Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 692
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(6): 1230-1243.e14, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36931246

RESUMEN

Although Ca2+ has long been recognized as an obligatory intermediate in visual transduction, its role in plant phototransduction remains elusive. Here, we report a Ca2+ signaling that controls photoreceptor phyB nuclear translocation in etiolated seedlings during dark-to-light transition. Red light stimulates acute cytosolic Ca2+ increases via phyB, which are sensed by Ca2+-binding protein kinases, CPK6 and CPK12 (CPK6/12). Upon Ca2+ activation, CPK6/12 in turn directly interact with and phosphorylate photo-activated phyB at Ser80/Ser106 to initiate phyB nuclear import. Non-phosphorylatable mutation, phyBS80A/S106A, abolishes nuclear translocation and fails to complement phyB mutant, which is fully restored by combining phyBS80A/S106A with a nuclear localization signal. We further show that CPK6/12 function specifically in the early phyB-mediated cotyledon expansion, while Ser80/Ser106 phosphorylation generally governs phyB nuclear translocation. Our results uncover a biochemical regulatory loop centered in phyB phototransduction and provide a paradigm for linking ubiquitous Ca2+ increases to specific responses in sensory stimulus processing.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Fitocromo B/genética , Fitocromo B/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Calcio/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Luz , Fototransducción , Mutación
2.
Cell ; 164(1-2): 233-245, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26724867

RESUMEN

Sun-loving plants have the ability to detect and avoid shading through sensing of both blue and red light wavelengths. Higher plant cryptochromes (CRYs) control how plants modulate growth in response to changes in blue light. For growth under a canopy, where blue light is diminished, CRY1 and CRY2 perceive this change and respond by directly contacting two bHLH transcription factors, PIF4 and PIF5. These factors are also known to be controlled by phytochromes, the red/far-red photoreceptors; however, transcriptome analyses indicate that the gene regulatory programs induced by the different light wavelengths are distinct. Our results indicate that CRYs signal by modulating PIF activity genome wide and that these factors integrate binding of different plant photoreceptors to facilitate growth changes under different light conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Criptocromos/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Expresión Génica , Hipocótilo/crecimiento & desarrollo , Luz , Fitocromo B/metabolismo
3.
Mol Cell ; 82(16): 3015-3029.e6, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35728588

RESUMEN

Light and temperature in plants are perceived by a common receptor, phytochrome B (phyB). How phyB distinguishes these signals remains elusive. Here, we report that phyB spontaneously undergoes phase separation to assemble liquid-like droplets. This capacity is driven by its C terminus through self-association, whereas the intrinsically disordered N-terminal extension (NTE) functions as a biophysical modulator of phase separation. Light exposure triggers a conformational change to subsequently alter phyB condensate assembly, while temperature sensation is directly mediated by the NTE to modulate the phase behavior of phyB droplets. Multiple signaling components are selectively incorporated into phyB droplets to form concentrated microreactors, allowing switch-like control of phyB signaling activity through phase transitions. Therefore, light and temperature cues are separately read out by phyB via allosteric changes and spontaneous phase separation, respectively. We provide a conceptual framework showing how the distinct but highly correlated physical signals are interpreted and sorted by one receptor.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Transducción de Señal , Temperatura
4.
Nature ; 604(7904): 127-133, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35355010

RESUMEN

Many aspects of plant photoperception are mediated by the phytochrome (Phy) family of bilin-containing photoreceptors that reversibly interconvert between inactive Pr and active Pfr conformers1,2. Despite extensive biochemical studies, full understanding of plant Phy signalling has remained unclear due to the absence of relevant 3D models. Here we report a cryo-electron microscopy structure of Arabidopsis PhyB in the Pr state that reveals a topologically complex dimeric organization that is substantially distinct from its prokaryotic relatives. Instead of an anticipated parallel architecture, the C-terminal histidine-kinase-related domains (HKRDs) associate head-to-head, whereas the N-terminal photosensory regions associate head-to-tail to form a parallelogram-shaped platform with near two-fold symmetry. The platform is internally linked by the second of two internal Per/Arnt/Sim domains that binds to the photosensory module of the opposing protomer and a preceding 'modulator' loop that assembles tightly with the photosensory module of its own protomer. Both connections accelerate the thermal reversion of Pfr back to Pr, consistent with an inverse relationship between dimer assembly and Pfr stability. Lopsided contacts between the HKRDs and the platform create profound asymmetry to PhyB that might imbue distinct signalling potentials to the protomers. We propose that this unique structural dynamism creates an extensive photostate-sensitive surface for conformation-dependent interactions between plant Phy photoreceptors and their signalling partners.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo B , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Microscopía por Crioelectrón , Luz , Fitocromo B/química , Fitocromo B/metabolismo , Dominios Proteicos , Subunidades de Proteína/metabolismo
5.
Nature ; 607(7918): 339-344, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35768511

RESUMEN

Extreme weather conditions associated with climate change affect many aspects of plant and animal life, including the response to infectious diseases. Production of salicylic acid (SA), a central plant defence hormone1-3, is particularly vulnerable to suppression by short periods of hot weather above the normal plant growth temperature range via an unknown mechanism4-7. Here we show that suppression of SA production in Arabidopsis thaliana at 28 °C is independent of PHYTOCHROME B8,9 (phyB) and EARLY FLOWERING 310 (ELF3), which regulate thermo-responsive plant growth and development. Instead, we found that formation of GUANYLATE BINDING PROTEIN-LIKE 3 (GBPL3) defence-activated biomolecular condensates11 (GDACs) was reduced at the higher growth temperature. The altered GDAC formation in vivo is linked to impaired recruitment of GBPL3 and SA-associated Mediator subunits to the promoters of CBP60g and SARD1, which encode master immune transcription factors. Unlike many other SA signalling components, including the SA receptor and biosynthetic genes, optimized CBP60g expression was sufficient to broadly restore SA production, basal immunity and effector-triggered immunity at the elevated growth temperature without significant growth trade-offs. CBP60g family transcription factors are widely conserved in plants12. These results have implications for safeguarding the plant immune system as well as understanding the concept of the plant-pathogen-environment disease triangle and the emergence of new disease epidemics in a warming climate.


Asunto(s)
Aclimatación , Proteínas de Arabidopsis , Arabidopsis , Ambiente , Calentamiento Global , Inmunidad de la Planta , Temperatura , Arabidopsis/crecimiento & desarrollo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión a Calmodulina/genética , Regulación de la Expresión Génica de las Plantas , Calentamiento Global/estadística & datos numéricos , Interacciones Huésped-Patógeno , Fitocromo B , Enfermedades de las Plantas/genética , Inmunidad de la Planta/genética , Ácido Salicílico/metabolismo , Factores de Transcripción
6.
Plant Cell ; 36(6): 2065-2085, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38511271

RESUMEN

Plants exhibit an enormous phenotypic plasticity to adjust to changing environmental conditions. For this purpose, they have evolved mechanisms to detect and measure biotic and abiotic factors in their surroundings. Phytochrome B exhibits a dual function, since it serves as a photoreceptor for red and far-red light as well as a thermosensor. In 1999, it was first reported that phytochromes not only translocate into the nucleus but also form subnuclear foci upon irradiation by red light. It took more than 10 years until these phytochrome speckles received their name; these foci were coined photobodies to describe unique phytochrome-containing subnuclear domains that are regulated by light. Since their initial discovery, there has been much speculation about the significance and function of photobodies. Their presumed roles range from pure experimental artifacts to waste deposits or signaling hubs. In this review, we summarize the newest findings about the meaning of phyB photobodies for light and temperature signaling. Recent studies have established that phyB photobodies are formed by liquid-liquid phase separation via multivalent interactions and that they provide diverse functions as biochemical hotspots to regulate gene expression on multiple levels.


Asunto(s)
Fitocromo B , Fitocromo B/metabolismo , Fitocromo B/genética , Luz , Transducción de Señal , Temperatura
7.
Proc Natl Acad Sci U S A ; 121(35): e2408322121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39163340

RESUMEN

The circadian clock is an endogenous oscillator, and its importance lies in its ability to impart rhythmicity on downstream biological processes, or outputs. Our knowledge of output regulation, however, is often limited to an understanding of transcriptional connections between the clock and outputs. For instance, the clock is linked to plant growth through the gating of photoreceptors via rhythmic transcription of the nodal growth regulators, PHYTOCHROME-INTERACTING FACTORs (PIFs), but the clock's role in PIF protein stability is less clear. Here, we identified a clock-regulated, F-box type E3 ubiquitin ligase, CLOCK-REGULATED F-BOX WITH A LONG HYPOCOTYL 1 (CFH1), that specifically interacts with and degrades PIF3 during the daytime. Additionally, genetic evidence indicates that CFH1 functions primarily in monochromatic red light, yet CFH1 confers PIF3 degradation independent of the prominent red-light photoreceptor phytochrome B (phyB). This work reveals a clock-mediated growth regulation mechanism in which circadian expression of CFH1 promotes sustained, daytime PIF3 degradation in parallel with phyB signaling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Relojes Circadianos , Fitocromo B , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Relojes Circadianos/fisiología , Relojes Circadianos/genética , Fitocromo B/metabolismo , Fitocromo B/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica de las Plantas , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ritmo Circadiano/fisiología , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Luz
8.
Proc Natl Acad Sci U S A ; 121(8): e2312853121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38349881

RESUMEN

Light is a crucial environmental factor that impacts various aspects of plant development. Phytochromes, as light sensors, regulate myriads of downstream genes to mediate developmental reprogramming in response to changes in environmental conditions. CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) is an E3 ligase for a number of substrates in light signaling, acting as a central repressor of photomorphogenesis. The interplay between phytochrome B (phyB) and COP1 forms an antagonistic regulatory module that triggers extensive gene expression reprogramming when exposed to light. Here, we uncover a role of COP1 in light-dependent chromatin remodeling through the regulation of VIL1 (VIN3-LIKE 1)/VERNALIZATION 5, a Polycomb protein. VIL1 directly interacts with phyB and regulates photomorphogenesis through the formation of repressive chromatin loops at downstream growth-promoting genes in response to light. Furthermore, we reveal that COP1 governs light-dependent formation of chromatin loop and limiting a repressive histone modification to fine-tune expressions of growth-promoting genes during photomorphogenesis through VIL1.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ensamble y Desensamble de Cromatina , Fitocromo/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Cromatina/genética , Cromatina/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Plant Cell ; 35(2): 700-716, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36423345

RESUMEN

Light is a major environmental factor for seed germination. Red light-activated phytochrome B (phyB) promotes seed germination by modulating the dynamic balance of two phytohormones, gibberellic acid (GA) and abscisic acid (ABA). How phyB modulates ABA biosynthesis after perceiving a light signal is not yet well understood. Here, we identified the noncoding RNA HIDDEN TREASURE 1 (HID1) as a repressor of ABA biosynthesis acting downstream of phyB during Arabidopsis thaliana seed germination. Loss of HID1 function led to delayed phyB-dependent seed germination. Photoactivated phyB promoted the accumulation of HID1 in the radicle within 48 h of imbibition. Our transcriptomics analysis showed that HID1 and phyB co-regulate the transcription of a common set of genes involved in ABA and GA metabolism. Through a forward genetic screen, we identified three ABA biosynthesis genes, ABA DEFICIENT 1 (ABA1), ABA2, and ABA3, as suppressors of HID1. We further demonstrated that HID1 directly inhibits the transcription of 9-CIS-EPOXYCAROTENOID DIOXYGENASE (NCED9), a gene encoding a key rate-limiting enzyme of ABA biosynthesis. HID1 interacts with ARABIDOPSIS TRITHORAX-RELATED7 (ATXR7), an H3K4me3 methyltransferase, inhibiting its occupancy and H3K4me3 modification at the NCED9 locus. Our study reveals a nuclear mechanism of phyB signaling transmitted through HID1 to control the internal homeostasis of ABA and GA, which gradually optimizes the transcriptional network during seed germination.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Proteínas de Arabidopsis/metabolismo , Germinación/genética , Semillas/genética , Semillas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Giberelinas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
10.
Plant Cell ; 35(8): 2972-2996, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37119311

RESUMEN

Sun-loving plants trigger the shade avoidance syndrome (SAS) to compete against their neighbors for sunlight. Phytochromes are plant red (R) and far-red (FR) light photoreceptors that play a major role in perceiving the shading signals and triggering SAS. Shade induces a reduction in the level of active phytochrome B (phyB), thus increasing the abundance of PHYTOCHROME-INTERACTING FACTORS (PIFs), a group of growth-promoting transcription factors. However, whether other factors are involved in modulating PIF activity in the shade remains largely obscure. Here, we show that SALT OVERLY SENSITIVE2 (SOS2), a protein kinase essential for salt tolerance, positively regulates SAS in Arabidopsis thaliana. SOS2 directly phosphorylates PIF4 and PIF5 at a serine residue close to their conserved motif for binding to active phyB. This phosphorylation thus decreases their interaction with phyB and posttranslationally promotes PIF4 and PIF5 protein accumulation. Notably, the role of SOS2 in regulating PIF4 and PIF5 protein abundance and SAS is more prominent under salt stress. Moreover, phyA and phyB physically interact with SOS2 and promote SOS2 kinase activity in the light. Collectively, our study uncovers an unexpected role of salt-activated SOS2 in promoting SAS by modulating the phyB-PIF module, providing insight into the coordinated response of plants to salt stress and shade.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Fitocromo/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Luz , Fitocromo B/genética , Fitocromo B/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
11.
Plant Cell ; 35(8): 2997-3020, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37119239

RESUMEN

Soil salinity is one of the most detrimental abiotic stresses affecting plant survival, and light is a core environmental signal regulating plant growth and responses to abiotic stress. However, how light modulates the plant's response to salt stress remains largely obscure. Here, we show that Arabidopsis (Arabidopsis thaliana) seedlings are more tolerant to salt stress in the light than in the dark, and that the photoreceptors phytochrome A (phyA) and phyB are involved in this tolerance mechanism. We further show that phyA and phyB physically interact with the salt tolerance regulator SALT OVERLY SENSITIVE2 (SOS2) in the cytosol and nucleus, and enhance salt-activated SOS2 kinase activity in the light. Moreover, SOS2 directly interacts with and phosphorylates PHYTOCHROME-INTERACTING FACTORS PIF1 and PIF3 in the nucleus. Accordingly, PIFs act as negative regulators of plant salt tolerance, and SOS2 phosphorylation of PIF1 and PIF3 decreases their stability and relieves their repressive effect on plant salt tolerance in both light and dark conditions. Together, our study demonstrates that photoactivated phyA and phyB promote plant salt tolerance by increasing SOS2-mediated phosphorylation and degradation of PIF1 and PIF3, thus broadening our understanding of how plants adapt to salt stress according to their dynamic light environment.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Fosforilación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Tolerancia a la Sal/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Fitocromo A/metabolismo , Fitocromo B/metabolismo , Luz , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
12.
Nat Rev Mol Cell Biol ; 15(8): 551-8, 2014 08.
Artículo en Inglés | MEDLINE | ID: mdl-25027655

RESUMEN

The light-based control of ion channels has been transformative for the neurosciences, but the optogenetic toolkit does not stop there. An expanding number of proteins and cellular functions have been shown to be controlled by light, and the practical considerations in deciding between reversible optogenetic systems (such as systems that use light-oxygen-voltage domains, phytochrome proteins, cryptochrome proteins and the fluorescent protein Dronpa) are well defined. The field is moving beyond proof of concept to answering real biological questions, such as how cell signalling is regulated in space and time, that were difficult or impossible to address with previous tools.


Asunto(s)
Iluminación/métodos , Optogenética/métodos , Transducción de Señal , Animales , Arabidopsis/metabolismo , Criptocromos/fisiología , Humanos , Canales Iónicos/química , Canales Iónicos/fisiología , Fitocromo B/fisiología , Estructura Terciaria de Proteína
13.
PLoS Genet ; 19(5): e1010655, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37163495

RESUMEN

The photoperiodic response is critical for plants to adjust their reproductive phase to the most favorable season. Wheat heads earlier under long days (LD) than under short days (SD) and this difference is mainly regulated by the PHOTOPERIOD1 (PPD1) gene. Tetraploid wheat plants carrying the Ppd-A1a allele with a large deletion in the promoter head earlier under SD than plants carrying the wildtype Ppd-A1b allele with an intact promoter. Phytochromes PHYB and PHYC are necessary for the light activation of PPD1, and mutations in either of these genes result in the downregulation of PPD1 and very late heading time. We show here that both effects are reverted when the phyB mutant is combined with loss-of-function mutations in EARLY FLOWERING 3 (ELF3), a component of the Evening Complex (EC) in the circadian clock. We also show that the wheat ELF3 protein interacts with PHYB and PHYC, is rapidly modified by light, and binds to the PPD1 promoter in planta (likely as part of the EC). Deletion of the ELF3 binding region in the Ppd-A1a promoter results in PPD1 upregulation at dawn, similar to PPD1 alleles with intact promoters in the elf3 mutant background. The upregulation of PPD1 is correlated with the upregulation of the florigen gene FLOWERING LOCUS T1 (FT1) and early heading time. Loss-of-function mutations in PPD1 result in the downregulation of FT1 and delayed heading, even when combined with the elf3 mutation. Taken together, these results indicate that ELF3 operates downstream of PHYB as a direct transcriptional repressor of PPD1, and that this repression is relaxed both by light and by the deletion of the ELF3 binding region in the Ppd-A1a promoter. In summary, the regulation of the light mediated activation of PPD1 by ELF3 is critical for the photoperiodic regulation of wheat heading time.


Asunto(s)
Fitocromo B , Triticum , Fitocromo B/genética , Fitocromo B/metabolismo , Triticum/genética , Flores/genética , Flores/metabolismo , Ritmo Circadiano/genética , Fotoperiodo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Proc Natl Acad Sci U S A ; 120(39): e2304513120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37725643

RESUMEN

Nitrate supply is fundamental to support shoot growth and crop performance, but the associated increase in stem height exacerbates the risks of lodging and yield losses. Despite their significance for agriculture, the mechanisms involved in the promotion of stem growth by nitrate remain poorly understood. Here, we show that the elongation of the hypocotyl of Arabidopsis thaliana, used as a model, responds rapidly and persistently to upshifts in nitrate concentration, rather than to the nitrate level itself. The response occurred even in shoots dissected from their roots and required NITRATE TRANSPORTER 1.1 (NRT1.1) in the phosphorylated state (but not NRT1.1 nitrate transport capacity) and NIN-LIKE PROTEIN 7 (NLP7). Nitrate increased PHYTOCHROME INTERACTING FACTOR 4 (PIF4) nuclear abundance by posttranscriptional mechanisms that depended on NRT1.1 and phytochrome B. In response to nitrate, PIF4 enhanced the expression of numerous SMALL AUXIN-UP RNA (SAUR) genes in the hypocotyl. The growth response to nitrate required PIF4, positive and negative regulators of its activity, including AUXIN RESPONSE FACTORs, and SAURs. PIF4 integrates cues from the soil (nitrate) and aerial (shade) environments adjusting plant stature to facilitate access to light.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Nitratos/farmacología , Fitocromo B , Arabidopsis/genética , Ácidos Indolacéticos , Transportadores de Nitrato , ARN , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética
15.
Plant J ; 118(5): 1423-1438, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38402588

RESUMEN

This study investigates photoreceptor's role in the adaption of photosynthetic apparatus to high light (HL) intensity by examining the response of tomato wild type (WT) (Solanum lycopersicum L. cv. Moneymaker) and tomato mutants (phyA, phyB1, phyB2, cry1) plants to HL. Our results showed a photoreceptor-dependent effect of HL on the maximum quantum yield of photosystem II (Fv/Fm) with phyB1 exhibiting a decrease, while phyB2 exhibiting an increase in Fv/Fm. HL resulted in an increase in the efficient quantum yield of photosystem II (ΦPSII) and a decrease in the non-photochemical quantum yields (ΦNPQ and ΦN0) solely in phyA. Under HL, phyA showed a significant decrease in the energy-dependent quenching component of NPQ (qE), while phyB2 mutants showed an increase in the state transition (qT) component. Furthermore, ΔΔFv/Fm revealed that PHYB1 compensates for the deficit of PHYA in phyA mutants. PHYA signaling likely emerges as the dominant effector of PHYB1 and PHYB2 signaling within the HL-induced signaling network. In addition, PHYB1 compensates for the role of CRY1 in regulating Fv/Fm in cry1 mutants. Overall, the results of this research provide valuable insights into the unique role of each photoreceptor and their interplay in balancing photon energy and photoprotection under HL condition.


Asunto(s)
Luz , Complejo de Proteína del Fotosistema II , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Solanum lycopersicum/efectos de la radiación , Solanum lycopersicum/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/genética , Fotosíntesis/fisiología , Fitocromo B/metabolismo , Fitocromo B/genética , Fotorreceptores de Plantas/metabolismo , Fotorreceptores de Plantas/genética , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitocromo A/metabolismo , Fitocromo A/genética
16.
Plant Physiol ; 195(2): 970-985, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38478469

RESUMEN

The Xishuangbanna (XIS) cucumber (Cucumis sativus var. xishuangbannanesis) is a semiwild variety that has many distinct agronomic traits. Here, long reads generated by Nanopore sequencing technology helped assembling a high-quality genome (contig N50 = 8.7 Mb) of landrace XIS49. A total of 10,036 structural/sequence variations (SVs) were identified when comparing with Chinese Long (CL), and known SVs controlling spines, tubercles, and carpel number were confirmed in XIS49 genome. Two QTLs of hypocotyl elongation under low light, SH3.1 and SH6.1, were fine-mapped using introgression lines (donor parent, XIS49; recurrent parent, CL). SH3.1 encodes a red-light receptor Phytochrome B (PhyB, CsaV3_3G015190). A ∼4 kb region with large deletion and highly divergent regions (HDRs) were identified in the promoter of the PhyB gene in XIS49. Loss of function of this PhyB caused a super-long hypocotyl phenotype. SH6.1 encodes a CCCH-type zinc finger protein FRIGIDA-ESSENTIAL LIKE (FEL, CsaV3_6G050300). FEL negatively regulated hypocotyl elongation but it was transcriptionally suppressed by long terminal repeats retrotransposon insertion in CL cucumber. Mechanistically, FEL physically binds to the promoter of CONSTITUTIVE PHOTOMORPHOGENIC 1a (COP1a), regulating the expression of COP1a and the downstream hypocotyl elongation. These above results demonstrate the genetic mechanism of cucumber hypocotyl elongation under low light.


Asunto(s)
Cucumis sativus , Genoma de Planta , Hipocótilo , Sitios de Carácter Cuantitativo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/genética , Cucumis sativus/genética , Cucumis sativus/crecimiento & desarrollo , Sitios de Carácter Cuantitativo/genética , Fitocromo B/genética , Fitocromo B/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Luz
17.
Plant Cell ; 34(11): 4213-4231, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-35929801

RESUMEN

TANDEM ZINC-FINGER/PLUS3 (TZP) is a transcriptional regulator that acts at the crossroads of light and photoperiodic signaling. Here, we unveil a role for TZP in fine-tuning hypocotyl elongation under red light and long-day conditions. We provide genetic evidence for a synergistic action between TZP and PHOTOPERIODIC CONTROL OF HYPOCOTYL 1 (PCH1) in regulating the protein abundance of PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and downstream gene expression in response to red light and long days (LDs). Furthermore, we show that TZP is a positive regulator of the red/far-red light receptor and thermosensor phytochrome B (phyB) by promoting phyB protein abundance, nuclear body formation, and signaling. Our data therefore assign a function to TZP in regulating two key red light signaling components, phyB and PIF4, but also uncover a new role for PCH1 in regulating hypocotyl elongation in LDs. Our findings provide a framework for the understanding of the mechanisms associated with the TZP signal integration network and their importance for optimizing plant growth and adaptation to a changing environment.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Fitocromo B/genética , Fitocromo B/metabolismo , Hipocótilo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Fitocromo/metabolismo , Zinc/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Plant Cell ; 34(8): 2907-2924, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35543486

RESUMEN

To enhance plant fitness under natural conditions, the circadian clock is synchronized and entrained by light via photoreceptors. In turn, the circadian clock exquisitely regulates the abundance and activity of photoreceptors via largely uncharacterized mechanisms. Here we show that the clock regulator TIME FOR COFFEE (TIC) controls the activity of the far-red light photoreceptor phytochrome A (phyA) at multiple levels in Arabidopsis thaliana. Null mutants of TIC displayed dramatically increased sensitivity to light irradiation with respect to hypocotyl growth, especially to far-red light. RNA-sequencing demonstrated that TIC and phyA play largely opposing roles in controlling light-regulated gene expression at dawn. Additionally, TIC physically interacts with the transcriptional repressor TOPLESS (TPL), which was associated with the significantly increased PHYA transcript levels in the tic-2 and tpl-1 mutants. Moreover, TIC interacts with phyA in the nucleus, thereby affecting phyA protein turnover and the formation of phyA nuclear speckles following light irradiation. Genetically, phyA was found to act downstream of TIC in regulating far red light-inhibited growth. Taken together, these findings indicate that TIC acts as a major negative regulator of phyA by integrating transcriptional and post-translational mechanisms at multiple levels.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Tics , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Hipocótilo , Luz , Fitocromo/genética , Fitocromo/metabolismo , Fitocromo A/genética , Fitocromo A/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo
19.
Plant Cell ; 34(7): 2671-2687, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35478037

RESUMEN

Plant thermosensors help optimize plant development and architecture for ambient temperatures, and morphogenic adaptation to warm temperatures has been extensively studied in recent years. Phytochrome B (phyB)-mediated thermosensing and the gene regulatory networks governing thermomorphogenic responses are well understood at the molecular level. However, it is unknown how plants manage their responsiveness to fluctuating temperatures in inducing thermomorphogenic behaviors. Here, we demonstrate that SUPPRESSOR OF MAX2 1 (SMAX1), known as a karrikin signaling repressor, enhances the thermosensitivity of hypocotyl morphogenesis in Arabidopsis thaliana. Hypocotyl thermomorphogenesis was largely disrupted in SMAX1-deficient mutants. SMAX1 interacts with phyB to alleviate its suppressive effects on the transcription factor activity of PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), promoting hypocotyl thermomorphogenesis. Interestingly, the SMAX1 protein is slowly destabilized at warm temperatures, preventing hypocotyl overgrowth. Our findings indicate that the thermodynamic control of SMAX1 abundance serves as a molecular gatekeeper for phyB function in thermosensitizing PIF4-mediated hypocotyl morphogenesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Hipocótilo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo
20.
Cell ; 141(7): 1230-40, 2010 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-20603003

RESUMEN

Light plays a profound role in plant development, yet how photoreceptor excitation directs phenotypic plasticity remains elusive. One of the earliest effects of light is the regulated translocation of the red/far-red photoreceptors, phytochromes, from the cytoplasm to subnuclear foci called phytochrome nuclear bodies. The function of these nuclear bodies is unknown. We report the identification of hemera, a seedling lethal mutant of Arabidopsis with altered phytochrome nuclear body patterns. hemera mutants are impaired in all phytochrome responses examined, including proteolysis of phytochrome A and phytochrome-interacting transcription factors. HEMERA was identified previously as pTAC12, a component of a plastid complex associated with transcription. Here, we show that HEMERA has a function in the nucleus, where it acts specifically in phytochrome signaling, is predicted to be structurally similar to the multiubiquitin-binding protein, RAD23, and can partially rescue yeast rad23mutants. Together, these results implicate phytochrome nuclear bodies as sites of proteolysis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Fitocromo A/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/citología , Núcleo Celular/metabolismo , Cloroplastos/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Fluorescentes Verdes/análisis , Péptidos y Proteínas de Señalización Intracelular , Luz , Microscopía Confocal , Proteínas Nucleares/metabolismo , Fitocromo B/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Semillas/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA