Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.632
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 585(7824): 303-308, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32879488

RESUMEN

Most general anaesthetics and classical benzodiazepine drugs act through positive modulation of γ-aminobutyric acid type A (GABAA) receptors to dampen neuronal activity in the brain1-5. However, direct structural information on the mechanisms of general anaesthetics at their physiological receptor sites is lacking. Here we present cryo-electron microscopy structures of GABAA receptors bound to intravenous anaesthetics, benzodiazepines and inhibitory modulators. These structures were solved in a lipidic environment and are complemented by electrophysiology and molecular dynamics simulations. Structures of GABAA receptors in complex with the anaesthetics phenobarbital, etomidate and propofol reveal both distinct and common transmembrane binding sites, which are shared in part by the benzodiazepine drug diazepam. Structures in which GABAA receptors are bound by benzodiazepine-site ligands identify an additional membrane binding site for diazepam and suggest an allosteric mechanism for anaesthetic reversal by flumazenil. This study provides a foundation for understanding how pharmacologically diverse and clinically essential drugs act through overlapping and distinct mechanisms to potentiate inhibitory signalling in the brain.


Asunto(s)
Anestésicos Generales/química , Anestésicos Generales/farmacología , Barbitúricos/química , Barbitúricos/farmacología , Benzodiazepinas/química , Benzodiazepinas/farmacología , Microscopía por Crioelectrón , Receptores de GABA-A/química , Regulación Alostérica/efectos de los fármacos , Anestésicos Generales/metabolismo , Barbitúricos/metabolismo , Benzodiazepinas/metabolismo , Bicuculina/química , Bicuculina/metabolismo , Bicuculina/farmacología , Sitios de Unión , Unión Competitiva/efectos de los fármacos , Diazepam/química , Diazepam/metabolismo , Diazepam/farmacología , Electrofisiología , Etomidato/química , Etomidato/metabolismo , Etomidato/farmacología , Flumazenil/farmacología , Antagonistas de Receptores de GABA-A/química , Antagonistas de Receptores de GABA-A/metabolismo , Antagonistas de Receptores de GABA-A/farmacología , Humanos , Ligandos , Modelos Moleculares , Conformación Molecular , Simulación de Dinámica Molecular , Fenobarbital/química , Fenobarbital/metabolismo , Fenobarbital/farmacología , Picrotoxina/química , Picrotoxina/metabolismo , Picrotoxina/farmacología , Propofol/química , Propofol/metabolismo , Propofol/farmacología , Receptores de GABA-A/metabolismo , Receptores de GABA-A/ultraestructura , Ácido gamma-Aminobutírico/química , Ácido gamma-Aminobutírico/metabolismo , Ácido gamma-Aminobutírico/farmacología
2.
Toxicol Appl Pharmacol ; 487: 116959, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38734151

RESUMEN

Pethoxamid (PXA) is a chloroacetamide herbicide that works by inhibiting the germination of target weeds in crops. PXA is not a genotoxic agent, however, in a two-year chronic toxicity study, incidence of thyroid follicular cell hyperplasia was observed in male rats treated at a high dose. Many non-mutagenic chemicals, including agrochemicals are known to produce thyroid hyperplasia in rodents through a hepatic metabolizing enzyme induction mode of action (MoA). In this study, the effects of oral gavage PXA treatment at 300 mg/kg for 7 days on the disposition of intravenously (iv) administered radio-labeled thyroxine ([125I]-T4) was assessed in bile-duct cannulated (BDC) rats. Another group of animals were treated with phenobarbital (PB, 100 mg/kg), a known enzyme inducer, serving as a positive control. The results showed significant increase (p < 0.01) in the mean liver weights in the PB and PXA-treated groups relative to the control group. The serum total T4 radioactivity Cmax and AUC0-4 values for PB and PXA-treated groups were lower than for the control group, suggesting increased clearance from serum. The mean percentages of administered radioactivity excreted in bile were 7.96 ± 0.38%, 16.13 ± 5.46%, and 11.99 ± 2.80% for the control, PB and PXA groups, respectively, indicating increased clearance via the bile in the treated animals. These data indicate that PXA can perturb the thyroid hormone homeostasis in rats by increasing T4 elimination in bile, possibly through enzyme induction mechanism similar to PB. In contrast to humans, the lack of high affinity thyroid binding globulin (TBG) in rats perhaps results in enhanced metabolism of T4 by uridine diphosphate glucuronosyl transferase (UGT). Since this liver enzyme induction MoA for thyroid hyperplasia by PB is known to be rodent specific, PXA effects on thyroid can also be considered not relevant to humans. The data from this study also suggest that incorporating a BDC rat model to determine thyroid hormone disposition using [125I]-T4 is valuable in a thyroid mode of action analysis.


Asunto(s)
Herbicidas , Hígado , Ratas Sprague-Dawley , Tiroxina , Animales , Tiroxina/sangre , Masculino , Ratas , Hígado/efectos de los fármacos , Hígado/metabolismo , Herbicidas/toxicidad , Radioisótopos de Yodo , Tamaño de los Órganos/efectos de los fármacos , Fenobarbital/farmacología , Glándula Tiroides/efectos de los fármacos , Glándula Tiroides/metabolismo , Glándula Tiroides/patología
3.
Xenobiotica ; 54(5): 217-225, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38441495

RESUMEN

Understanding cytochrome P450 (CYP) enzymes in the canine intestine is vital for predicting drug metabolism and developing safer oral medications. This study evaluates canine colonoids as a model to assess the expression and induction of essential intestinal CYP enzymes.Canine colonoids were cultured in expansion medium (EM) with Wnt-3A and in differentiation medium (DM) without Wnt-3A. We assessed the mRNA expression of CYP2B11, CYP2C21, CYP3A12, and CYP3A98 using qPCR and examined the effects of rifampicin and phenobarbital as inducers.Our findings show that DM significantly increased the mRNA expression of CYP3A98 and CYP2B11, but not CYP3A12, compared to EM. CYP2C21, not typically expressed in the intestine, remained unexpressed in colonoids. Rifampicin induced CYP3A98, aligning with pregnane x receptor (PXR) regulation, while phenobarbital did not, suggesting no constitutive androstane receptor (CAR) involvement. CYP2B11 did not respond to either inducer, suggesting alternative regulatory pathways in canine colonoids.This study is a pioneering effort to establish conditions for studying P450 expression in canine colonoids, confirming significant CYP3A98 expression in the canine intestine. It demonstrated colonoids can induce CYP activity post drug treatments. Further research is needed to enhance species-specific drug metabolism understanding and validate this model for broader applications.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Animales , Perros , Sistema Enzimático del Citocromo P-450/metabolismo , Rifampin/farmacología , Fenobarbital/farmacología , Intestinos/efectos de los fármacos , Organoides/metabolismo , Organoides/efectos de los fármacos , Mucosa Intestinal/metabolismo , Inductores de las Enzimas del Citocromo P-450/farmacología
4.
J Emerg Med ; 66(4): e516-e522, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38485572

RESUMEN

BACKGROUND: Phenobarbital has been used in the emergency department (ED) as both a primary and adjunctive medication for alcohol withdrawal, but previous studies evaluating its impact on patient outcomes are limited by heterogenous symptom severity. OBJECTIVES: We compared the clinical outcomes of ED patients with moderate alcohol withdrawal who received phenobarbital, with or without benzodiazepines, with patients who received benzodiazepine treatment alone. METHODS: This is a retrospective cohort study conducted at a single academic medical center utilizing chart review of ED patients with moderate alcohol withdrawal between 2015 and 2020. Patient encounters were classified into two treatment categories based on medication treatment: phenobarbital alone or in combination with benzodiazepines vs. benzodiazepines alone. Chi-square test or Fisher's exact was used to analyze categorical variables and the Student's t-test for continuous data. RESULTS: Among the 287 encounters that met inclusion criteria, 100 received phenobarbital, compared with 187 that received benzodiazepines alone. Patients who received phenobarbital were provided significantly more lorazepam equivalents. There was a significant difference in the percentage of patient encounters that required admission to the hospital in the phenobarbital cohort compared with the benzodiazepine cohort (75% vs. 43.3%, p < 0.001). However, there was no difference in admission level of care to the floor (51.2% vs. 52.0%), stepdown (33.8% vs. 28%), or intensive care unit (15% vs. 20%), respectively. CONCLUSIONS: Patients who received phenobarbital for moderate alcohol withdrawal were more likely to be admitted to the hospital, but there was no difference in admission level of care when compared with patients who received benzodiazepines alone. Patients who received phenobarbital were provided greater lorazepam equivalents in the ED.


Asunto(s)
Alcoholismo , Síndrome de Abstinencia a Sustancias , Humanos , Benzodiazepinas/farmacología , Benzodiazepinas/uso terapéutico , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Estudios Retrospectivos , Lorazepam/farmacología , Lorazepam/uso terapéutico , Fenobarbital/farmacología , Fenobarbital/uso terapéutico , Servicio de Urgencia en Hospital
5.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38338726

RESUMEN

Phenobarbital (PB) remains the first-line medication for neonatal seizures. Yet, seizures in many newborns, particularly those associated with perinatal ischemia, are resistant to PB. Previous animal studies have shown that in postnatal day P7 mice pups with ischemic stroke induced by unilateral carotid ligation, the tyrosine receptor kinase B (TrkB) antagonist ANA12 (N-[2-[[(hexahydro-2-oxo-1H-azepin-3-yl)amino]carbonyl]phenyl]-benzo[b]thiophene-2-carboxamide, 5 mg/kg) improved the efficacy of PB in reducing seizure occurrence. To meet optimal standards of effectiveness, a wider range of ANA12 doses must be tested. Here, using the unilateral carotid ligation model, we tested the effectiveness of higher doses of ANA12 (10 and 20 mg/kg) on the ability of PB to reduce seizure burden, ameliorate cell death (assessed by Fluoro-Jade staining), and affect neurodevelopment (righting reflex, negative geotaxis test, open field test). We found that a single dose of ANA12 (10 or 20 mg/kg) given 1 h after unilateral carotid ligation in P7 pups reduced seizure burden and neocortical and striatal neuron death without impairing developmental reflexes. In conclusion, ANA12 at a range of doses (10-20 mg/kg) enhanced PB effectiveness for the treatment of perinatal ischemia-related seizures, suggesting that this agent might be a clinically safe and effective adjunctive agent for the treatment of pharmacoresistant neonatal seizures.


Asunto(s)
Epilepsia , Hipoxia-Isquemia Encefálica , Animales , Ratones , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Animales Recién Nacidos , Modelos Animales de Enfermedad , Convulsiones/tratamiento farmacológico , Convulsiones/etiología , Convulsiones/metabolismo , Fenobarbital/farmacología , Fenobarbital/uso terapéutico , Epilepsia/tratamiento farmacológico , Isquemia/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/tratamiento farmacológico
6.
Drug Metab Dispos ; 51(2): 210-218, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36351837

RESUMEN

Phenobarbital (PB) is a commonly prescribed anti-epileptic drug that can also benefit newborns from hyperbilirubinemia. Being the first drug demonstrating hepatic induction of cytochrome P450 (CYP), PB has since been broadly used as a model compound to study xenobiotic-induced drug metabolism and clearance. Mechanistically, PB-mediated CYP induction is linked to a number of nuclear receptors, such as the constitutive androstane receptor (CAR), pregnane X receptor (PXR), and estrogen receptor α, with CAR being the predominant regulator. Unlike prototypical agonistic ligands, PB-mediated activation of CAR does not involve direct binding with the receptor. Instead, dephosphorylation of threonine 38 in the DNA-binding domain of CAR was delineated as a key signaling event underlying PB-mediated indirect activation of CAR. Further studies revealed that such phosphorylation sites appear to be highly conserved among most human nuclear receptors. Interestingly, while PB is a pan-CAR activator in both animals and humans, PB activates human but not mouse PXR. The species-specific role of PB in gene regulation is a key determinant of its implication in xenobiotic metabolism, drug-drug interactions, energy homeostasis, and cell proliferation. In this review, we summarize the recent progress in our understanding of PB-provoked transactivation of nuclear receptors with a focus on CAR and PXR. SIGNIFICANCE STATEMENT: Extensive studies using PB as a research tool have significantly advanced our understanding of the molecular basis underlying nuclear receptor-mediated drug metabolism, drug-drug interactions, energy homeostasis, and cell proliferation. In particular, CAR has been established as a cell signaling-regulated nuclear receptor in addition to ligand-dependent functionality. This mini-review highlights the mechanisms by which PB transactivates CAR and PXR.


Asunto(s)
Receptores de Esteroides , Recién Nacido , Animales , Humanos , Receptores de Esteroides/metabolismo , Xenobióticos/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Hígado/metabolismo , Fenobarbital/farmacología , Fenobarbital/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo
7.
Epilepsy Behav ; 142: 109189, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37037061

RESUMEN

Birth asphyxia and the resulting hypoxic-ischemic encephalopathy (HIE) are highly associated with perinatal and neonatal death, neonatal seizures, and an adverse later-life outcome. Currently used drugs, including phenobarbital and midazolam, have limited efficacy to suppress neonatal seizures. There is a medical need to develop new therapies that not only suppress neonatal seizures but also prevent later-life consequences. We have previously shown that the loop diuretic bumetanide does not potentiate the effects of phenobarbital in a rat model of birth asphyxia. Here we compared the effects of bumetanide (0.3 or 10 mg/kg i.p.), midazolam (1 mg/kg i.p.), and a combination of bumetanide and midazolam on neonatal seizures and later-life outcomes in this model. While bumetanide at either dose was ineffective when administered alone, the higher dose of bumetanide markedly potentiated midazolam's effect on neonatal seizures. Median bumetanide brain levels (0.47-0.53 µM) obtained with the higher dose were in the range known to inhibit the Na-K-Cl-cotransporter NKCC1 but it remains to be determined whether brain NKCC1 inhibition was underlying the potentiation of midazolam. When behavioral and cognitive alterations were examined over three months after asphyxia, treatment with the bumetanide/midazolam combination, but not with bumetanide or midazolam alone, prevented impairment of learning and memory. Furthermore, the combination prevented the loss of neurons in the dentate hilus and aberrant mossy fiber sprouting in the CA3a area of the hippocampus. The molecular mechanisms that explain that bumetanide potentiates midazolam but not phenobarbital in the rat model of birth asphyxia remain to be determined.


Asunto(s)
Asfixia Neonatal , Epilepsia , Humanos , Recién Nacido , Ratas , Animales , Bumetanida/uso terapéutico , Bumetanida/farmacología , Midazolam/uso terapéutico , Anticonvulsivantes/uso terapéutico , Anticonvulsivantes/farmacología , Asfixia/complicaciones , Asfixia/tratamiento farmacológico , Nacimiento a Término , Miembro 2 de la Familia de Transportadores de Soluto 12 , Fenobarbital/uso terapéutico , Fenobarbital/farmacología , Epilepsia/tratamiento farmacológico , Asfixia Neonatal/complicaciones , Asfixia Neonatal/tratamiento farmacológico , Convulsiones/tratamiento farmacológico , Convulsiones/etiología
8.
Biol Pharm Bull ; 46(1): 86-94, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36596528

RESUMEN

From our previous observation that the anesthetic effects of phenobarbital potentiate in rats with a decreased cerebral protein expression of the potassium chloride cotransporter KCC2 (SLC12A5), an in vivo study was conducted to clarify whether the pharmacological effect of phenobarbital alters by stimulating the cerebral tropomyosin receptor kinase B (TrkB) that is known to down-regulate the KCC2 protein expression. The stimulation was performed in rats with repetitious intraperitoneal administration of a TrkB agonist, namely 7,8-dihydroxyflavone (DHF). After that, the rats underwent an intraventricular infusion of phenobarbital using a dwelled cannula, and the onset time of the phenobarbital-induced general anesthesia was determined. In addition, their brain tissues were excised and cerebral cortices were collected. Then, subcellular fractions were prepared and the cerebral expression of various proteins involving the anesthetic effects of phenobarbital was examined. It was demonstrated that phenobarbital induced general anesthesia about 2 times faster in rats receiving the DHF treatment than in control rats, and that the phenobarbital amount in the brain tissue at the onset time of anesthesia was lower in rats with the treatment. Western blotting showed that the cerebral protein expression of KCC2 decreases, and the phosphorylation of the TrkB protein increases with the DHF treatment. These observations indicate that the anesthetic effects of phenobarbital potentiate with the TrkB stimulation and the resultant decrease in the cerebral KCC2 protein expression. The results also suggest that the TrkB protein and its phosphorylation status may be a key modulator of the pharmacological efficacy of phenobarbital.


Asunto(s)
Flavonas , Simportadores , Ratas , Animales , Tropomiosina/metabolismo , Fenobarbital/farmacología , Flavonas/farmacología , Receptor trkB/metabolismo
9.
Regul Toxicol Pharmacol ; 137: 105283, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36372265

RESUMEN

Concern has been raised that thyroid hormone disruptors (THDs) may potentially interfere with the developing brain, but effects of mild suppression of maternal THs by environmental contaminants on neonatal brain development are not fully understood. The comparative thyroid assay (CTA) is a screening test for offspring THDs, but it requires several animals and is criticized that reliance on serum THs alone as predictive markers of brain malfunction is inadequate. To verify feasibility of the downsized CTA but additional examination of brain THs levels and histopathology, we commenced internal-validation studies. This paper presents the data of the study where 6-propylthiouracil (6-PTU, 10 ppm) and sodium phenobarbital (NaPB, 1000 ppm) were dosed by feeding from gestational days (GD)6-20, and from GD6 to lactation day 21. The modified CTA detected 6-PTU-induced severe (>70%) suppression of serum THs in dams, with >50% suppressed serum/brain TH levels in offspring and brain heterotopia in postnatal day 21 pups. The modified CTA also detected NaPB-induced mild (<35%) suppression of serum THs in dams, with mild (<35%) reduction of serum/brain TH levels in fetuses but not in pups. These findings suggest that the modified CTA may have a potential as a screening test for offspring THDs.


Asunto(s)
Propiltiouracilo , Glándula Tiroides , Femenino , Animales , Ratas , Propiltiouracilo/toxicidad , Estudios de Factibilidad , Hormonas Tiroideas , Fenobarbital/farmacología , Encéfalo , Sodio/farmacología
10.
Biopharm Drug Dispos ; 44(5): 351-357, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37032489

RESUMEN

Certain pathological conditions, such as inflammation, are known to affect basal cytochrome P450 (CYP) expression by modulating transcriptional regulation, and the pharmacokinetics of drugs can vary among patients. However, changes in drug-induced CYP expression under pathological conditions have not been elucidated in detail. Here, we investigated the effects of hepatic inflammation and injury on phenobarbital-induced expression of CYP isoforms in mice. Phenobarbital was administered once as a CYP inducer in the carbon tetrachloride-induced hepatitis model mice. The mRNA expression levels of Cyp3a11 and Cyp2b10 in the liver and small intestine were measured using reverse transcription polymerase chain reaction. The enzymatic activity of CYP3A in liver S9 was evaluated using midazolam as the substrate. Phenobarbital increased the mRNA expression of Cyp3a11 and Cyp2b10 in the liver of healthy mice, but not in the small intestine. Increased mRNA expression of hepatic Cyp3a11 and Cyp2b10 by phenobarbital was significantly suppressed in the hepatitis model mice. Hepatitis also suppressed the increased CYP3A enzymatic activity induced by phenobarbital in liver S9, consistent with the results of Cyp3a11 mRNA expression. These results suggest that the inducibility of CYP by phenobarbital may vary in patients with hepatitis, indicating that pharmacokinetic drug-drug interactions can be altered under certain pathological conditions.


Asunto(s)
Tetracloruro de Carbono , Hepatitis , Ratones , Humanos , Animales , Tetracloruro de Carbono/metabolismo , Tetracloruro de Carbono/farmacología , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Fenobarbital/farmacología , Fenobarbital/metabolismo , Hígado/metabolismo , Regulación Enzimológica de la Expresión Génica , Hepatitis/metabolismo , Inflamación/metabolismo , ARN Mensajero/metabolismo
11.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36674911

RESUMEN

Numerous botanical drugs containing coumarins and terpenes are used in ethnomedicine all over the world for their various therapeutic properties, especially those affecting the CNS system. The treatment of epilepsy is based on antiseizure medications (ASMs), although novel strategies using naturally occurring substances with confirmed antiseizure properties are being developed nowadays. The aim of this study was to determine the anticonvulsant profiles of scoparone (a simple coumarin) and borneol (a bicyclic monoterpenoid) when administered separately and in combination, as well as their impact on the antiseizure effects of four classic ASMs (carbamazepine, phenytoin, phenobarbital and valproate) in the mouse model of maximal electroshock-induced (MES) tonic-clonic seizures. MES-induced seizures were evoked in mice receiving the respective doses of the tested natural compounds and classic ASMs (when applied alone or in combinations). Interactions for two-drug and three-drug mixtures were assessed by means of isobolographic transformation of data. Polygonograms were used to illustrate the types of interactions occurring among drugs. The total brain content of ASMs was measured in mice receiving the respective drug treatments with fluorescent polarization immunoassay. Scoparone and borneol, when administered alone, exerted anticonvulsant properties in the mouse MES model. The two-drug mixtures of scoparone with valproate, borneol with phenobarbital and borneol with valproate produced synergistic interactions in the mouse MES model, while the remaining tested two-drug mixtures produced additivity. The three-drug mixtures of scoparone + borneol with valproate and phenobarbital produced synergistic interactions in the mouse MES model. Verification of total brain concentrations of valproate and phenobarbital revealed that borneol elevated the total brain concentrations of both ASMs, while scoparone did not affect the brain content of these ASMs in mice. The synergistic interaction of scoparone with valproate observed in the mouse MES model is pharmacodynamic in nature. Borneol elevated the brain concentrations of the tested ASMs, contributing to the pharmacokinetic nature of the observed synergistic interactions with valproate and phenobarbital in the mouse MES model.


Asunto(s)
Anticonvulsivantes , Ácido Valproico , Animales , Ratones , Anticonvulsivantes/uso terapéutico , Anticonvulsivantes/farmacocinética , Ácido Valproico/farmacología , Ácido Valproico/uso terapéutico , Electrochoque , Interacciones Farmacológicas , Cumarinas/farmacología , Cumarinas/uso terapéutico , Convulsiones/tratamiento farmacológico , Convulsiones/etiología , Fenobarbital/farmacología , Fenobarbital/uso terapéutico , Encéfalo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga
12.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36768937

RESUMEN

Varenicline (VAR) is a partial agonist of brain α4ß2 nicotinic acetylcholine receptors recommended as a first line pharmacotherapy for smoking cessation. The aim of this study was to examine whether VAR affects the protective activity of four classic antiseizure medications, i.e., carbamazepine (CBZ), phenobarbital (PB), phenytoin (PHT), and valproate (VPA) on maximal electroshock (MES)-induced seizures, which may serve as an experimental model of human-generalized tonic-clonic seizures in mice. VAR administered intraperitoneally (i.p.) at a subthreshold dose of 0.5 mg/kg decreased the protective activity of CBZ against MES-induced convulsions, increasing its median effective dose (ED50) from 10.92 ± 1.0 to 18.15 ± 1.73 mg/kg (p < 0.01). The effect of VAR was dose-dependent because a lower dose of VAR (0.25 mg/kg) failed to antagonize the protective activity of CBZ. VAR administered at the subthreshold dose of 0.5 mg/kg had no impact on the protective activity of PB, PHT, and VPA in the mouse MES model. The inhibitory effect of VAR on the protective activity of CBZ against tonic-clonic convulsions most likely resulted from the pharmacodynamic mechanism(s) and was not associated with the changes in total brain concentrations of CBZ. VAR-evoked alterations in the anticonvulsive activity of CBZ may be of serious concern for epileptic tobacco smokers.


Asunto(s)
Anticonvulsivantes , Convulsiones , Humanos , Ratones , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Vareniclina/farmacología , Vareniclina/uso terapéutico , Electrochoque/efectos adversos , Convulsiones/tratamiento farmacológico , Convulsiones/etiología , Encéfalo , Carbamazepina/farmacología , Fenobarbital/farmacología , Fenobarbital/uso terapéutico , Ácido Valproico/farmacología , Fenitoína , Relación Dosis-Respuesta a Droga , Modelos Animales de Enfermedad
13.
Drug Metab Dispos ; 50(7): 1019-1026, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35184041

RESUMEN

Pregnane X receptor (PXR) and constitutively active receptor/constitutive androstane receptor (CAR) are xenobiotic-responsible transcription factors belonging to the same nuclear receptor gene subfamily and highly expressed in the liver. These receptors are activated by a variety of chemicals and play pivotal roles in many liver functions, including xenobiotic metabolism and disposition. Phenobarbital, an enzyme inducer and liver tumor promoter, activates both rodent and human CAR but causes liver tumors only in rodents. Although the precise mechanism for phenobarbital/CAR-mediated liver tumor formation remains to be established, intracellular pathways, including the Hippo pathway/Yes-associated protein-TEA-domain family members system and ß-catenin signaling, seem to be involved. In contrast to CAR, previous findings by our group suggest that PXR activation does not promote hepatocyte proliferation but it enhances the proliferation induced by various stimuli. Moreover, and surprisingly, PXR may have antitumor effects in both rodents and humans by targeting inflammatory cytokine signals, angiogenesis and epithelial-mesenchymal transition. In this review, we summarize the current knowledge on the associations of PXR and CAR with hepatocyte proliferation and liver tumorigenesis and their molecular mechanisms and species differences. SIGNIFICANCE STATEMENT: Pregnane X receptor and constitutively active receptor/constitutive androstane receptor have very similar functions in the gene regulation associated with xenobiotic disposition, as suggested by their identification as xenosensors for enzyme induction. In contrast, recent reports clearly suggest that these receptors play distinct roles in the control of hepatocyte proliferation and liver cancer development. Understanding these differences at the molecular level may help us evaluate the human safety of chemical compounds and develop novel drugs targeting liver cancers.


Asunto(s)
Neoplasias Hepáticas , Receptores de Esteroides , Receptor de Androstano Constitutivo , Humanos , Hígado/metabolismo , Neoplasias Hepáticas/metabolismo , Fenobarbital/farmacología , Receptor X de Pregnano/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Xenobióticos/metabolismo
14.
Drug Metab Dispos ; 50(4): 374-385, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35094979

RESUMEN

The proteomes of ordered and disordered lipid microdomains in rat liver microsomes from control and phenobarbital (PB)-treated rats were determined after solubilization with Brij 98 and analyzed by tandem mass tag (TMT)-liquid chromatography-mass spectrometry (LC-MS). This allowed characterization of the liver microsomal proteome and the effects of phenobarbital-mediated induction, focusing on quantification of the relative levels of the drug-metabolizing enzymes._The microsomal proteome from control rats was represented by 333 (23%) proteins from ordered lipid microdomains, 517 (36%) proteins from disordered lipid domains, and 587 (41%) proteins that uniformly distributed between lipid microdomains. Most enzymes related to drug metabolism were mainly localized in disordered lipid microdomains. However, cytochrome P450 (CYP) 1A2, multiple forms of CYP2D, and several forms of UDP glucuronosyltransferases (UGT) 1A1 and 1A6) localized to ordered lipid microdomains. Other drug-metabolizing enzymes, including several forms of cytochromes P450, were uniformly distributed between the ordered and disordered regions. The redox partners, NADPH-cytochrome P450 reductase and cytochrome b5, localized to disordered microdomains. PB induction resulted in only modest changes in protein localization. Less than five proteins were variably associated with the ordered and disordered membrane microdomains in PB and control microsomes. PB induction was associated with fewer proteins localizing in the disordered membranes and more being uniformly distributed or localized to ordered domains. Ingenuity Pathway Analysis (IPA) was used to ascertain the effect of PB on cellular pathways, resulting in attenuation of pathways related to energy storage/utilization and overall cellular signaling and an increase in those related to degradative pathways. SIGNIFICANCE STATEMENT: This work identifies the lipid microdomain localization of the proteome from control and phenobarbital-induced rat liver microsomes. Thus, it provides an initial framework to understand how lipid/protein segregation influences protein-protein interactions in a tissue extract commonly used for studies in drug metabolism and uses bioinformatics to elucidate the effects of phenobarbital induction on cellular pathways.


Asunto(s)
Lípidos de la Membrana , Microsomas Hepáticos , Animales , Biología Computacional , Sistema Enzimático del Citocromo P-450/metabolismo , Inducción Enzimática , Lípidos de la Membrana/metabolismo , Microsomas Hepáticos/metabolismo , Fenobarbital/metabolismo , Fenobarbital/farmacología , Aceites de Plantas , Polietilenglicoles , Proteómica , Ratas
15.
Int J Mol Sci ; 23(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35408925

RESUMEN

In cattle, phenobarbital (PB) upregulates target drug-metabolizing enzyme (DME) mRNA levels. However, few data about PB's post-transcriptional effects are actually available. This work provides the first, and an almost complete, characterization of PB-dependent changes in DME catalytic activities in bovine liver using common probe substrates and confirmatory immunoblotting investigations. As expected, PB increased the total cytochrome P450 (CYP) content and the extent of metyrapone binding; moreover, an augmentation of protein amounts and related enzyme activities was observed for known PB targets such as CYP2B, 2C, and 3A, but also CYP2E1. However, contradictory results were obtained for CYP1A, while a decreased catalytic activity was observed for flavin-containing monooxygenases 1 and 3. The barbiturate had no effect on the chosen hydrolytic and conjugative DMEs. For the first time, we also measured the 26S proteasome activity, and the increase observed in PB-treated cattle would suggest this post-translational event might contribute to cattle DME regulation. Overall, this study increased the knowledge of cattle hepatic drug metabolism, and further confirmed the presence of species differences in DME expression and activity between cattle, humans, and rodents. This reinforced the need for an extensive characterization and understanding of comparative molecular mechanisms involved in expression, regulation, and function of DMEs.


Asunto(s)
Fenobarbital , Xenobióticos , Animales , Bovinos , Sistema Enzimático del Citocromo P-450/metabolismo , Inducción Enzimática , Hígado/metabolismo , Microsomas Hepáticos/metabolismo , Fenobarbital/farmacología , Xenobióticos/metabolismo
16.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36232629

RESUMEN

Trimetazidine (TMZ), an anti-ischemic drug for improving cellular metabolism, is mostly administered to patients with poorly controlled ischemic heart disease (IHD). Since IHD is considered the most frequent causative factor of cardiac arrhythmias, and these often coexist with seizure disorders, we decided to investigate the effect of TMZ in the electroconvulsive threshold test (ECT) and its influence on the action of four first-generation antiepileptic drugs in the maximal electroshock test (MES) in mice. The TMZ (up to 120 mg/kg) did not affect the ECT, but applied at doses of 20-120 mg/kg it decreased the antielectroshock action of phenobarbital. The TMZ (50-120 mg/kg) reduced the effect of phenytoin, and, when administered at a dose of 120 mg/kg, it diminished the action of carbamazepine. All of these revealed interactions seem to be pharmacodynamic, since the TMZ did not affect the brain levels of antiepileptic drugs. Furthermore, the combination of TMZ with valproate (but not with other antiepileptic drugs) significantly impaired motor coordination, evaluated using the chimney test. Long-term memory, assessed with a passive-avoidance task, was not affected by either the TMZ or its combinations with antiepileptic drugs. The obtained results suggest that TMZ may not be beneficial as an add-on therapy in patients with IHD and epilepsy.


Asunto(s)
Epilepsia , Trimetazidina , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Reacción de Prevención , Encéfalo/metabolismo , Carbamazepina/farmacología , Carbamazepina/uso terapéutico , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Sinergismo Farmacológico , Electrochoque/efectos adversos , Epilepsia/metabolismo , Ratones , Fenobarbital/farmacología , Fenobarbital/uso terapéutico , Fenitoína , Trimetazidina/farmacología , Trimetazidina/uso terapéutico , Ácido Valproico/uso terapéutico
17.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35408852

RESUMEN

Umbelliferone (7-hydroxycoumarin; UMB) is a coumarin with many biological properties, including antiepileptic activity. This study evaluated the effect of UMB on the ability of classical and novel antiepileptic drugs (e.g., lacosamide (LCM), levetiracetam (LEV), phenobarbital (PB) and valproate (VPA)) to prevent seizures evoked by the 6-Hz corneal-stimulation-induced seizure model. The study also evaluated the influence of this coumarin on the neuroprotective properties of these drugs in two in vitro models of neurodegeneration, including trophic stress and excitotoxicity. The results indicate that UMB (100 mg/kg, i.p.) significantly enhanced the anticonvulsant action of PB (p < 0.01) and VPA (p < 0.05), but not that of LCM orLEV, in the 6-Hz test. Whether alone or in combination with other anticonvulsant drugs (at their ED50 values from the 6-Hz test), UMB (100 mg/kg) did not affect motor coordination; skeletal muscular strength and long-term memory, as determined in the chimney; grip strength; or passive avoidance tests, respectively. Pharmacokinetic characterization revealed that UMB had no impact on total brain concentrations of PB or VPA in mice. The in vitro study indicated that UMB has neuroprotective properties. Administration of UMB (1 µg/mL), together with antiepileptic drugs, mitigated their negative impact on neuronal viability. Under trophic stress (serum deprivation) conditions, UMB enhanced the neurotrophic abilities of all the drugs used. Moreover, this coumarin statistically enhanced the neuroprotective effects of PB (p < 0.05) and VPA (p < 0.001) in the excitotoxicity model of neurodegeneration. The obtained results clearly indicate a positive effect of UMB on the anticonvulsant and neuroprotective properties of the selected drugs.


Asunto(s)
Anticonvulsivantes , Umbeliferonas , Animales , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/uso terapéutico , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Electrochoque , Lacosamida/uso terapéutico , Ratones , Fenobarbital/farmacología , Convulsiones/tratamiento farmacológico , Convulsiones/prevención & control , Umbeliferonas/farmacología , Umbeliferonas/uso terapéutico
18.
Molecules ; 27(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36558088

RESUMEN

Ranolazine, an antianginal and antiarrhythmic drug blocking slow inactivating persistent sodium currents, is described as a compound with anticonvulsant potential. Since arrhythmia often accompanies seizures, patients suffering from epilepsy are frequently co-treated with antiepileptic and antiarrhythmic drugs. The aim of this study was to evaluate the effect of ranolazine on maximal-electroshock (MES)-induced seizures in mice as well as interactions between ranolazine and classical antiepileptic drugs in this model of epilepsy. Types of pharmacodynamic interactions were established by isobolographic analysis of obtained data. The main findings of the study were that ranolazine behaves like an antiseizure drug in the MES test. Moreover, ranolazine interacted antagonistically with carbamazepine, phenytoin, and phenobarbital in the proportions of 1:3 and 1:1. These interactions occurred pharmacodynamic, since ranolazine did not change the brain levels of antiepileptic drugs measured in the fluorescence polarization immunoassay. Ranolazine and its combinations with carbamazepine, phenytoin, and phenobarbital did not impair motor coordination evaluated in the chimney test. Unfortunately, an attempt to conduct a passive avoidance task (evaluating long-term memory) resulted in ranolazine-induced delayed lethality. In conclusion, ranolazine exhibits clear-cut anticonvulsant properties in the MES test but interacts antagonistically with some antiepileptic drugs. The obtained results need confirmation in clinical studies. The mechanisms of ranolazine-induced toxicity require specific explanation.


Asunto(s)
Anticonvulsivantes , Epilepsia , Animales , Ratones , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Ranolazina/farmacología , Ranolazina/uso terapéutico , Fenitoína/farmacología , Interacciones Farmacológicas , Convulsiones/tratamiento farmacológico , Convulsiones/etiología , Epilepsia/tratamiento farmacológico , Carbamazepina/farmacología , Fenobarbital/farmacología , Encéfalo , Electrochoque/efectos adversos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Reacción de Prevención
19.
Hum Mol Genet ; 28(11): 1755-1767, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30615115

RESUMEN

Acute intermittent porphyria (AIP) is an inborn error of heme biosynthesis due to the deficiency of hydroxymethylbilane synthase (HMBS) activity. Human AIP heterozygotes have episodic acute neurovisceral attacks that typically start after puberty, whereas patients with homozygous dominant AIP (HD-AIP) have early-onset chronic neurological impairment, including ataxia and psychomotor retardation. To investigate the dramatically different manifestations, knock-in mice with human HD-AIP missense mutations c.500G>A (p.Arg167Glu) or c.518_519GC>AG (p.Arg173Glu), designated R167Q or R173Q mice, respectively, were generated and compared with the previously established T1/T2 mice with ~30% residual HMBS activity and the heterozygous AIP phenotype. Homozygous R173Q mice were embryonic lethal, while R167Q homozygous mice (R167Q+/+) had ~5% of normal HMBS activity, constitutively elevated plasma and urinary 5-aminolevulinic acid (ALA) and porphobilinogen (PBG), profound early-onset ataxia, delayed motor development and markedly impaired rotarod performance. Central nervous system (CNS) histology was grossly intact, but CNS myelination was delayed and overall myelin volume was decreased. Heme concentrations in liver and brain were similar to those of T1/T2 mice. Notably, ALA and PBG concentrations in the cerebral spinal fluid and CNS regions were markedly elevated in R167Q+/+ mice compared with T1/T2 mice. When the T1/T2 mice were administered phenobarbital, ALA and PBG markedly accumulated in their liver and plasma, but not in the CNS, indicating that ALA and PBG do not readily cross the blood-brain barrier. Taken together, these studies suggest that the severe HD-AIP neurological phenotype results from decreased myelination and the accumulation of locally produced neurotoxic porphyrin precursors within the CNS.


Asunto(s)
Hidroximetilbilano Sintasa/genética , Enfermedades del Sistema Nervioso/genética , Porfiria Intermitente Aguda/genética , Trastornos Psicomotores/genética , Ácido Aminolevulínico/sangre , Ácido Aminolevulínico/orina , Animales , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Técnicas de Sustitución del Gen , Genes Dominantes , Homocigoto , Humanos , Hidroximetilbilano Sintasa/metabolismo , Hígado/metabolismo , Ratones , Mutación Missense/genética , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Enfermedades del Sistema Nervioso/sangre , Enfermedades del Sistema Nervioso/patología , Enfermedades del Sistema Nervioso/orina , Fenobarbital/farmacología , Porfobilinógeno/sangre , Porfobilinógeno/orina , Porfiria Intermitente Aguda/sangre , Porfiria Intermitente Aguda/patología , Porfiria Intermitente Aguda/orina , Trastornos Psicomotores/sangre , Trastornos Psicomotores/patología , Trastornos Psicomotores/orina
20.
Epilepsia ; 62(6): 1460-1471, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33955541

RESUMEN

OBJECTIVES: Bumetanide was suggested as an adjunct to phenobarbital for suppression of neonatal seizures. This suggestion was based on the idea that bumetanide, by reducing intraneuronal chloride accumulation through inhibition of the Na-K-2Cl cotransporter NKCC1, may attenuate or abolish depolarizing γ-aminobutyric acid (GABA) responses caused by birth asphyxia. However, a first proof-of-concept clinical trial failed. This could have had several reasons, including bumetanide's poor brain penetration, the wide cellular NKCC1 expression pattern in the brain, and problems with the general concept of NKCC1's role in neonatal seizures. We recently replicated the clinical failure of bumetanide to potentiate phenobarbital's effect in a novel rat model of birth asphyxia. In this study, a clinically relevant dose (0.3 mg/kg) of bumetanide was used that does not lead to NKCC1-inhibitory brain levels. The aim of the present experiments was to examine whether a much higher dose (10 mg/kg) of bumetanide is capable of potentiating phenobarbital in this rat model. Furthermore, the effects of the two lipophilic bumetanide derivatives, the ester prodrug N,N-dimethylaminoethylester of bumetanide (DIMAEB) and the benzylamine derivative bumepamine, were examined at equimolar doses. METHODS: Intermittent asphyxia was induced for 30 min by exposing male and female P11 rat pups to three 7 + 3 min cycles of 9% and 5% O2 at constant 20% CO2 . All control pups exhibited neonatal seizures after the asphyxia. RESULTS: Even at 10 mg/kg, bumetanide did not potentiate the effect of a submaximal dose (15 mg/kg) of phenobarbital on seizure incidence, whereas a significant suppression of neonatal seizures was determined for combinations of phenobarbital with DIMAEB or, more effectively, bumepamine, which, however, does not inhibit NKCC1. Of interest, the bumepamine/phenobarbital combination prevented the neurodegenerative consequences of asphyxia and seizures in the hippocampus. SIGNIFICANCE: Both bumepamine and DIMAEB are promising tools that may help to develop more effective lead compounds for clinical trials.


Asunto(s)
Anticonvulsivantes/farmacología , Asfixia Neonatal/complicaciones , Asfixia Neonatal/tratamiento farmacológico , Bencilaminas/uso terapéutico , Bumetanida/uso terapéutico , Hipocampo/patología , Degeneración Nerviosa/patología , Fenobarbital/farmacología , Convulsiones/tratamiento farmacológico , Convulsiones/etiología , Animales , Animales Recién Nacidos , Anticonvulsivantes/farmacocinética , Bencilaminas/farmacocinética , Encéfalo/metabolismo , Bumetanida/análogos & derivados , Bumetanida/farmacocinética , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Femenino , Masculino , Fenobarbital/farmacocinética , Embarazo , Ratas , Miembro 2 de la Familia de Transportadores de Soluto 12/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA