RESUMEN
Juxtaglomerular (JG) cells, major sources of renin, differentiate from metanephric mesenchymal cells that give rise to JG cells or a subset of smooth muscle cells of the renal afferent arteriole. During periods of dehydration and salt deprivation, renal mesenchymal stromal cells (MSCs) differentiate from JG cells. JG cells undergo expansion and smooth muscle cells redifferentiate to express renin along the afferent arteriole. Gene expression profiling comparing resident renal MSCs with JG cells indicates that the transcription factor Sox6 is highly expressed in JG cells in the adult kidney. In vitro, loss of Sox6 expression reduces differentiation of renal MSCs to renin-producing cells. In vivo, Sox6 expression is upregulated after a low-Na+ diet and furosemide. Importantly, knockout of Sox6 in Ren1d+ cells halts the increase in renin-expressing cells normally seen during a low-Na+ diet and furosemide as well as the typical increase in renin. Furthermore, Sox6 ablation in renin-expressing cells halts the recruitment of smooth muscle cells along the afferent arteriole, which normally express renin under these conditions. These results support a previously undefined role for Sox6 in renin expression.
Asunto(s)
Arteriolas/metabolismo , Aparato Yuxtaglomerular/irrigación sanguínea , Células Madre Mesenquimatosas/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Renina/metabolismo , Factores de Transcripción SOXD/metabolismo , Animales , Arteriolas/efectos de los fármacos , Presión Sanguínea , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Dieta Hiposódica , Diuréticos/farmacología , Furosemida/farmacología , Regulación de la Expresión Génica , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Renina/genética , Factores de Transcripción SOXD/deficiencia , Factores de Transcripción SOXD/genética , Transducción de SeñalRESUMEN
The three SoxD proteins, Sox5, Sox6 and Sox13, represent closely related transcription factors with important roles during development. In the developing nervous system, SoxD proteins have so far been primarily studied in oligodendroglial cells and in interneurons of brain and spinal cord. In oligodendroglial cells, Sox5 and Sox6 jointly maintain the precursor state, interfere with terminal differentiation, and thereby ensure the proper timing of myelination in the central nervous system. Here we studied the role of SoxD proteins in Schwann cells, the functional counterpart of oligodendrocytes in the peripheral nervous system. We show that Schwann cells express Sox5 and Sox13 but not Sox6. Expression was transient and ceased with the onset of terminal differentiation. In mice with early Schwann cell-specific deletion of both Sox5 and Sox13, embryonic Schwann cell development was not substantially affected and progressed normally into the promyelinating stage. However, there was a mild and transient delay in the myelination of the peripheral nervous system of these mice. We therefore conclude that SoxD proteins-in stark contrast to their action in oligodendrocytes-promote differentiation and myelination in Schwann cells.
Asunto(s)
Vaina de Mielina/metabolismo , Neurogénesis/genética , Sistema Nervioso Periférico/crecimiento & desarrollo , Sistema Nervioso Periférico/metabolismo , Factores de Transcripción SOXD/deficiencia , Células de Schwann/metabolismo , Animales , Autoantígenos/genética , Biomarcadores , Eliminación de Gen , Expresión Génica , Inmunohistoquímica , Ratones , Familia de Multigenes , Vaina de Mielina/ultraestructura , Especificidad de Órganos , Factores de Transcripción SOXD/genética , Células de Schwann/ultraestructuraRESUMEN
The majority of apparently balanced translocation (ABT) carriers are phenotypically normal. However, several mechanisms were proposed to underlie phenotypes in affected ABT cases. In the current study, whole-genome mate-pair sequencing (WG-MPS) followed by Sanger sequencing was applied to further characterize de novo ABTs in three affected individuals. WG-MPS precisely mapped all ABT breakpoints and revealed three possible underlying molecular mechanisms. Firstly, in a t(X;1) carrier with hearing loss, a highly skewed X-inactivation pattern was observed and the der(X) breakpoint mapped ~87kb upstream an X-linked deafness gene namely POU3F4, thus suggesting an underlying long-range position effect mechanism. Secondly, cryptic complexity and a chromothripsis rearrangement was identified in a t(6;7;8;12) carrier with intellectual disability. Two translocations and a heterozygous deletion disrupted SOX5; a dominant nervous system development gene previously reported in similar patients. Finally, a direct gene disruption mechanism was proposed in a t(4;9) carrier with dysmorphic facial features and speech delay. In this case, the der(9) breakpoint directly disrupted NFIB, a gene involved in lung maturation and development of the pons with important functions in main speech processes. To conclude, in contrast to familial ABT cases with identical rearrangements and discordant phenotypes, where translocations are considered coincidental, translocations seem to be associated with phenotype presentation in affected de novo ABT cases. In addition, this study highlights the importance of investigating both coding and non-coding regions to decipher the underlying pathogenic mechanisms in these patients, and supports the potential introduction of low coverage WG-MPS in the clinical investigation of de novo ABTs.
Asunto(s)
Facies , Pérdida Auditiva/genética , Discapacidad Intelectual/genética , Trastornos del Desarrollo del Lenguaje/genética , Translocación Genética , Secuencia de Bases , Puntos de Rotura del Cromosoma , Femenino , Expresión Génica , Pérdida Auditiva/diagnóstico , Pérdida Auditiva/fisiopatología , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/fisiopatología , Cariotipo , Trastornos del Desarrollo del Lenguaje/diagnóstico , Trastornos del Desarrollo del Lenguaje/fisiopatología , Factores de Transcripción NFI/deficiencia , Factores de Transcripción NFI/genética , Factores del Dominio POU/deficiencia , Factores del Dominio POU/genética , Fenotipo , Factores de Transcripción SOXD/deficiencia , Factores de Transcripción SOXD/genética , Secuenciación Completa del GenomaRESUMEN
INTRODUCTION: The SOX5 gene encodes a transcription factor involved in the regulation of chondrogenesis and the development of the nervous system. CASE REPORT: We report a 10 years-old girl with developmental delay, behavior problems and dysmorphic features of this new syndrome with developmental delay. She had a 12p12 deletion involving SOX5. CONCLUSIONS: We review the reported cases, intragenic SOX5 deletions and larger 12p12 deletions encompassing SOX5. We analyze the genotype-phenotype associations and the genes involved in our patient.
TITLE: Microdelecion 12p12 que incluye el gen SOX5: un nuevo sindrome con alteracion del neurodesarrollo.Introduccion. El gen SOX5 codifica un factor de transcripcion implicado en la regulacion de la condrogenia y el desarrollo del sistema nervioso. Caso clinico. Niña de 10 anos con discapacidad intelectual, alteracion conductual y malformaciones menores de este nuevo sindrome con alteracion en el neurodesarrollo, con una delecion 12p12 que incluye el gen SOX5. Conclusiones. Se revisan los casos publicados tanto de deleciones intragenicas de SOX5 como de deleciones mas grandes que incluyen este gen, y se analizan las correlaciones genotipo-fenotipo y los genes implicados en esta paciente.
Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 12/ultraestructura , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Factores de Transcripción SOXD/genética , Anomalías Múltiples/genética , Centrómero/ultraestructura , Niño , Cromosomas Humanos Par 12/genética , Hibridación Genómica Comparativa , Femenino , Mutación de Línea Germinal , Humanos , Intrones/genética , Microcefalia/genética , Fenotipo , Factores de Transcripción SOXD/deficiencia , Conducta Autodestructiva/genética , Eliminación de Secuencia , SíndromeRESUMEN
We describe the role of Sox6 in cortical interneuron development, from a cellular to a behavioral level. We identify Sox6 as a protein expressed continuously within MGE-derived cortical interneurons from postmitotic progenitor stages into adulthood. Both its expression pattern and null phenotype suggests that Sox6 gene function is closely linked to that of Lhx6. In both Lhx6 and Sox6 null animals, the expression of PV and SST and the position of both basket and Martinotti neurons are abnormal. We find that Sox6 functions downstream of Lhx6. Electrophysiological analysis of Sox6 mutant cortical interneurons revealed that basket cells, even when mispositioned, retain characteristic but immature fast-spiking physiological features. Our data suggest that Sox6 is not required for the specification of MGE-derived cortical interneurons. It is, however, necessary for their normal positioning and maturation. As a consequence, the specific removal of Sox6 from this population results in a severe epileptic encephalopathy.
Asunto(s)
Diferenciación Celular/fisiología , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Interneuronas/citología , Interneuronas/fisiología , Factores de Transcripción SOXD/fisiología , Potenciales de Acción/fisiología , Animales , Electroencefalografía/métodos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Factores de Transcripción SOXD/deficiencia , Factores de Transcripción SOXD/genéticaRESUMEN
The neuronal diversity of the CNS emerges largely from controlled spatial and temporal segregation of cell type-specific molecular regulators. We found that the transcription factor SOX6 controls the molecular segregation of dorsal (pallial) from ventral (subpallial) telencephalic progenitors and the differentiation of cortical interneurons, regulating forebrain progenitor and interneuron heterogeneity. During corticogenesis in mice, SOX6 and SOX5 were largely mutually exclusively expressed in pallial and subpallial progenitors, respectively, and remained mutually exclusive in a reverse pattern in postmitotic neuronal progeny. Loss of SOX6 from pallial progenitors caused their inappropriate expression of normally subpallium-restricted developmental controls, conferring mixed dorsal-ventral identity. In postmitotic cortical interneurons, loss of SOX6 disrupted the differentiation and diversity of cortical interneuron subtypes, analogous to SOX5 control over cortical projection neuron development. These data indicate that SOX6 is a central regulator of both progenitor and cortical interneuron diversity during neocortical development.