Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.646
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Bone Miner Metab ; 42(3): 282-289, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38704516

RESUMEN

INTRODUCTION: Glucocorticoids delay fracture healing and induce osteoporosis. Angiogenesis plays an important role in bone repair after bone injury. Plasminogen activator inhibitor-1 (PAI-1) is the principal inhibitor of plasminogen activators and an adipocytokine that regulates metabolism. However, the mechanisms by which glucocorticoids delay bone repair remain unclear. MATERIALS AND METHODS: Therefore, we herein investigated the roles of PAI-1 and angiogenesis in glucocorticoid-induced delays in bone repair after femoral bone injury using PAI-1-deficient female mice intraperitoneally administered dexamethasone (Dex). RESULTS: PAI-1 deficiency significantly attenuated Dex-induced decreases in the number of CD31-positive vessels at damaged sites 4 days after femoral bone injury in mice. PAI-1 deficiency also significantly ameliorated Dex-induced decreases in the number of CD31- and endomucin-positive type H vessels and CD31-positive- and endomucin-negative vessels at damaged sites 4 days after femoral bone injury. Moreover, PAI-1 deficiency significantly mitigated Dex-induced decreases in the expression of vascular endothelial growth factor as well as hypoxia inducible factor-1α, transforming growth factor-ß1, and bone morphogenetic protein-2 at damaged sites 4 days after femoral bone injury. CONCLUSION: The present results demonstrate that Dex-reduced angiogenesis at damaged sites during the early bone-repair phase after femoral bone injury partly through PAI-1 in mice.


Asunto(s)
Dexametasona , Glucocorticoides , Neovascularización Fisiológica , Inhibidor 1 de Activador Plasminogénico , Animales , Ratones , Inhibidor 1 de Activador Plasminogénico/metabolismo , Femenino , Glucocorticoides/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Dexametasona/farmacología , Fémur/efectos de los fármacos , Fémur/metabolismo , Fémur/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Curación de Fractura/efectos de los fármacos , Ratones Noqueados , Ratones Endogámicos C57BL , Proteína Morfogenética Ósea 2/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Angiogénesis
2.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 95-101, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38650149

RESUMEN

Osteoporosis is a common chronic bone disorder in postmenopausal women. Ginsenosides are primary active components in ginseng and the effects of various ginsenoside variants in osteoporosis treatment have been widely revealed. We planned to explore the impact of ginsenoside Rc on bone resorption in an osteoporosis rat model. We used ovariectomized rats to assess the potential impact of ginsenoside Rc on osteoporosis. µ-CT was implemented for analyzing the microstructure of the distal left femur in rats. H&E staining together with Masson staining were applied for bone histomorphometry evaluation. ELISA kits were implemented to detect serum concentrations of TRACP-5b, OCN, CTX, as well as PINP. Ginsenoside Rc treatment lessened the serum levels of TRACP-5b as well as CTX, while increasing serum levels of OCN, and PINP of OVX rats. Moreover, we found that ginsenoside Rc contributed to the synthesis of type I collagen via increasing Col1a1 and Col1a2 levels in femur tissues of ovariectomized rats. Our findings also revealed that ginsenoside Rc activated the TGF-ß/Smad pathway by increasing TGF-ß as well as phosphorylated Smad2/3 protein levels. Ginsenoside Rc alleviates osteoporosis in rats through promoting the TGF-ß/Smad pathway.


Asunto(s)
Ginsenósidos , Osteoporosis , Ovariectomía , Ratas Sprague-Dawley , Transducción de Señal , Factor de Crecimiento Transformador beta , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Animales , Femenino , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Fémur/efectos de los fármacos , Fémur/metabolismo , Fémur/patología , Proteínas Smad/metabolismo , Ratas , Colágeno Tipo I/metabolismo , Microtomografía por Rayos X , Fosfatasa Ácida Tartratorresistente/metabolismo , Osteocalcina/metabolismo , Osteocalcina/sangre , Modelos Animales de Enfermedad , Procolágeno/metabolismo , Procolágeno/sangre
3.
J Biochem Mol Toxicol ; 38(7): e23753, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38923626

RESUMEN

Osteomyelitis is an invasive bone infection that can lead to severe pain and even disability, posing a challenge for orthopedic surgery. Naringin can reduce bone-related inflammatory conditions. This study aimed to elucidate the function and mechanism of naringin in a Staphylococcus aureus-induced mouse model of osteomyelitis. Femurs of S. aureus-infected mice were collected after naringin administration and subjected to microcomputed tomography to analyze cortical bone destruction and bone loss. Bacterial growth in femurs was also assessed. Proinflammatory cytokine levels in mouse femurs were measured using enzyme-linked immunosorbent assays. Pathological changes and bone resorption were analyzed using hematoxylin and eosin staining and tartrate-resistant acid phosphatase staining, respectively. Quantitative reverse transcription polymerase chain reaction and western blot analysis were used to quantify the messenger RNA and protein expression of osteogenic differentiation-associated genes in the femurs. The viability of human bone marrow-derived stem cells (hBMSCs) was determined using cell counting kit-8. Alizarin Red S staining and alkaline phosphatase staining were performed to assess the formation of mineralization nodules and bone formation in vitro. Notch signaling-related protein levels in femur tissues and hBMSCs were assessed using western blot analysis. Experimental results revealed that naringin alleviated S. aureus-induced cortical bone destruction and bone loss in mice by increasing the bone volume/total volume ratio. Naringin suppressed S. aureus-induced bacterial growth and inflammation in femurs. Moreover, it alleviated histopathological changes, inhibited bone resorption, and increased the expression of osteogenic markers in osteomyelitic mice. It increased the viability of hBMSCs and promoted their differentiation and bone mineralization in vitro. Furthermore, naringin activated Notch signaling by upregulating the protein levels of Notch1, Jagged1, and Hes1 in the femurs of model mice and S. aureus-stimulated hBMSCs. In conclusion, naringin reduces bacterial growth, inflammation, and bone resorption while upregulating the expression of osteogenic markers in S. aureus-infected mice and hBMSCs by activating Notch signaling.


Asunto(s)
Antibacterianos , Antiinflamatorios , Flavanonas , Osteomielitis , Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Flavanonas/farmacología , Ratones , Osteomielitis/tratamiento farmacológico , Osteomielitis/microbiología , Osteomielitis/metabolismo , Osteomielitis/patología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Antibacterianos/farmacología , Antiinflamatorios/farmacología , Humanos , Masculino , Osteogénesis/efectos de los fármacos , Fémur/patología , Fémur/metabolismo , Fémur/microbiología , Fémur/efectos de los fármacos
4.
Cryobiology ; 115: 104894, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38614237

RESUMEN

This study examined the effects of liquid nitrogen vapor on osteogenesis in the rabbit femur. Cryotweezers made of porous nickel titanium alloy (nitinol or NiTi) obtained by self-propagating high temperature synthesis were used in this experiment. The porous structure of the cryotweezers allows them to hold up to 10 g of liquid nitrogen after being immersed for 2 min, which completely evaporates after 160 s. To study the effects of liquid nitrogen evaporation on osteogenesis, a rabbit femur was perforated. The formed holes were subjected to cryotherapy with varying exposure times. It was found that a 3 s exposure time stimulates osteogenesis, which was manifested in a greater number of osteoblasts in the regenerate compared to the control sample without liquid nitrogen. It was observed that increasing the exposure to 6, 9 or 12 s had a destructive effect, to varying degrees. The most severe damage was exerted by a 12 s exposure, which resulted in the formation of osteonecrosis areas. In the samples exposed to 6 and 9 s of cryotherapy, destruction of the cytoplasm of osteocytes and osteoclasts was observed.


Asunto(s)
Aleaciones , Crioterapia , Fémur , Níquel , Osteogénesis , Titanio , Animales , Conejos , Crioterapia/métodos , Níquel/química , Porosidad , Fémur/efectos de los fármacos , Titanio/química , Aleaciones/química , Osteogénesis/efectos de los fármacos , Nitrógeno , Osteoblastos/efectos de los fármacos , Osteoblastos/citología , Osteonecrosis/terapia , Masculino , Osteoclastos/efectos de los fármacos , Osteocitos/efectos de los fármacos , Osteocitos/citología
5.
Mar Drugs ; 22(10)2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39452880

RESUMEN

Bio-calcium derived from fish frames may offer several advantages for osteoporosis prevention. This study aimed to evaluate the effects of bio-calcium derived from skipjack tuna frames on bone loss in ovariectomized rats. Tuna bio-calcium was prepared through enzymatic hydrolysis, defatting, bleaching, and grinding processes. The bioavailability of calcium was tested using the Caco-2 cell monolayer model, showing that 13% of tuna bio-calcium was absorbed, compared to 10% for calcium carbonate. Rats were divided into the five following groups: (1) OVX, (2) sham-operated, (3), OVX + estrogen-treated (4) OVX + calcium carbonate-treated, and (5) OVX + tuna bio-calcium-treated. All groups were raised for eight weeks. Tuna bio-calcium was able to increase BV/TV by 26% in the femur and 29% in the tibia, compared to 13% and 17% in the OVX group, respectively. Trabecular thickness in the femur upsurged to 360 µm in the tuna group, while a thickness of 290 µm was observed in the control. Additionally, osteoclast numbers were reduced to 5 N.Oc/mm in the femur and 6 N.Oc/mm in the tibia in the tuna group, compared to 35 and 45 N.Oc/mm in the control. Overall, tuna bio-calcium effectively prevented bone loss and can serve as a promising natural alternative for managing osteoporosis.


Asunto(s)
Calcio , Osteoporosis , Ovariectomía , Atún , Animales , Femenino , Osteoporosis/tratamiento farmacológico , Humanos , Ratas , Calcio/metabolismo , Células CACO-2 , Modelos Animales de Enfermedad , Fémur/efectos de los fármacos , Fémur/patología , Carbonato de Calcio/farmacología , Carbonato de Calcio/química , Densidad Ósea/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Tibia/efectos de los fármacos
6.
BMC Musculoskelet Disord ; 25(1): 725, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256676

RESUMEN

BACKGROUND: Bisphosphonate (BP) can treat osteoporosis and prevent osteoporotic fractures in clinical. However, the effect of BP on microstructure and mechanical properties of cortical and trabecular bone has been taken little attention, separately. METHODS: In this study, BP was used to intervene in ovariectomized female SD rats. The femoral micro-CT images were used to measure the structural parameters and reconstruct the 3D models in volume of interest. The structural parameters of cortical and trabecular bone were measured, and the mechanical properties were predicted using micro-finite element analysis. RESULTS: There was almost no significant difference in the morphological structure parameters and mechanical properties of cortical bone between normal, ovariectomized (sham-OVX) and BP intervention groups. However, BP could significantly improve bone volume fraction (BV/TV) and trabecular separation (Tb.SP) in inter-femoral condyles (IT) (sham-OVX vs. BP, p < 0.001), and had no significant effect on BV/TV in medial and lateral femoral condyles (MT, LT). Similarly, BPs could significantly affect the effective modulus in IT (sham-OVX vs. BP, p < 0.001), and had no significant difference in MT and LT. In addition, the structural parameters and effective modulus showed a good linear correlation. CONCLUSION: In a short time, the effects of BP intervention and osteoporosis on cortical bone were not obvious. The effects of BP on trabecular bone in non-main weight-bearing area (IT) were valuable, while for osteoporosis, the main weight-bearing area (MT, LT) may improve the structural quality and mechanical strength of trabecular bone through exercise compensation.


Asunto(s)
Difosfonatos , Osteoporosis , Ovariectomía , Ratas Sprague-Dawley , Microtomografía por Rayos X , Animales , Femenino , Osteoporosis/tratamiento farmacológico , Osteoporosis/diagnóstico por imagen , Difosfonatos/farmacología , Difosfonatos/uso terapéutico , Ratas , Conservadores de la Densidad Ósea/farmacología , Conservadores de la Densidad Ósea/uso terapéutico , Fémur/efectos de los fármacos , Fémur/diagnóstico por imagen , Fémur/patología , Fémur/fisiopatología , Hueso Esponjoso/efectos de los fármacos , Hueso Esponjoso/diagnóstico por imagen , Hueso Esponjoso/patología , Fenómenos Biomecánicos , Modelos Animales de Enfermedad , Densidad Ósea/efectos de los fármacos , Análisis de Elementos Finitos
7.
Int J Food Sci Nutr ; 75(7): 717-728, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39252411

RESUMEN

Preventing the decrease in bone mineral density (BMD) is significant for postmenopausal women. We previously discovered that rhamnose, a deoxy monosaccharide used as a food additive, could suppress bone resorption; however, studies confirming this effect in postmenopausal women are lacking. Therefore, this pilot study aimed to explore whether rhamnose could help maintain BMD via bone resorption suppression in postmenopausal women. The participants consumed either 1.0 or 0.5 g/day of rhamnose or placebo for 24 weeks, and BMD (lumbar spine and femur) and bone turnover markers were measured. After 24 weeks, the group consuming rhamnose 1.0 g/day exhibited a significantly higher BMD of the lumbar spine than the placebo group. Furthermore, the levels of tartrate-resistant acid phosphatase 5b, a bone resorption marker, were significantly lower in both rhamnose groups. These results indicated that rhamnose might contribute to the maintenance of BMD by suppressing bone resorption in healthy postmenopausal women (UMIN000046570).


Asunto(s)
Densidad Ósea , Posmenopausia , Ramnosa , Humanos , Femenino , Densidad Ósea/efectos de los fármacos , Proyectos Piloto , Persona de Mediana Edad , Método Doble Ciego , Resorción Ósea/prevención & control , Vértebras Lumbares/efectos de los fármacos , Anciano , Fémur/efectos de los fármacos , Osteoporosis Posmenopáusica/prevención & control , Fosfatasa Ácida Tartratorresistente , Biomarcadores/sangre
8.
Odontology ; 112(3): 855-863, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38157109

RESUMEN

To evaluate the effect of high-graduation chronic ethanol (EtOH) intake on bone and periodontal tissues of rats. Male Wistar rats (250 g) were divided into two groups of n = 12 each one. EtOH (5 ml of 3 g/kg) was administered to the experimental group by gastric gavage twice a day for 20 days and the control group received water under the same conditions. The rats were euthanized and used to perform biochemical determination in plasma and gingival tissue, and histological and biomechanical studies in the femur and mandibular tissues. Alcohol increased both TNFα (p < 0.01) and PGE2 (p < 0.05) in plasma and gingiva (p < 0.05) as compared to controls. In addition, EtOH increased the alveolar bone loss as evidenced by the increased distance between the cement enamel junction and the alveolar crest (p < 0.01), the lower % of interradicular bone expressed as bone area/total area (B.Ar/T.Ar, p < 0.05) and the larger periodontal space (p < 0.05), as compared to controls. Likewise, the mandibular microtomographic analysis in alcoholized rats revealed a lower % of interradicular bone volume/total volume (BV/TV, p < 0.05), greater trabecular separation (p < 0.05) and greater % trabecular porosity (p < 0.05) than controls. No biomechanical alteration was observed in lower jaws, while the femur of alcoholized rats presented a decrease in the structural bone properties (p < 0.001), as a systemic consequence of deterioration of the diaphyseal architecture (p < 0.01) without changes in material properties. The consumption of high doses of alcohol produces deleterious effects on periodontal tissues that could be due not only to local but also systemic effects.


Asunto(s)
Pérdida de Hueso Alveolar , Etanol , Fémur , Ratas Wistar , Animales , Masculino , Ratas , Etanol/farmacología , Fenómenos Biomecánicos , Fémur/efectos de los fármacos , Microtomografía por Rayos X , Mandíbula , Factor de Necrosis Tumoral alfa/sangre , Encía/efectos de los fármacos , Dinoprostona , Consumo de Bebidas Alcohólicas
9.
Int J Mol Sci ; 25(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38791352

RESUMEN

Biofunctionalized hydrogels are widely used in tissue engineering for bone repair. This study examines the bone regenerative effect of the blood-derived growth factor preparation of Hypoxia Preconditioned Serum (HPS) and its fibrin-hydrogel formulation (HPS-F) on drilled defects in embryonic day 19 chick femurs. Measurements of bone-related growth factors in HPS reveal significant elevations of Osteopontin, Osteoprotegerin, and soluble-RANKL compared with normal serum (NS) but no detection of BMP-2/7 or Osteocalcin. Growth factor releases from HPS-F are measurable for at least 7 days. Culturing drilled femurs organotypically on a liquid/gas interface with HPS media supplementation for 10 days demonstrates a 34.6% increase in bone volume and a 52.02% increase in bone mineral density (BMD) within the defect area, which are significantly higher than NS and a basal-media-control, as determined by microcomputed tomography. HPS-F-injected femur defects implanted on a chorioallantoic membrane (CAM) for 7 days exhibit an increase in bone mass of 123.5% and an increase in BMD of 215.2%, which are significantly higher than normal-serum-fibrin (NS-F) and no treatment. Histology reveals calcification, proteoglycan, and collagen fiber deposition in the defect area of HPS-F-treated femurs. Therefore, HPS-F may offer a promising and accessible therapeutic approach to accelerating bone regeneration by a single injection into the bone defect site.


Asunto(s)
Regeneración Ósea , Fémur , Fibrina , Animales , Regeneración Ósea/efectos de los fármacos , Fémur/efectos de los fármacos , Fémur/diagnóstico por imagen , Fémur/metabolismo , Fibrina/metabolismo , Embrión de Pollo , Densidad Ósea/efectos de los fármacos , Hidrogeles , Microtomografía por Rayos X , Ingeniería de Tejidos/métodos , Suero/metabolismo , Suero/química
10.
BMC Oral Health ; 24(1): 1146, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39334089

RESUMEN

BACKGROUND: Bisphosphonates (BPs) are widely used to inhibit excessive osteoclast activity. However, the potential to compromise bone defect healing has limited their broader application. To better understand the influence of BPs on bone regeneration, we established a bone grafting model with Zoledronate administration, aiming to deepen the understanding of bone remodeling and mineralization processes. METHODS: A bone grafting model was established in the distal femurs of male Sprague-Dawley rats. The experimental group received systemic administration of Zoledronate (ZOL, 0.2 mg/kg, administered twice). Histological analysis and immunohistochemistry (IHC) were employed to assess osteoblastic and macrophage activity, tartrate-resistant acid phosphatase (TRAP) staining was used to evaluate osteoclastogenesis. Mineralization was assessed through Micro-CT analysis, Raman spectroscopy, and back-scatter scanning electron microscopy (BSE-SEM). Additionally, the in vitro effects of ZOL on osteoblast and osteoclast activity were investigated to further elucidate its impact on bone regeneration. RESULTS: In vivo, the ZOL group showed increased bone mass, as observed in histological and radiological assessments. However, Micro-CT, Raman spectroscopy, and BSE-SEM detection revealed lower mineralization levels in ZOL group's regenerated bone. Acid-etched SEM analysis showed abnormal osteocyte characteristics in ZOL-group's regenerated bone. Simultaneously, elevated osteopontin (OPN), F4/80 expression along with reduced TRAP expressing was found in the grafting region of ZOL group. In vitro, ZOL did not negatively impact osteogenetic activity (ALP, BMP4, OCN expression) at the tested concentrations (0.02-0.5 g/ml) but significantly impaired mineralization and inhibited osteoclast formation, even at the lowest concentration. CONCLUSIONS: This study highlights a less recognized negative effect of ZOL on bone mineralization during bone regeneration. More research is needed to elucidate the underlying mechanism.


Asunto(s)
Conservadores de la Densidad Ósea , Regeneración Ósea , Calcificación Fisiológica , Difosfonatos , Osteoclastos , Ratas Sprague-Dawley , Microtomografía por Rayos X , Ácido Zoledrónico , Animales , Ácido Zoledrónico/farmacología , Masculino , Regeneración Ósea/efectos de los fármacos , Ratas , Calcificación Fisiológica/efectos de los fármacos , Difosfonatos/farmacología , Conservadores de la Densidad Ósea/farmacología , Osteoclastos/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Imidazoles/farmacología , Espectrometría Raman , Microscopía Electrónica de Rastreo , Fémur/efectos de los fármacos , Fémur/diagnóstico por imagen , Trasplante Óseo/métodos , Densidad Ósea/efectos de los fármacos , Inmunohistoquímica
11.
J Appl Biomed ; 22(2): 67-73, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38912861

RESUMEN

BACKGROUND AND OBJECTIVES: We aimed to determine the effects of vanillic acid (VA) on fracture healing radiologically, histologically, immunohistochemically, and biomechanically using a rat femur open fracture injury model. METHODS: 32 male Wistar-Albino rats were used and divided into two groups: the study group (VA) and the control group. From the time they were operated on until they were sacrificed, the rats in the study group were given 100 mg/kg/day VA by oral gavage. After sacrification, the femurs were analyzed. RESULTS: It was observed that the Huo histological scoring was significantly higher in the VA group (p = 0.001), and the ratio of the amount of callus tissue compared to intact bone tissue was significantly higher. While no significant difference was observed in immunohistochemical H-scores in ColI antibody staining (p = 1.000), a borderline significant difference in favor of VA was observed in ColIII antibody staining (p = 0.078). In biomechanical analysis, failure load (N), total energy (J), maximum stress (MPa), and stiffness (N/mm) measurements were significantly higher in the VA group (p = 0.040, p = 0.021, p = 0.015, and p = 0.035, respectively). CONCLUSION: It has been observed that VA, with its antioxidative properties, increases fracture healing in rats, in which an open fracture model was created. We are hopeful that such an antioxidant, which is common in nature, will increase fracture healing. Since this study is the first to examine the effect of VA on fracture healing, further studies are needed.


Asunto(s)
Fracturas del Fémur , Curación de Fractura , Ratas Wistar , Ácido Vanílico , Animales , Ácido Vanílico/farmacología , Ácido Vanílico/uso terapéutico , Curación de Fractura/efectos de los fármacos , Masculino , Fracturas del Fémur/tratamiento farmacológico , Fracturas del Fémur/patología , Ratas , Modelos Animales de Enfermedad , Fenómenos Biomecánicos/efectos de los fármacos , Fémur/efectos de los fármacos , Fémur/patología , Callo Óseo/efectos de los fármacos , Callo Óseo/patología
12.
Medicina (Kaunas) ; 60(6)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38929535

RESUMEN

Introduction: The ongoing concern of the medical profession regarding chronic medication is related to increasing patient adherence and compliance to treatment and reducing medication side effects. In this respect, drugs represented by fixed-dose combinations of active substances within the same tablet have emerged. Such a principle can be extrapolated by following the potential beneficial effects that a chronic medication can have on chronic pathologies affecting different systems. Materials and Methods: The study included 48 female Albino Wistar rats, aged 16-18 months, which were divided into two groups: ovariectomized and non-ovariectomized rats. One batch of 12 non-ovariectomized rats received no treatment, becoming a control batch (NOVX-M). The ovariectomized (OVX) group was divided into 3 batches of 12 rats each: no treatment, control (OVX-M), fenofibrate-treated (OVX-F) and statin-treated (OVX-S) rats. At 12 weeks after ovariectomy, a femoral fracture occurred in the right hind limb of all animals included in the experiment To reveal the changes, at intervals of 2, 4, 6 and 8 weeks post-fracture, the proximal part of the femur was evaluated by NMR diffusiometry, which allows random motion of proton molecules expressed by self-diffusion coefficients, D, thus allowing analysis of the size and complexity of microscopic order cavities within biological structures, such as pores inside bones. Results: The effects of hypolipidemic medication in the absence of estrogen were evidenced, proving the beneficial effect that fenofibrate can have in preserving healthy tissue exposed to osteoporotic risk during the menopausal period. The effects of lipid-lowering medication are also influenced by the duration of administration. Conclusions: Osteoporosis and heart disease are two chronic pathologies that affect mainly female population in the second half of life, and proving the dual therapeutic potential of lipid-lowering medication may also have positive effects by increasing adherence and compliance to treatment.


Asunto(s)
Hipolipemiantes , Ovariectomía , Ratas Wistar , Animales , Femenino , Ratas , Hipolipemiantes/farmacología , Hipolipemiantes/uso terapéutico , Hipolipemiantes/administración & dosificación , Espectroscopía de Resonancia Magnética/métodos , Fenofibrato/farmacología , Fenofibrato/uso terapéutico , Modelos Animales de Enfermedad , Fémur/efectos de los fármacos , Huesos/efectos de los fármacos
13.
Medicina (Kaunas) ; 60(7)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39064523

RESUMEN

Background and Objectives: This study aimed to evaluate the histological and biochemical effects of capsaicin on implant osseointegration and oxidative stress. Materials and Methods: Male Wistar albino rats weighing between 250 and 300 g were used in this study. Twenty-four rats were randomly divided into three equal groups: implant + control (n = 8), implant + capsaicin-1 (n = 8), and implant + capsaicin-2 (n = 8). Additionally, 2.5 mm diameter and 4 mm length titanium implants were surgically integrated into the corticocancellous bone parts of the femurs. In the treatment groups, rats were injected intraperitoneally with 25 mg/kg (implant + capsaicin-1) and 50 mg/kg (implant + capsaicin-2) of capsaicin. No additional applications were made in the control group. Three rats in total died during and after the experiment as a result of the analyses performed on 21 animals. Results: The highest total antioxidant status value was found in capsaicin dose 2, according to the analysis. The control group had the highest total oxidant status and oxidative stress index values, while group 2 of capsaicin had the lowest. After analysis, we found that there was no observed positive effect on osteointegration in this study (p > 0.05), although the bone implant connection was higher in the groups treated with capsaicin. Conclusions: A positive effect on osteointegration was not observed in this study. This may be due to osteoclast activation. However, it was found that it has a positive effect on oxidative stress. Osteoclast activation may be the cause of this phenomenon. Capsaicin was found to have a positive effect on oxidative stress (p < 0.05). It was also observed to have a positive effect on oxidative stress.


Asunto(s)
Capsaicina , Oseointegración , Estrés Oxidativo , Ratas Wistar , Titanio , Animales , Capsaicina/farmacología , Capsaicina/administración & dosificación , Oseointegración/efectos de los fármacos , Masculino , Ratas , Estrés Oxidativo/efectos de los fármacos , Fémur/efectos de los fármacos , Fémur/cirugía , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/administración & dosificación , Distribución Aleatoria
14.
Proc Natl Acad Sci U S A ; 117(22): 12029-12040, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32404427

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is a uniformly fatal condition that is especially prevalent in skin, cardiovascular, and musculoskeletal systems. A wide gap exists between our knowledge of the disease and a promising treatment or cure. The aim of this study was to first characterize the musculoskeletal phenotype of the homozygous G608G BAC-transgenic progeria mouse model, and to determine the phenotype changes of HGPS mice after a five-arm preclinical trial of different treatment combinations with lonafarnib, pravastatin, and zoledronic acid. Microcomputed tomography and CT-based rigidity analyses were performed to assess cortical and trabecular bone structure, density, and rigidity. Bones were loaded to failure with three-point bending to assess strength. Contrast-enhanced µCT imaging of mouse femurs was performed to measure glycosaminoglycan content, thickness, and volume of the femoral head articular cartilage. Advanced glycation end products were assessed with a fluorometric assay. The changes demonstrated in the cortical bone structure, rigidity, stiffness, and modulus of the HGPS G608G mouse model may increase the risk for bending and deformation, which could result in the skeletal dysplasia characteristic of HGPS. Cartilage abnormalities seen in this HGPS model resemble changes observed in the age-matched WT controls, including early loss of glycosaminoglycans, and decreased cartilage thickness and volume. Such changes might mimic prevalent degenerative joint diseases in the elderly. Lonafarnib monotherapy did not improve bone or cartilage parameters, but treatment combinations with pravastatin and zoledronic acid significantly improved bone structure and mechanical properties and cartilage structural parameters, which ameliorate the musculoskeletal phenotype of the disease.


Asunto(s)
Conservadores de la Densidad Ósea/uso terapéutico , Modelos Animales de Enfermedad , Lamina Tipo A/genética , Progeria , Envejecimiento/efectos de los fármacos , Envejecimiento/patología , Animales , Huesos/efectos de los fármacos , Huesos/patología , Cartílago/efectos de los fármacos , Cartílago/patología , Fémur/efectos de los fármacos , Fémur/patología , Glicosaminoglicanos/análisis , Articulaciones/efectos de los fármacos , Articulaciones/patología , Lamina Tipo A/metabolismo , Ratones , Ratones Transgénicos , Mutación , Osteoartritis/tratamiento farmacológico , Osteoartritis/patología , Fenotipo , Piperidinas/uso terapéutico , Pravastatina/uso terapéutico , Progeria/tratamiento farmacológico , Progeria/genética , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Piridinas/uso terapéutico , Microtomografía por Rayos X , Ácido Zoledrónico/uso terapéutico
15.
J Biol Chem ; 296: 100287, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33450223

RESUMEN

Autophagy is vital for maintaining cellular homeostasis through removing impaired organelles. It has recently been found to play pivotal roles in diabetes mellitus (DM), which is associated with increased bone fracture risk and loss of bone density. However, the mechanism whereby autophagy modulates DM-induced bone loss is not fully elucidated. Previous work has shown that 1α,25-Dihydroxyvitamin D3 (1,25D) exerts positive effects on autophagy, thus affecting bone metabolism. Here, we investigated whether autophagy was involved in the regulation of diabetic bone metabolism. Using Micro-CT, Elisa, histology, and histomorphometry analysis, we demonstrated that 1,25D rescues glucose metabolism dysfunction and ameliorates bone loss in diabetic mice. In vitro, 1,25D alleviated primary osteoblast dysfunction and intracellular oxidative stress through reducing prolonged high-glucose-mediated excessive autophagy in primary osteoblasts, reflected by decreased protein level of Beclin1 and LC3. Of note, the autophagy activator rapamycin (RAP) ablated the positive effects of 1,25D in diabetic environment, leading to a marked increase in autolysosomes and autophagosomes, examined by mRFP-GFP-LC3 fluorescence double labeling. The excessive autophagy induced by high glucose was deleterious to proliferation and differentiation of primary osteoblasts. Additionally, biochemical studies identified that PI3K/Akt signaling could be activated by 1,25D, resulting in the inhibition of FoxO1. We confirmed that FoxO1 deficiency alleviated high-glucose-induced autophagy and improved biological functions of primary osteoblasts. Together, our results suggest that the PI3K/Akt/FoxO1 signaling pathway is involved in the osteoprotective effect of 1,25D by attenuating autophagy in diabetes, providing a novel insight for the prevention and treatment of diabetes-caused bone loss.


Asunto(s)
Autofagia/efectos de los fármacos , Calcitriol/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Proteína Forkhead Box O1/genética , Glucosa/metabolismo , Osteoporosis/tratamiento farmacológico , Animales , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagia/genética , Beclina-1/genética , Beclina-1/metabolismo , Densidad Ósea/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Fémur/efectos de los fármacos , Fémur/metabolismo , Fémur/patología , Proteína Forkhead Box O1/deficiencia , Regulación de la Expresión Génica , Glucosa/antagonistas & inhibidores , Glucosa/farmacología , Lisosomas/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoblastos/patología , Osteoporosis/inducido químicamente , Osteoporosis/genética , Osteoporosis/patología , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Sirolimus/farmacología , Estreptozocina , Resultado del Tratamiento
16.
FASEB J ; 35(9): e21786, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34411349

RESUMEN

Biological functions, including glycemic control and bone metabolism, are highly influenced by the body's internal clock. Circadian rhythms are biological rhythms that run with a period close to 24 hours and receive input from environmental stimuli, such as the light/dark cycle. We investigated the effects of circadian rhythm disruption (CRD), through alteration of the light/dark schedule, on glycemic control and bone quality of mice. Ten-week-old male mice (C57/BL6, n = 48) were given a low-fat diet (LFD) or a high-fat diet (HFD) and kept on a dayshift or altered schedule (RSS3) for 22 weeks. Mice were divided into four experimental groups (n = 12/group): Dayshift/LFD, Dayshift/HFD, RSS3/LFD, and RSS3/HFD. CRD in growing mice fed a HFD resulted in a diabetic state, with a 36.2% increase in fasting glucose levels compared to the Dayshift/LFD group. Micro-CT scans of femora revealed a reduction in inner and outer surface expansion for mice on a HFD and altered light schedule. Cancellous bone demonstrated deterioration of bone quality as trabecular number and thickness decreased while trabecular separation increased. While HFD increased cortical bone mineral density, its combination with CRD reduced this phenomenon. The growth of mineral crystals, determined by small angle X-ray scattering, showed HFD led to smaller crystals. Considering modifications of the organic matrix, regardless of diet, CRD exacerbated the accumulation of fluorescent advanced glycation end-products (fAGEs) in collagen. Strength testing of tibiae showed that CRD mitigated the higher strength in the HFD group and increased brittleness indicated by lower post-yield deflection and work-to-fracture. Consistent with accumulation of fAGEs, various measures of toughness were lowered with CRD, but combination of CRD with HFD protected against this decrease. Differences between strength and toughness results represent different contributions of structural and material properties of bone to energy dissipation. Collectively, these results demonstrate that combination of CRD with HFD impairs glycemic control and have complex effects on bone quality.


Asunto(s)
Glucemia/metabolismo , Huesos/fisiología , Ritmo Circadiano , Dieta Alta en Grasa/efectos adversos , Animales , Glucemia/efectos de los fármacos , Densidad Ósea/efectos de los fármacos , Huesos/efectos de los fármacos , Hueso Esponjoso/efectos de los fármacos , Hueso Esponjoso/fisiología , Fémur/efectos de los fármacos , Fémur/fisiología , Masculino , Ratones
17.
Int J Mol Sci ; 23(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35269557

RESUMEN

Standard zirconia implants used in restoration still present problems related to inertness and long-term stability. Various physicochemical approaches have been used to modify the implant surfaces to improve early and late bone-to-implant integration; however, no ideal surface modification has been reported. This study used pulsed laser deposition to deposit a fluorinated hydroxyapatite (FHA) film on a zirconia implant to create a biologically active surface. The film prepared was uniform, dense, and crack-free, and exhibited granular surface droplets; it also presented excellent mechanical strength and favorable biological behavior. The FHA-coated implant was implanted on the femur of Sprague-Dawley rats, and various tests and analyses were performed. Results show that the in vitro initial cell activity on the FHA-coated samples was enhanced. In addition, higher alkaline phosphatase activity and cell mineralization were detected in cells cultured on the FHA-coated groups. Further, the newly formed bone volume of the FHA-coated group was higher than that of the bare micro-adjusted composite nano-zirconia (NANOZR) group. Therefore, the FHA film facilitated osseointegration and may improve the long-term survival rates of dental implants, and could become part of a new treatment technology for implant surfaces, promoting further optimization of NANOZR implant materials.


Asunto(s)
Materiales Biocompatibles Revestidos/administración & dosificación , Durapatita/química , Fémur/cirugía , Flúor/química , Oseointegración/efectos de los fármacos , Circonio/administración & dosificación , Fosfatasa Alcalina/metabolismo , Animales , Células Cultivadas , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Implantes Dentales , Fémur/citología , Fémur/efectos de los fármacos , Fémur/metabolismo , Rayos Láser , Masculino , Ensayo de Materiales , Nanoestructuras , Prótesis e Implantes , Ratas , Ratas Sprague-Dawley , Propiedades de Superficie , Circonio/química , Circonio/farmacología
18.
Int J Mol Sci ; 23(1)2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35008904

RESUMEN

Glucocorticoids delay fracture healing and induce osteoporosis. However, the mechanisms by which glucocorticoids delay bone repair have yet to be clarified. Plasminogen activator inhibitor-1 (PAI-1) is the principal inhibitor of plasminogen activators and an adipocytokine that regulates metabolism. We herein investigated the roles of macrophages in glucocorticoid-induced delays in bone repair after femoral bone injury using PAI-1-deficient female mice intraperitoneally administered with dexamethasone (Dex). Dex significantly decreased the number of F4/80-positive macrophages at the damaged site two days after femoral bone injury. It also attenuated bone injury-induced decreases in the number of hematopoietic stem cells in bone marrow in wild-type and PAI-1-deficient mice. PAI-1 deficiency significantly weakened Dex-induced decreases in macrophage number and macrophage colony-stimulating factor (M-CSF) mRNA levels at the damaged site two days after bone injury. It also significantly ameliorated the Dex-induced inhibition of macrophage phagocytosis at the damaged site. In conclusion, we herein demonstrated that Dex decreased the number of macrophages at the damaged site during early bone repair after femoral bone injury partly through PAI-1 and M-CSF in mice.


Asunto(s)
Regeneración Ósea , Glucocorticoides/farmacología , Macrófagos/metabolismo , Inhibidor 1 de Activador Plasminogénico/metabolismo , Animales , Médula Ósea/patología , Regeneración Ósea/efectos de los fármacos , Recuento de Células , Dexametasona/farmacología , Femenino , Fémur/efectos de los fármacos , Fémur/lesiones , Fémur/patología , Regulación de la Expresión Génica/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Trastornos Hemorrágicos/patología , Macrófagos/efectos de los fármacos , Macrófagos/ultraestructura , Ratones Noqueados , Fagocitosis/efectos de los fármacos , Inhibidor 1 de Activador Plasminogénico/deficiencia
19.
Arch Biochem Biophys ; 703: 108856, 2021 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-33781770

RESUMEN

Osteoporosis is a skeletal disorder that is common in postmenopausal women. It is characterized by deteriorated bone mass and microarchitecture. In this study, we aimed to explore the effects and molecular mechanisms of resveratrol and mesenchymal stem cell (MSC) individual and combined treatment in management of osteoporosis in ovariectomized rats. Our results demonstrated that treatment of ovariectomized rats with resveratrol or MSCs improved bone mass and microstructure as indicated by increased bone mineral content and density. Moreover, resveratrol and MSCs stimulated osteogenesis as shown by increased levels of osteogenic markers such as runt-related transcription factor 2 (RUNX2). In addition, resveratrol and MSCs inhibited adipogenesis and osteoclastogenesis as indicated by the suppression of the adipogenic marker, peroxisome proliferator-activated receptor gamma (PPARγ) and the osteoclastogenesis marker, receptor activator of nuclear factor-κB ligand (RANKL). Mechanistically, our results showed that management of osteoporosis in resveratrol or MSC treated rats was achieved by activating two signaling pathways, sirtuin 1 (SIRT1) and wingless-related MMTV integration site (Wnt). Finally, the combination of resveratrol and MSCs was more effective in increasing bone mass and improving osteoporosis than individual treatments.


Asunto(s)
Proteína Forkhead Box O3/metabolismo , Trasplante de Células Madre Mesenquimatosas , Osteoporosis/terapia , Ovariectomía , Resveratrol/farmacología , Sirtuina 1/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Animales , Terapia Combinada , Femenino , Fémur/efectos de los fármacos , Fémur/patología , Osteoporosis/tratamiento farmacológico , Osteoporosis/patología , Ratas
20.
FASEB J ; 34(9): 12834-12846, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32767431

RESUMEN

Maternal dexamethasone decreases the body length of the newborn. However, whether dexamethasone inhibits the development of the growth plate of the fetal long bone is still unknown. Here, we found that lengths of fetal femur and growth plate were both shorter in the fetuses with maternal dexamethasone (0.2 mg/kg.d from gestation day 9 to 20), with a decreased proteoglycan content of the growth plate in the fetal rat. Notable decreases in both the gene expression and H3K9 acetylation of UDP-glucose dehydrogenase (Ugdh) gene, which codes a key enzyme in the proteoglycan biosynthesis in the chondrocyte, were also observed. Meanwhile, up-regulation of glucocorticoid receptor (GR), specific protein 3 (Sp3), and histone deacetylase 1 (Hdac1) gene expression were detected in the fetal growth plate. Similar changes were also observed in the chondrogenic rat bone marrow stromal cells (BMSCs) with excessive exogenous dexamethasone. However, antagonizing GR with RU486 and silencing Hdac1 or Sp3 with specific siRNAs could all stimulate the H3K9 acetylation and gene expression of Ugdh previously inhibited by dexamethasone. Meanwhile, dexamethasone also induced the nuclear translocation of GR, which further directly bound to the Ugdh promoter and interacted with HDAC1 and Sp3, respectively. Collectively, our study revealed that maternal dexamethasone induced the direct binding of GR to the Ugdh promoter of the chondrocyte in the rat fetal growth plate, which recruited HDAC1 and Sp3, induced deacetylation of the H3K9, and subsequently inhibited Ugdh gene expression. Such changes further led to attenuated proteoglycan synthesis in the developing chondrocyte and therefore disrupted the development of growth plate and fetal long bone.


Asunto(s)
Dexametasona/efectos adversos , Fémur , Desarrollo Fetal/efectos de los fármacos , Placa de Crecimiento , Exposición Materna/efectos adversos , Células Madre Mesenquimatosas/efectos de los fármacos , Animales , Células Cultivadas , Femenino , Fémur/efectos de los fármacos , Fémur/embriología , Fémur/patología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Placa de Crecimiento/efectos de los fármacos , Placa de Crecimiento/embriología , Placa de Crecimiento/patología , Histona Desacetilasa 1/metabolismo , Masculino , Intercambio Materno-Fetal , Células Madre Mesenquimatosas/citología , Embarazo , Ratas , Ratas Wistar , Receptores de Glucocorticoides/metabolismo , Transducción de Señal , Factor de Transcripción Sp3/metabolismo , Uridina Difosfato Glucosa Deshidrogenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA