of its NAPs (H-NS, HU, and IHF), and on the single-stranded binding protein, SSB. We propose that the combination of supercoiling-gradient-dependent and strand-segregation-dependent topoisomerase activities result in significant differences in the supercoiling of daughter chromosomes, and hence in the phenotypes of daughter cells.


Asunto(s)
Bacterias , Replicación del ADN , Bacterias/genética , Bacterias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fenotipo , Estructuras Cromosómicas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN Bacteriano/genética , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismo
11.
PLoS Genet ; 5(11): e1000726, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19911051

RESUMEN

Eukaryotic genomes are repetitively packaged into chromatin by nucleosomes, however they are regulated by the differences between nucleosomes, which establish various chromatin states. Local chromatin cues direct the inheritance and propagation of chromatin status via self-reinforcing epigenetic mechanisms. Replication-independent histone exchange could potentially perturb chromatin status if histone exchange chaperones, such as Swr1C, loaded histone variants into wrong sites. Here we show that in Schizosaccharomyces pombe, like Saccharomyces cerevisiae, Swr1C is required for loading H2A.Z into specific sites, including the promoters of lowly expressed genes. However S. pombe Swr1C has an extra subunit, Msc1, which is a JumonjiC-domain protein of the Lid/Jarid1 family. Deletion of Msc1 did not disrupt the S. pombe Swr1C or its ability to bind and load H2A.Z into euchromatin, however H2A.Z was ectopically found in the inner centromere and in subtelomeric chromatin. Normally this subtelomeric region not only lacks H2A.Z but also shows uniformly lower levels of H3K4me2, H4K5, and K12 acetylation than euchromatin and disproportionately contains the most lowly expressed genes during vegetative growth, including many meiotic-specific genes. Genes within and adjacent to subtelomeric chromatin become overexpressed in the absence of either Msc1, Swr1, or paradoxically H2A.Z itself. We also show that H2A.Z is N-terminally acetylated before, and lysine acetylated after, loading into chromatin and that it physically associates with the Nap1 histone chaperone. However, we find a negative correlation between the genomic distributions of H2A.Z and Nap1/Hrp1/Hrp3, suggesting that the Nap1 chaperones remove H2A.Z from chromatin. These data describe H2A.Z action in S. pombe and identify a new mode of chromatin surveillance and maintenance based on negative regulation of histone variant misincorporation.


Asunto(s)
Estructuras Cromosómicas/metabolismo , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Proteómica/métodos , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Acetilación , Adenosina Trifosfatasas , Secuencia de Aminoácidos , ADN Intergénico , Proteínas de Unión al ADN/genética , Silenciador del Gen , Lisina/metabolismo , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Subunidades de Proteína , Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe/genética , Homología de Secuencia de Aminoácido
12.
Proc Natl Acad Sci U S A ; 106(17): 6939-44, 2009 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-19357306

RESUMEN

Aurora kinase-A and -B are key regulators of the cell cycle and tumorigenesis. It has remained a mystery why these 2 Aurora kinases, although highly similar in protein sequence and structure, are distinct in subcellular localization and function. Here, we report the striking finding that a single amino acid residue is responsible for these differences. We replaced the Gly-198 of Aurora-A with the equivalent residue Asn-142 of Aurora-B and found that in HeLa cells, Aurora-A(G198N) was recruited to the inner centromere in metaphase and the midzone in anaphase, reminiscent of the Aurora-B localization. Moreover, Aurora-A(G198N) compensated for the loss of Aurora-B in chromosome misalignment and cell premature exit from mitosis. Furthermore, Aurora-A(G198N) formed a complex with the Aurora-B partners, INCENP and Survivin, and its localization depended on this interaction. Aurora-A(G198N) phosphorylated the Aurora-B substrates INCENP and Survivin in vitro. Therefore, we propose that the presence of Gly or Asn at a single site assigns Aurora-A and -B to their respective partners and thus to their distinctive subcellular localizations and functions.


Asunto(s)
Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Aminoácidos/genética , Aminoácidos/metabolismo , Aurora Quinasa A , Aurora Quinasa B , Aurora Quinasas , Proteínas Cromosómicas no Histona/metabolismo , Estructuras Cromosómicas/metabolismo , Secuencia Conservada , Activación Enzimática , Glicina/genética , Glicina/metabolismo , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis , Modelos Moleculares , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Especificidad por Sustrato
13.
BMC Med Genet ; 11: 84, 2010 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-20525362

RESUMEN

BACKGROUND: The nuclear receptor NR4A1 is implicated in metabolic regulation in insulin-sensitive tissues, such as liver, adipose tissue, and skeletal muscle. Functional loss of NR4A1 results in insulin resistance and enhanced intramuscular and hepatic lipid content. Therefore, we investigated in a cohort of white European subjects at increased risk for type 2 diabetes whether genetic variation within the NR4A1 gene locus contributes to prediabetic phenotypes, such as insulin resistance, ectopic fat distribution, or beta-cell dysfunction. METHODS: We genotyped 1495 subjects (989 women, 506 men) for five single nucleotide polymorphisms (SNPs) tagging 100% of common variants (MAF = 0.05) within the NR4A1 gene locus with an r2 = 0.8. All subjects underwent an oral glucose tolerance test (OGTT), a subset additionally had a hyperinsulinemic-euglycemic clamp (n = 506). Ectopic hepatic (n = 296) and intramyocellular (n = 264) lipids were determined by magnetic resonance spectroscopy. Peak aerobic capacity, a surrogate parameter for oxidative capacity of skeletal muscle, was measured by an incremental exercise test on a motorized treadmill (n = 270). RESULTS: After appropriate adjustment and Bonferroni correction for multiple comparisons, none of the five SNPs was reliably associated with insulin sensitivity, ectopic fat distribution, peak aerobic capacity, or indices of insulin secretion (all p > or = 0.05). CONCLUSIONS: Our data suggest that common genetic variation within the NR4A1 gene locus may not play a major role in the development of prediabetic phenotypes in our white European population.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Resistencia a la Insulina/fisiología , Insulina/metabolismo , Polimorfismo de Nucleótido Simple , Población Blanca/genética , Tejido Adiposo/metabolismo , Tejido Adiposo/fisiopatología , Fenómenos Bioquímicos , Estructuras Cromosómicas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Femenino , Genes , Variación Genética , Genotipo , Técnica de Clampeo de la Glucosa , Prueba de Tolerancia a la Glucosa , Humanos , Insulina/genética , Resistencia a la Insulina/genética , Secreción de Insulina , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Factores de Riesgo
14.
EcoSal Plus ; 9(1)2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32056535

RESUMEN

In this article, we summarize our current understanding of the bacterial genetic regulation brought about by decades of studies using the Escherichia coli model. It became increasingly evident that the cellular genetic regulation system is organizationally closed, and a major challenge is to describe its circular operation in quantitative terms. We argue that integration of the DNA analog information (i.e., the probability distribution of the thermodynamic stability of base steps) and digital information (i.e., the probability distribution of unique triplets) in the genome provides a key to understanding the organizational logic of genetic control. During bacterial growth and adaptation, this integration is mediated by changes of DNA supercoiling contingent on environmentally induced shifts in intracellular ionic strength and energy charge. More specifically, coupling of dynamic alterations of the local intrinsic helical repeat in the structurally heterogeneous DNA polymer with structural-compositional changes of RNA polymerase holoenzyme emerges as a fundamental organizational principle of the genetic regulation system. We present a model of genetic regulation integrating the genomic pattern of DNA thermodynamic stability with the gene order and function along the chromosomal OriC-Ter axis, which acts as a principal coordinate system organizing the regulatory interactions in the genome.


Asunto(s)
Estructuras Cromosómicas/metabolismo , Cromosomas Bacterianos/metabolismo , Tecnología Digital , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Fenómenos Bioquímicos , Estructuras Cromosómicas/genética , Cromosomas Bacterianos/genética , ADN Bacteriano/genética , Genómica , Regiones Promotoras Genéticas , Transcripción Genética
15.
Nat Commun ; 11(1): 4345, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32859945

RESUMEN

Chromosome movements and programmed DNA double-strand breaks (DSBs) promote homologue pairing and initiate recombination at meiosis onset. Meiotic progression involves checkpoint-controlled termination of these events when all homologue pairs achieve synapsis and form crossover precursors. Exploiting the temporo-spatial organisation of the C. elegans germline and time-resolved methods of protein removal, we show that surveillance of the synaptonemal complex (SC) controls meiotic progression. In nuclei with fully synapsed homologues and crossover precursors, removing different meiosis-specific cohesin complexes, which are individually required for SC stability, or a SC central region component causes functional redeployment of the chromosome movement and DSB machinery, triggering whole-nucleus reorganisation. This apparent reversal of the meiotic programme requires CHK-2 kinase reactivation via signalling from chromosome axes containing HORMA proteins, but occurs in the absence of transcriptional changes. Our results uncover an unexpected plasticity of the meiotic programme and show how chromosome signalling orchestrates nuclear organisation and meiotic progression.


Asunto(s)
Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Estructuras Cromosómicas/metabolismo , Meiosis/fisiología , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Puntos de Control del Ciclo Celular , Quinasa de Punto de Control 2/metabolismo , Emparejamiento Cromosómico , Roturas del ADN de Doble Cadena , Complejo Sinaptonémico/metabolismo , Cohesinas
16.
Elife ; 92020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32897188

RESUMEN

DNA replication is needed to duplicate a cell's genome in S phase and segregate it during cell division. Previous work in Leishmania detected DNA replication initiation at just a single region in each chromosome, an organisation predicted to be insufficient for complete genome duplication within S phase. Here, we show that acetylated histone H3 (AcH3), base J and a kinetochore factor co-localise in each chromosome at only a single locus, which corresponds with previously mapped DNA replication initiation regions and is demarcated by localised G/T skew and G4 patterns. In addition, we describe previously undetected subtelomeric DNA replication in G2/M and G1-phase-enriched cells. Finally, we show that subtelomeric DNA replication, unlike chromosome-internal DNA replication, is sensitive to hydroxyurea and dependent on 9-1-1 activity. These findings indicate that Leishmania's genome duplication programme employs subtelomeric DNA replication initiation, possibly extending beyond S phase, to support predominantly chromosome-internal DNA replication initiation within S phase.


Asunto(s)
Estructuras Cromosómicas , Replicación del ADN/genética , Duplicación de Gen/genética , Genoma de Protozoos/genética , Leishmania major/genética , Estructuras Cromosómicas/química , Estructuras Cromosómicas/genética , Estructuras Cromosómicas/metabolismo , Cromosomas/química , Cromosomas/genética , Histonas/genética , Histonas/metabolismo , Fase S/genética
17.
Nat Commun ; 11(1): 1485, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32198399

RESUMEN

Higher-order chromosome folding and segregation are tightly regulated in all domains of life. In bacteria, details on nucleoid organization regulatory mechanisms and function remain poorly characterized, especially in non-model species. Here, we investigate the role of DNA-partitioning protein ParB and SMC condensin complexes in the actinobacterium Corynebacterium glutamicum. Chromosome conformation capture reveals SMC-mediated long-range interactions around ten centromere-like parS sites clustered at the replication origin (oriC). At least one oriC-proximal parS site is necessary for reliable chromosome segregation. We use chromatin immunoprecipitation and photoactivated single-molecule localization microscopy to show the formation of distinct, parS-dependent ParB-nucleoprotein subclusters. We further show that SMC/ScpAB complexes, loaded via ParB at parS sites, mediate chromosomal inter-arm contacts (as previously shown in Bacillus subtilis). However, the MukBEF-like SMC complex MksBEFG does not contribute to chromosomal DNA-folding; instead, this complex is involved in plasmid maintenance and interacts with the polar oriC-tethering factor DivIVA. Our results complement current models of ParB-SMC/ScpAB crosstalk and show that some condensin complexes evolved functions that are apparently uncoupled from chromosome folding.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Estructuras Cromosómicas/química , Estructuras Cromosómicas/metabolismo , Cromosomas Bacterianos/química , Cromosomas Bacterianos/metabolismo , Corynebacterium glutamicum/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Bacillus subtilis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Centrómero/metabolismo , Segregación Cromosómica , Cromosomas Bacterianos/genética , ADN Primasa/genética , ADN Primasa/metabolismo , ADN Bacteriano , Nucleoproteínas/metabolismo , Origen de Réplica
18.
Life Sci Alliance ; 3(3)2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32051254

RESUMEN

In mitotic cells, establishment of sister chromatid cohesion requires acetylation of the cohesin subunit SMC3 (acSMC3) by ESCO1 and/or ESCO2. Meiotic cohesin plays additional but poorly understood roles in the formation of chromosome axial elements (AEs) and synaptonemal complexes. Here, we show that levels of ESCO2, acSMC3, and the pro-cohesion factor sororin increase on meiotic chromosomes as homologs synapse. These proteins are less abundant on the largely unsynapsed sex chromosomes, whose sister chromatid cohesion appears weaker throughout the meiotic prophase. Using three distinct conditional Esco2 knockout mouse strains, we demonstrate that ESCO2 is essential for male gametogenesis. Partial depletion of ESCO2 in prophase I spermatocytes delays chromosome synapsis and further weakens cohesion along sex chromosomes, which show extensive separation of AEs into single chromatids. Unsynapsed regions of autosomes are associated with the sex chromatin and also display split AEs. This study provides the first evidence for a specific role of ESCO2 in mammalian meiosis, identifies a particular ESCO2 dependence of sex chromosome cohesion and suggests support of autosomal synapsis by acSMC3-stabilized cohesion.


Asunto(s)
Acetiltransferasas/metabolismo , Cromátides/metabolismo , Emparejamiento Cromosómico/fisiología , Acetilación , Acetiltransferasas/genética , Acetiltransferasas/fisiología , Animales , Proteínas de Ciclo Celular , Cromátides/genética , Proteínas Cromosómicas no Histona , Emparejamiento Cromosómico/genética , Segregación Cromosómica/genética , Segregación Cromosómica/fisiología , Estructuras Cromosómicas/metabolismo , Gametogénesis/genética , Masculino , Meiosis/genética , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/genética , Cromosomas Sexuales/metabolismo , Espermatocitos/metabolismo , Complejo Sinaptonémico/metabolismo , Cohesinas
19.
Life Sci Alliance ; 3(10)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32820027

RESUMEN

Most tumors lack the G1/S phase checkpoint and are insensitive to antigrowth signals. Loss of G1/S control can severely perturb DNA replication as revealed by slow replication fork progression and frequent replication fork stalling. Cancer cells may thus rely on specific pathways that mitigate the deleterious consequences of replication stress. To identify vulnerabilities of cells suffering from replication stress, we performed an shRNA-based genetic screen. We report that the RECQL helicase is specifically essential in replication stress conditions and protects stalled replication forks against MRE11-dependent double strand break (DSB) formation. In line with these findings, knockdown of RECQL in different cancer cells increased the level of DNA DSBs. Thus, RECQL plays a critical role in sustaining DNA synthesis under conditions of replication stress and as such may represent a target for cancer therapy.


Asunto(s)
Reparación del ADN/fisiología , Replicación del ADN/fisiología , RecQ Helicasas/metabolismo , Animales , Línea Celular Tumoral , Estructuras Cromosómicas/metabolismo , ADN , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Inestabilidad Genómica/genética , Humanos , Proteína Homóloga de MRE11/genética , Ratones , ARN Interferente Pequeño/genética , Recombinasa Rad51/genética , RecQ Helicasas/fisiología
20.
Nat Commun ; 11(1): 3531, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32669601

RESUMEN

Homologous recombination (HR) factors were recently implicated in DNA replication fork remodeling and protection. While maintaining genome stability, HR-mediated fork remodeling promotes cancer chemoresistance, by as-yet elusive mechanisms. Five HR cofactors - the RAD51 paralogs RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3 - recently emerged as crucial tumor suppressors. Albeit extensively characterized in DNA repair, their role in replication has not been addressed systematically. Here, we identify all RAD51 paralogs while screening for modulators of RAD51 recombinase upon replication stress. Single-molecule analysis of fork progression and architecture in isogenic cellular systems shows that the BCDX2 subcomplex restrains fork progression upon stress, promoting fork reversal. Accordingly, BCDX2 primes unscheduled degradation of reversed forks in BRCA2-defective cells, boosting genomic instability. Conversely, the CX3 subcomplex is dispensable for fork reversal, but mediates efficient restart of reversed forks. We propose that RAD51 paralogs sequentially orchestrate clinically relevant transactions at replication forks, cooperatively promoting fork remodeling and restart.


Asunto(s)
Replicación del ADN , Recombinasa Rad51/metabolismo , Proteína BRCA2/metabolismo , Línea Celular Tumoral , Estructuras Cromosómicas/metabolismo , Cromosomas/ultraestructura , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Recombinación Homóloga , Humanos , Microscopía , Mutágenos , Mutación , Osteosarcoma/metabolismo , ARN Interferente Pequeño/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA