Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Gen Virol ; 105(3)2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38446011

RESUMEN

Twenty complete genomes (29-63 kb) and 29 genomes with an estimated completeness of over 90 % (30-90 kb) were identified for novel dsDNA viruses in the Yangshan Harbor metavirome. These newly discovered viruses contribute to the expansion of viral taxonomy by introducing 46 potential new families. Except for one virus, all others belong to the class Caudoviricetes. The exception is a novel member of the recently characterized viral group known as Gossevirus. Fifteen viruses were predicted to be temperate. The predicted hosts for the viruses appear to be involved in various aspects of the nitrogen cycle, including nitrogen fixation, oxidation and denitrification. Two viruses were identified to have a host of Flavobacterium and Tepidimonas fonticaldi, respectively, by matching CRISPR spacers with viral protospacers. Our findings provide an overview for characterizing and identifying specific viruses from Yangshan Harbor. The Gossevirus-like virus uncovered emphasizes the need for further comprehensive isolation and investigation of polinton-like viruses.


Asunto(s)
Viroma , Virus , Humanos , Metagenoma , Flavobacterium/genética , Metagenómica
2.
Environ Microbiol ; 26(2): e16581, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38195078

RESUMEN

Flavobacterium psychrophilum, the causative agent of bacterial coldwater disease, causes substantial economic losses in salmonid farms and hatcheries. Some multilocus sequence types (ST) of F. psychrophilum are more likely to be associated with fish farms and hatcheries, but it is unclear if these patterns of association represent genetic lineages that are more adapted to aquaculture environments. Towards elucidating the disease ecology of F. psychrophilum, the culturability of 10 distinct F. psychrophilum STs was evaluated for 13 weeks in three microcosms including sterilized well water, sterilized well water with commercial trout feed, or sterilized well water with raceway detritus. All STs remained culturable in each of the microcosms for at least 8 weeks, with bacterial concentrations often highest in the presence of raceway detritus. In addition, most (e.g., 90%) STs remained culturable for at least 13-weeks. Significant differences in log10 cfus were observed among STs, both within and between microcosms, suggesting potential variability in environmental persistence capacity among specific variants. Collectively, results highlight the ability of F. psychrophilum to not only persist for weeks under nutrient-limited conditions but also thrive in the presence of organic substrates common in fish farms and hatchery-rearing units.


Asunto(s)
Enfermedades de los Peces , Infecciones por Flavobacteriaceae , Oncorhynchus mykiss , Animales , Explotaciones Pesqueras , Oncorhynchus mykiss/microbiología , Infecciones por Flavobacteriaceae/veterinaria , Infecciones por Flavobacteriaceae/microbiología , Enfermedades de los Peces/microbiología , Flavobacterium/genética , Agua
3.
Environ Microbiol ; 26(7): e16670, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38952172

RESUMEN

The influence of environmental factors on the interactions between phages and bacteria, particularly single-stranded DNA (ssDNA) phages, has been largely unexplored. In this study, we used Finnlakevirus FLiP, the first known ssDNA phage species with a lipid membrane, as our model phage. We examined the infectivity of FLiP with three Flavobacterium host strains, B330, B167 and B114. We discovered that FLiP infection is contingent on the host strain and conditions such as temperature and bacterial growth phase. FLiP can infect its hosts across a wide temperature range, but optimal phage replication varies with each host. We uncovered some unique aspects of phage infectivity: FLiP has limited infectivity in liquid-suspended cells, but it improves when cells are surface-attached. Moreover, FLiP infects stationary phase B167 and B114 cells more rapidly and efficiently than exponentially growing cells, a pattern not observed with the B330 host. We also present the first experimental evidence of endolysin function in ssDNA phages. The activity of FLiP's lytic enzymes was found to be condition-dependent. Our findings underscore the importance of studying phage ecology in contexts that are relevant to the environment, as both the host and the surrounding conditions can significantly alter the outcome of phage-host interactions.


Asunto(s)
Bacteriófagos , ADN de Cadena Simple , Flavobacterium , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Bacteriófagos/genética , Bacteriófagos/fisiología , Flavobacterium/virología , Flavobacterium/crecimiento & desarrollo , Flavobacterium/genética , Interacciones Microbiota-Huesped , Endopeptidasas/metabolismo , Endopeptidasas/genética , Replicación Viral , Temperatura
4.
Artículo en Inglés | MEDLINE | ID: mdl-38563675

RESUMEN

Strain LB-N7T, a novel Gram-negative, orange, translucent, gliding, rod-shaped bacterium, was isolated from water samples collected from an open system of Atlantic salmon (Salmo salar) smolts in a fish farm in Chile during a flavobacterial infection outbreak in 2015. Phylogenetic analysis based on 16S rRNA sequences (1337 bp) revealed that strain LB-N7T belongs to the genus Flavobacterium and is closely related to the type strains Flavobacterium ardleyense A2-1T (98.8 %) and Flavobacterium cucumis R2A45-3T (96.75 %). The genome size of strain LB-N7T was 2.93 Mb with a DNA G+C content 32.6 mol%. Genome comparisons grouped strain LB-N7T with Flavobacterium cheniae NJ-26T, Flavobacterium odoriferum HXWNR29T, Flavobacterium lacisediminis TH16-21T and Flavobacterium celericrescens TWA-26T. The calculated digital DNA-DNA hybridization values between strain LB-N7T and the closest related Flavobacterium strains were 23.3 % and the average nucleotide identity values ranged from 71.52 to 79.39 %. Menaquinone MK-6 was the predominant respiratory quinone, followed by MK-7. The major fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The primary polar lipids detected included nine unidentified lipids, two amounts of aminopospholipid and phospholipids, and a smaller amount of aminolipid. Phenotypic, genomic, and chemotaxonomic data suggest that strain LB-N7T (=CECT 30406T=RGM 3221T) represents as a novel bacterial species, for which the name Flavobacterium psychraquaticum sp. nov. is proposed.


Asunto(s)
Flavobacterium , Salmo salar , Animales , Flavobacterium/genética , Chile , Filogenia , ARN Ribosómico 16S/genética , Composición de Base , Ácidos Grasos/química , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana
5.
Artículo en Inglés | MEDLINE | ID: mdl-39120518

RESUMEN

Four Gram-stain-positive and two Gram-stain-negative bacterial strains, designated as W4T, FW7T, TW48T, UW52T, PT-3T, and RJY3T, were isolated from soil samples collected from the Republic of Korea. The 16S rRNA gene sequence analysis showed that strains W4T and FW7T belonged to the genus Microbacterium, strains TW48T and UW52T were affiliated to the genus Paenibacillus, strain PT-3T was related to the genus Flavobacterium, and strain RJY3T was associated with the genus Aquabacterium. The closest phylogenetic taxa to W4T, FW7T, TW48T, UW52T, PT-3T, and RJY3T were Microbacterium bovistercoris NEAU-LLET (97.7 %), Microbacterium protaetiae DFW100M-13T (97.9 %), Paenibacillus auburnensis JJ-7T (99.6 %), Paenibacillus allorhizosphaerae JJ-447T (95.7 %), Flavobacterium buctense T7T (97.1 %), and Aquabacterium terrae S2T (99.5 %), respectively. Average nucleotide identity and digital DNA-DNA hybridization values between the novel strains and related reference type strains were <95.0 % and <70.0 %, respectively. The major cellular fatty acid in strains W4T, FW7T TW48T, and UW52T was antiso-C15 : 0. Similarly, strain PT-3T revealed iso-C15 : 0, iso-C15 : 1 G, iso-C17 : 0 3-OH, and iso-C15 : 0 3-OH as its principal fatty acids. On the other hand, RJY3T exhibited summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0, summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), and C12 : 0 as its predominant fatty acids. Overall, the polyphasic taxonomic data indicated that strains W4T, FW7T, TW48T, UW52T, PT-3T, and RJY3T represent novel species within the genera Microbacterium, Paenibacillus, Flavobacterium, and Aquabacterium. Accordingly, we propose the names Microbacterium humicola sp. nov., with the type strain W4T (=KCTC 49888T=NBRC 116001T), Microbacterium terrisoli sp. nov., with the type strain FW7T (=KCTC 49859T=NBRC 116000T), Paenibacillus pedocola sp. nov., with the type strain TW48T (=KCTC 43470T=NBRC 116017T), Paenibacillus silviterrae sp. nov., with the type strain UW52T (=KCTC 43477T=NBRC 116018T), Flavobacterium terrisoli sp. nov., with the type strain PT-3T (=KCTC 92106T=NBRC 116012T), and Aquabacterium humicola sp. nov., with the type strain RJY3T (=KCTC 92105T=NBRC 115831T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Flavobacterium , Microbacterium , Hibridación de Ácido Nucleico , Paenibacillus , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Microbiología del Suelo , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Paenibacillus/clasificación , Paenibacillus/genética , Paenibacillus/aislamiento & purificación , República de Corea , Flavobacterium/genética , Flavobacterium/clasificación , Flavobacterium/aislamiento & purificación , Microbacterium/genética
6.
Artículo en Inglés | MEDLINE | ID: mdl-38865183

RESUMEN

A Gram-stain-negative, aerobic, non-spore-forming, nonmotile, rod-shaped, and yellow-pigmented bacterium, designated strain JXAS1T, was isolated from a freshwater sample collected from Poyang Lake in China. Phylogenetic analysis based on 16S rRNA gene sequence revealed that the isolate belonged to the genus Flavobacterium, being closest to Flavobacterium pectinovorum DSM 6368T (98.61 %). The genome size of strain JXAS1T was 4.66 Mb with DNA G+C content 35.7 mol%. The average nucleotide identity and in silico DNA-DNA hybridization values between strain JXAS1T and its closest relatives were below the threshold values of 95 and 70 %, respectively. The strain contained menaquinone 6 (MK-6) as the predominant menaquinone and the major polar lipids were phosphatidylethanolamine, one unidentified glycolipid, and one unidentified polar lipid. The major fatty acids (>5 %) were iso-C15 : 0, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C15 : 0, iso-C17 : 0 3OH, iso-C15 : 0 3OH, and summed feature 9 (iso-C17 : 1 ω9c and/or 10-methyl C16 : 0). Based on phylogenetic, genotypic, and phenotypic evidence, the isolated strain represents a new species in the genus Flavobacterium, and the name Flavobacterium poyangense is proposed. The type strain is JXAS1T (=GDMCC 1.1378T=KCTC 62719T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Flavobacterium , Lagos , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Vitamina K 2 , Flavobacterium/genética , Flavobacterium/clasificación , Flavobacterium/aislamiento & purificación , Lagos/microbiología , China , ARN Ribosómico 16S/genética , Vitamina K 2/análogos & derivados , Vitamina K 2/análisis , ADN Bacteriano/genética , Fosfatidiletanolaminas , Glucolípidos/análisis , Fosfolípidos/análisis
7.
Artículo en Inglés | MEDLINE | ID: mdl-38717929

RESUMEN

Two yellow-coloured strains, F-29T and F-340T, were isolated from fish farms in Antalya and Mugla in 2015 and 2017 during surveillance studies. The 16S rRNA gene sequence analysis showed that both strains belong to the genus Flavobacterium. A polyphasic approach involving a comprehensive genome analysis was employed to ascertain the taxonomic provenance of the strains. The overall genome-relatedness indices of digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) between the strains and the other members of the genus Flavobacterium were found to be well below the established thresholds of 70 and 95 %, respectively. The whole-genome-based phylogenetic analysis revealed that strain F-29T is closely related to Flavobacterium granuli (dDDH 39.3 % and ANI 89.4 %), while strain F-340T has a close relationship with the type strain of Flavobacterium pygoscelis (dDDH 25.6 % and ANI 81.5 %). Both strains were psychrotolerant with an optimum growth temperature of 25 °C. The chemotaxonomic characteristics of the strains were typical of the genus Flavobacterium. Both strains had phosphatidylethanolamine, aminolipids and unidentified lipids in their polar lipid profile and MK-6 as the isoprenoid quinone. The major fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The genome size of the strains was 3.5 Mb, while G+C contents were 35.3 mol% for strain F-29T and 33.4 mol% for strain F-340T. Overall, the characterizations confirmed that both strains are representatives of two novel species within the genus Flavobacterium, for which the names Flavobacterium acetivorans sp. nov. and Flavobacterium galactosidilyticum sp. nov. are proposed, with F-29T (JCM 34193T=KCTC 82253T) and F-340T (JCM 34203T=KCTC 82263T) as the type strains, respectively.


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Peces , Flavobacterium , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Vitamina K 2 , Flavobacterium/genética , Flavobacterium/clasificación , Flavobacterium/aislamiento & purificación , ARN Ribosómico 16S/genética , Ácidos Grasos/análisis , ADN Bacteriano/genética , Animales , Vitamina K 2/análogos & derivados , Vitamina K 2/análisis , Peces/microbiología , Genoma Bacteriano , Acuicultura , Fosfatidiletanolaminas
8.
Artículo en Inglés | MEDLINE | ID: mdl-39041928

RESUMEN

Two strains, designated as SYSU M80004T and SYSU M80005T, were isolated from water sampled in the Pearl River Estuary, Guangzhou, Guangdong, PR China. The strains were Gram-stain-negative and aerobic. Strain SYSU M80004T could grow at pH 6.0-8.0 (optimum, pH 7.0), 22-30 °C (optimum, 28 °C) and in the presence of 0-1 % NaCl (w/v; optimum 0 %). Strain SYSU M80005T could grow at pH 6.0-8.0 (optimum, pH 7.0), 4-37 °C (optimum, 28 °C) and in the presence of 0-1 % NaCl (w/v; optimum 0%). Both strains contained MK-6 as the predominant menaquinone. C16 : 0 and iso-C15 : 0 were identified as the major fatty acids (>10 %) of strain SYSU M80004T while strain SYSU M80005T contained iso-C15 : 0 and iso-C17 : 0 3-OH as major fatty acids. Phosphatidylethanolamine was present as the major polar lipid in both strains. The average nucleotide identity and digital DNA-DNA hybridization values between these two strains and their closest relatives were 73.5-79.3 % and 19.6-23.2 %, respectively. Phylogenetic analysis based on the 16S rRNA gene and genomic sequences indicated they belonged to the genus Flavobacterium. Therefore, on the basis of phenotypic, physiological, chemotaxonomic and genomic evidence, two novel species, Flavobacterium adhaerens sp. nov. (type strain=SYSU M80004T=CDMCC 1.4522T=KCTC 102268T) and Flavobacterium maritimum sp. nov. (type strain=SYSU M80005T=CGMCC 1.4523T= KCTC 102269T) are proposed.


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Estuarios , Ácidos Grasos , Flavobacterium , Hibridación de Ácido Nucleico , Fosfatidiletanolaminas , Filogenia , ARN Ribosómico 16S , Ríos , Análisis de Secuencia de ADN , Vitamina K 2 , Flavobacterium/genética , Flavobacterium/aislamiento & purificación , Flavobacterium/clasificación , China , ARN Ribosómico 16S/genética , Vitamina K 2/análogos & derivados , Vitamina K 2/análisis , Ácidos Grasos/química , ADN Bacteriano/genética , Ríos/microbiología , Microbiología del Agua
9.
Artículo en Inglés | MEDLINE | ID: mdl-39058544

RESUMEN

Strain T-12T, an orange, Gram-stain-negative, non-motile, rod-shaped strain, was isolated in November 2013 from water samples collected from an Atlantic salmon (Salmo salar) fry culturing system at a fish farm in Chile. Phylogenetic analysis based on 16S rRNA sequences (1394 bp) revealed that strain T-12T belonged to the genus Flavobacterium, showing close relationships to Flavobacterium bernardetii F-372T (99.48 %) and Flavobacterium terrigena DS-20T (98.50 %). The genome size of strain T-12T was 3.28 Mb, with a G+C content of 31.1 mol%. Genome comparisons aligned strain T-12T with Flavobacterium bernardetii F-372T (GCA_011305415) and Flavobacterium terrigena DSM 17934T (GCA_900108955). The highest digital DNA-DNA hybridization (dDDH) values were 42.6 % with F. bernardetii F-372T (GCA_011305415) and 33.9 % with F. terrigena DSM 17934T (GCA_900108955). Pairwise average nucleotide identity (ANI) calculations were below the species cutoff, with the best results with F. bernardetii F-372T being: ANIb, 90.33 %; ANIm, 91.85 %; and TETRA, 0.997 %. These dDDH and ANI results confirm that strain T-12T represents a new species. The major fatty acids were iso-C15 : 0 and C15 : 1ω6с. Detected polar lipids included phospholipids (n=2), aminophospholipid (n=1), aminolipid (n=1) and unidentified lipids (n=2). The predominant respiratory quinone was menaquinone MK7 (80 %) followed by MK-6 (20 %). Phenotypic, chemotaxonomic, and genomic data support the classification of strain T-12T (=CECT 30410T=RGM 3222T) as representing a novel species of Flavobacterium, for which the name Flavobacterium facile sp. nov. is proposed.


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Flavobacterium , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S , Salmo salar , Análisis de Secuencia de ADN , Vitamina K 2 , Animales , Flavobacterium/genética , Flavobacterium/aislamiento & purificación , Flavobacterium/clasificación , ARN Ribosómico 16S/genética , Ácidos Grasos/análisis , Salmo salar/microbiología , ADN Bacteriano/genética , Chile , Vitamina K 2/análogos & derivados , Vitamina K 2/análisis , Microbiología del Agua , Fosfolípidos/análisis
10.
Vet Res ; 55(1): 75, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867318

RESUMEN

Flavobacterium psychrophilum, the causative agent of bacterial cold-water disease, is a devastating, worldwide distributed, fish pathogen causing significant economic loss in inland fish farms. Previous epidemiological studies showed that prevalent clonal complexes (CC) differ in fish species affected with disease such as rainbow trout, coho salmon and ayu, indicating significant associations between particular F. psychrophilum genotypes and host species. Yet, whether the population structure is driven by the trade of fish and eggs or by host-specific pathogenicity is uncertain. Notably, all F. psychrophilum isolates retrieved from ayu belong to Type-3 O antigen (O-Ag) whereas only very few strains retrieved from other fish species possess this O-Ag, suggesting a role in outbreaks affecting ayu. Thus, we investigated the links between genotype and pathogenicity by conducting comparative bath infection challenges in two fish hosts, ayu and rainbow trout, for a collection of isolates representing different MLST genotypes and O-Ag. Highly virulent strains in one host species exhibited low to no virulence in the other. F. psychrophilum strains associated with ayu and possessing Type-3 O-Ag demonstrated significant variability in pathogenicity in ayu, ranging from avirulent to highly virulent. Strikingly, F. psychrophilum strains retrieved from rainbow trout and possessing the Type-3 O-Ag were virulent for rainbow trout but not for ayu, indicating that Type-3 O-Ag alone is not sufficient for pathogenicity in ayu, nor does it prevent pathogenicity in rainbow trout. This study revealed that the association between a particular CC and host species partly depends on the pathogen's adaptation to specific host species.


Asunto(s)
Enfermedades de los Peces , Infecciones por Flavobacteriaceae , Flavobacterium , Especificidad del Huésped , Oncorhynchus mykiss , Osmeriformes , Animales , Flavobacterium/patogenicidad , Flavobacterium/fisiología , Flavobacterium/genética , Enfermedades de los Peces/microbiología , Infecciones por Flavobacteriaceae/veterinaria , Infecciones por Flavobacteriaceae/microbiología , Oncorhynchus mykiss/microbiología , Osmeriformes/microbiología , Virulencia , Genotipo
11.
Appl Microbiol Biotechnol ; 108(1): 437, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133429

RESUMEN

ß-1,6-Glucan plays a crucial role in fungal cell walls by linking the outer layer of mannoproteins and the inner layer of ß-1,3-glucan, contributing significantly to the maintenance of cell wall rigidity. Therefore, the hydrolysis of ß-1,6-glucan by ß-1,6-glucanase directly leads to the disintegration of the fungal cell wall. Here, a novel ß-1,6-glucanase FlGlu30 was identified from the endophytic Flavobacterium sp. NAU1659 and heterologously expressed in Escherichia coli BL21 (DE3). The optimal reaction conditions of purified FlGlu30 were 50℃ and pH 6.0, resulting in a specific activity of 173.1 U/mg using pustulan as the substrate. The hydrolyzed products of FlGlu30 to pustulan were mainly gentianose within 1 h of reaction. With the extension of reaction time, gentianose was gradually hydrolyzed to glucose, indicating that FlGlu30 is an endo-ß-1,6-glucanase. The germination of Magnaporthe oryzae Guy11 spores could not be inhibited by FlGlu30, but the appressorium formation of spores was completely inhibited under the concentration of 250.0 U/mL FlGlu30. The disruptions of cell wall and accumulation of intracellular reactive oxide species (ROS) were observed in FlGlu30-treated M. oryzae Guy11 cells, suggesting the significant importance of ß-1,6-glucan as a potential antifungal target and the potential application of FlGlu30. KEY POINTS: • ß-1,6-Glucan is a key component maintaining the rigid structure of fungal cell wall. • ß-1,6-Glucanase is an antifungal protein with significant potential applications. • FlGlu30 is the first reported ß-1, 6-glucanase derived from Flavobacterium.


Asunto(s)
Antifúngicos , Pared Celular , Escherichia coli , Flavobacterium , Glicósido Hidrolasas , Flavobacterium/enzimología , Flavobacterium/genética , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Hidrólisis , Antifúngicos/farmacología , Antifúngicos/metabolismo , Pared Celular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glucanos/metabolismo , Concentración de Iones de Hidrógeno , beta-Glucanos/metabolismo , Clonación Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura , Especificidad por Sustrato , Polisacáridos
12.
Curr Microbiol ; 81(9): 290, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085659

RESUMEN

A Gram-strain-negative, aerobic, yellow-colored, non-motile, and rod-shaped bacterial strain, designated IMCC34852T, was isolated from a freshwater stream in the Republic of Korea. Cellular growth occurred at 10-37 °C, pH 6.0-9.0, and with 0-0.5% (w/v) NaCl. The 16S rRNA gene sequence analysis showed that strain IMCC34852T belonged to the genus Flavobacterium and that the strain was most closely related to F. cheonhonense ARSA-15 T (97.6%), F. buctense T7T (96.7%), F. silvisoli RD-2-33 T (96.1%), and F. paronense KNUS1T (96.1%). The whole-genome sequence of strain IMCC34852T was 3.2 Mbp in size, with a DNA G + C content 37.3%. The average nucleotide identities (ANI) and digital DNA-DNA hybridization (dDDH) values between strain IMCC34852T and its related species were all below 79.8% and 22.7%, respectively, which are significantly lower than the thresholds of 95% for ANI and 70% for DDH for species delineation. The major respiratory quinone of strain IMCC34852T was menaquinone-6 (MK-6) and the predominant cellular fatty acids were iso-C15:0 (32.6%), iso-C16:0 (11.7%), iso-C15:1 G (10.3%), and iso-C14:0 (6.7%). The major polar lipids of the strain were phosphatidylethanolamine, two unidentified aminolipids and six unidentified lipids. Based on these results, it was concluded that strain IMCC34852T represents a novel species in the genus Flavobacterium, for which the name Flavobacterium rivulicola sp. nov is proposed. The type strain of the proposed novel species is IMCC34852T (= KACC 23133 T = KCTC 82066 T = NBRC 114419 T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Flavobacterium , Filogenia , ARN Ribosómico 16S , Ríos , Flavobacterium/genética , Flavobacterium/clasificación , Flavobacterium/aislamiento & purificación , Flavobacterium/fisiología , ARN Ribosómico 16S/genética , República de Corea , ADN Bacteriano/genética , Ácidos Grasos/química , Ácidos Grasos/análisis , Ríos/microbiología , Análisis de Secuencia de ADN , Genoma Bacteriano , Fosfolípidos/análisis , Agua Dulce/microbiología , Hibridación de Ácido Nucleico , Vitamina K 2/análisis
13.
World J Microbiol Biotechnol ; 40(7): 201, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38736020

RESUMEN

Cariogenic biofilms have a matrix rich in exopolysaccharides (EPS), mutans and dextrans, that contribute to caries development. Although several physical and chemical treatments can be employed to remove oral biofilms, those are only partly efficient and use of biofilm-degrading enzymes represents an exciting opportunity to improve the performance of oral hygiene products. In the present study, a member of a glycosyl hydrolase family 66 from Flavobacterium johnsoniae (FjGH66) was heterologously expressed and biochemically characterized. The recombinant FjGH66 showed a hydrolytic activity against an early EPS-containing S. mutans biofilm, and, when associated with a α-(1,3)-glucosyl hydrolase (mutanase) from GH87 family, displayed outstanding performance, removing more than 80% of the plate-adhered biofilm. The mixture containing FjGH66 and Prevotella melaninogenica GH87 α-1,3-mutanase was added to a commercial mouthwash liquid to synergistically remove the biofilm. Dental floss and polyethylene disks coated with biofilm-degrading enzymes also degraded plate-adhered biofilm with a high efficiency. The results presented in this study might be valuable for future development of novel oral hygiene products.


Asunto(s)
Biopelículas , Dextranasa , Flavobacterium , Glicósido Hidrolasas , Streptococcus mutans , Biopelículas/crecimiento & desarrollo , Dextranasa/metabolismo , Dextranasa/genética , Flavobacterium/enzimología , Flavobacterium/genética , Streptococcus mutans/enzimología , Streptococcus mutans/genética , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Hidrólisis , Biotecnología/métodos
14.
mBio ; 15(3): e0342823, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38329367

RESUMEN

Flavobacterium johnsoniae is a ubiquitous soil and rhizosphere bacterium, but despite its abundance, the factors contributing to its success in communities are poorly understood. Using a model microbial community, The Hitchhikers of the Rhizosphere (THOR), we determined the effects of colonization on the fitness of F. johnsoniae in the community. Insertion sequencing, a massively parallel transposon mutant screen, on sterile sand identified 25 genes likely to be important for surface colonization. We constructed in-frame deletions of candidate genes predicted to be involved in cell membrane biogenesis, motility, signal transduction, and transport of amino acids and lipids. All mutants poorly colonized sand, glass, and polystyrene and produced less biofilm than the wild type, indicating the importance of the targeted genes in surface colonization. Eight of the nine colonization-defective mutants were also unable to form motile biofilms or zorbs, thereby suggesting that the affected genes play a role in group movement and linking stationary and motile biofilm formation genetically. Furthermore, we showed that the deletion of colonization genes in F. johnsoniae affected its behavior and survival in THOR on surfaces, suggesting that the same traits are required for success in a multispecies microbial community. Our results provide insight into the mechanisms of surface colonization by F. johnsoniae and form the basis for further understanding its ecology in the rhizosphere. IMPORTANCE: Microbial communities direct key environmental processes through multispecies interactions. Understanding these interactions is vital for manipulating microbiomes to promote health in human, environmental, and agricultural systems. However, microbiome complexity can hinder our understanding of the underlying mechanisms in microbial community interactions. As a first step toward unraveling these interactions, we explored the role of surface colonization in microbial community interactions using The Hitchhikers Of the Rhizosphere (THOR), a genetically tractable model community of three bacterial species, Flavobacterium johnsoniae, Pseudomonas koreensis, and Bacillus cereus. We identified F. johnsoniae genes important for surface colonization in solitary conditions and in the THOR community. Understanding the mechanisms that promote the success of bacteria in microbial communities brings us closer to targeted manipulations to achieve outcomes that benefit agriculture, the environment, and human health.


Asunto(s)
Promoción de la Salud , Microbiota , Humanos , Arena , Flavobacterium/genética , Proteínas Bacterianas/metabolismo
15.
Microbiol Spectr ; 12(2): e0360123, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38112454

RESUMEN

Flavobacterium psychrophilum causes bacterial coldwater disease (BCWD) and is responsible for substantial losses in farm and hatchery-reared salmonids (Family Salmonidae). Although F. psychrophilum infects multiple economically important salmonids and is transmitted horizontally, the extent of knowledge regarding F. psychrophilum shedding rates and duration is limited to rainbow trout (Oncorhynchus mykiss). Concurrently, hundreds of F. psychrophilum sequence types (STs) have been described using multilocus sequence typing (MLST), and evidence suggests that some variants have distinct phenotypes, including differences in host associations. Whether shedding dynamics differ among F. psychrophilum variants and/or salmonids remains unknown. Thus, three F. psychrophilum isolates (e.g., US19, US62, and US87) in three MLST STs (e.g., ST13, ST277, and ST275) with apparent host associations for coho salmon (O. kisutch), Atlantic salmon (Salmo salar), or rainbow trout were intramuscularly injected into each respective fish species. Shedding rates of live and dead fish were determined by quantifying F. psychrophilum loads in water via quantitative PCR. Both live and dead Atlantic and coho salmon shed F. psychrophilum, as did live and dead rainbow trout. Regardless of salmonid species, dead fish shed F. psychrophilum at higher rates (e.g., up to ~108-1010 cells/fish/hour) compared to live fish (up to ~107-109 cells/fish/hour) and for a longer duration (5-35 days vs 98 days); however, shedding dynamics varied by F. psychrophilum variant and/or host species, a matter that may complicate BCWD management. Findings herein expand knowledge on F. psychrophilum shedding dynamics across multiple salmonid species and can be used to inform future BCWD management strategies.IMPORTANCEFlavobacterium psychrophilum causes bacterial coldwater disease (BCWD) and rainbow trout fry syndrome, both of which cause substantial losses in farmed and hatchery-reared salmon and trout populations worldwide. This study provides insight into F. psychrophilum shedding dynamics in rainbow trout (Oncorhynchus mykiss) and, for the first time, coho salmon (O. kisutch) and Atlantic salmon (Salmo salar). Findings revealed that live and dead fish of all fish species shed the bacterium. However, dead fish shed F. psychrophilum at higher rates than living fish, emphasizing the importance of removing dead fish in farms and hatcheries. Furthermore, shedding dynamics may differ according to F. psychrophilum genetic variant and/or fish species, a matter that may complicate BCWD management. Overall, study results provide deeper insight into F. psychrophilum shedding dynamics and will guide future BCWD management strategies.


Asunto(s)
Infecciones Bacterianas , Enfermedades de los Peces , Infecciones por Flavobacteriaceae , Oncorhynchus kisutch , Oncorhynchus mykiss , Animales , Tipificación de Secuencias Multilocus , Infecciones por Flavobacteriaceae/microbiología , Oncorhynchus mykiss/microbiología , Flavobacterium/genética , Oncorhynchus kisutch/microbiología , Enfermedades de los Peces/microbiología
16.
Environ Microbiol Rep ; 16(1): e13226, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38298071

RESUMEN

Flavobacterium plurextorum is a potential fish pathogen of interest, previously isolated from diseased rainbow trout (Oncorhynchus mykiss) and oomycete-infected chum salmon (Oncorhynchus keta) eggs. We report here the first complete genome sequence of F. plurextorum RSG-18 isolated from the gut of Schlegel's black rockfish (Sebastes schlegelii). The genome of RSG-18 consists of a circular chromosome of 5,610,911 bp with a 33.57% GC content, containing 4858 protein-coding genes, 18 rRNAs, 63 tRNAs and 1 tmRNA. A comparative analysis was conducted on 11 Flavobacterium species previously reported as pathogens or isolated from diseased fish to confirm the potential pathogenicity of RSG-18. In the SEED classification, RSG-18 was found to have 36 genes categorized in 'Virulence, Disease and Defense'. Across all Flavobacterium species, a total of 16 antibiotic resistance genes and 61 putative virulence factors were identified. All species had at least one phage region and type I, III and IX secretion systems. In pan-genomic analysis, core genes consist of genes linked to phages, integrases and matrix-tolerated elements associated with pathology. The complete genome sequence of F. plurextorum RSG-18 will serve as a foundation for future research, enhancing our understanding of Flavobacterium pathogenicity in fish and contributing to the development of effective prevention strategies.


Asunto(s)
Bacteriófagos , Enfermedades de los Peces , Oncorhynchus mykiss , Perciformes , Animales , Flavobacterium/genética , Virulencia/genética , Factores de Virulencia/genética , Peces/microbiología , Enfermedades de los Peces/microbiología , Oncorhynchus mykiss/microbiología
17.
FEMS Microbiol Ecol ; 100(3)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38317643

RESUMEN

Understanding the complex interactions between plants and their associated microorganisms is crucial for optimizing plant health and productivity. While microbiomes of soil-bound cultivated crops are extensively studied, microbiomes of hydroponically cultivated crops have received limited attention. To address this knowledge gap, we investigated the rhizosphere and root endosphere of hydroponically cultivated lettuce. Additionally, we sought to explore the potential impact of the oomycete pathogen Phytophthora cryptogea on these microbiomes. Root samples were collected from symptomatic and nonsymptomatic plants in three different greenhouses. Amplicon sequencing of the bacterial 16S rRNA gene revealed significant alterations in the bacterial community upon P. cryptogea infection, particularly in the rhizosphere. Permutational multivariate analysis of variance (perMANOVA) revealed significant differences in microbial communities between plants from the three greenhouses, and between symptomatic and nonsymptomatic plants. Further analysis uncovered differentially abundant zero-radius operational taxonomic units (zOTUs) between symptomatic and nonsymptomatic plants. Interestingly, members of Pseudomonas and Flavobacterium were positively associated with symptomatic plants. Overall, this study provides valuable insights into the microbiome of hydroponically cultivated plants and highlights the influence of pathogen invasion on plant-associated microbial communities. Further research is required to elucidate the potential role of Pseudomonas and Flavobacterium spp. in controlling P. cryptogea infections within hydroponically cultivated lettuce greenhouses.


Asunto(s)
Microbiota , Phytophthora , Lactuca , Phytophthora/genética , ARN Ribosómico 16S/genética , Raíces de Plantas/microbiología , Microbiota/genética , Rizosfera , Flavobacterium/genética , Microbiología del Suelo
18.
Syst Appl Microbiol ; 47(4): 126518, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761464

RESUMEN

Eight isolates were obtained through a study on culture-dependent bacteria from fish farms and identified as members of the genus Flavobacterium based on pairwise analysis of the 16S rRNA gene sequences. The highest pairwise identity values were calculated as 98.8 % for strain F-30 T and Flavobacterium bizetiae, 99.0 % for strain F-65 T and Flavobacterium branchiarum, 98.7 % for strain F-126 T and Flavobacterium tructae, 98.2 % for strain F-323 T and Flavobacterium cupreum while 99.7 % identity level was detected for strain F-70 T and Flavobacterium geliluteum. In addition, strains F-33, Fl-77, and F-70 T shared 100 % identical 16S rRNA genes, while strains F-323 T and Fl-318 showed 99.9 % identity. A polyphasic approach including comparative analysis of whole-genome data was employed to ascertain the taxonomic provenance of the strains. In addition to the morphological, physiological, biochemical and chemotaxonomic characteristics of the strains, the overall genome-relatedness indices of dDDH and ANI below the established thresholds confirmed the classification of the strains as five novel species within the genus Flavobacterium. The comprehensive genome analyses of the strains were also conducted to determine the biosynthetic gene clusters, virulence features and ecological distribution patterns. Based on the polyphasic characterisations, including comparative genome analyses, it is concluded that strains F-30 T, F-65 T, F-70 T, F126T and F-323 T represent five novel species within the genus Flavobacterium for which Flavobacterium piscisymbiosum sp. nov. F-30 T (=JCM 34194 T = KCTC 82254 T), Flavobacterium pisciphilum sp. nov. F-65 T (=JCM 34197 T = KCTC 82257 T), Flavobacterium flavipigmentatum sp. nov. F-70 T (Fl-33 = Fl-77 = JCM 34198 T = KCTC 82258 T), Flavobacterium lipolyticum sp. nov. F-126 T (JCM 34199 T = KCTC 82259 T) and Flavobacterium cupriresistens sp. nov. F-323 T (Fl-318 = JCM 34200 T = KCTC 82260 T), are proposed.


Asunto(s)
Técnicas de Tipificación Bacteriana , ADN Bacteriano , Flavobacterium , Genoma Bacteriano , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Flavobacterium/genética , Flavobacterium/clasificación , Flavobacterium/aislamiento & purificación , ARN Ribosómico 16S/genética , Genoma Bacteriano/genética , ADN Bacteriano/genética , Ácidos Grasos/análisis , Ácidos Grasos/química , Composición de Base , Animales , Peces/microbiología , Acuicultura , Infecciones por Flavobacteriaceae/microbiología
19.
J Biosci Bioeng ; 137(6): 429-436, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38570219

RESUMEN

Plant root-associated environments such as the rhizosphere, rhizoplane, and endosphere, are notably different from non-root-associated soil environments. However, the microbial dynamics in these spatially divided compartments remain unexplored. In this study, we propose a combinational analysis of single-cell genomics with 16S rRNA gene sequencing. This method enabled us to understand the entire soil microbiome and individual root-associated microorganisms. We applied this method to soybean microbiomes and revealed that their composition was different between the rhizoplane and rhizosphere in the early growth stages, but became more similar as growth progressed. In addition, a total of 610 medium- to high-quality single-amplified genomes (SAGs) were acquired, including plant growth-promoting rhizobacteria (PGPR) candidates while genomes with high GC content tended to be missed by SAGs. The whole-genome analyses of the SAGs suggested that rhizoplane-enriched Flavobacterium solubilizes organophosphate actively and Bacillus colonizes roots more efficiently. Single-cell genomics, together with 16S rRNA gene sequencing, enabled us to connect microbial taxonomy and function, and assess microorganisms at a strain resolution even in the complex soil microbiome.


Asunto(s)
Glycine max , Microbiota , Raíces de Plantas , ARN Ribosómico 16S , Rizosfera , Análisis de la Célula Individual , Microbiología del Suelo , Glycine max/microbiología , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Flavobacterium/genética , Flavobacterium/clasificación , Flavobacterium/metabolismo
20.
J Biosci Bioeng ; 138(2): 118-126, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38825558

RESUMEN

The α-1,3-glucanase Agl-EK14 from Flavobacterium sp. EK-14 comprises a signal peptide (SP), a catalytic domain (CAT), a first immunoglobulin-like domain (Ig1), a second immunoglobulin-like domain (Ig2), a ricin B-like lectin domain (RicinB), and a carboxy-terminal domain (CTD). SP and CTD are predicted to be involved in extracellular secretion, while the roles of Ig1, Ig2, and RicinB are unclear. To clarify their roles, domain deletion enzymes Agl-EK14ΔRicinB, Agl-EK14ΔIg2RicinB, and Agl-EK14ΔIg1Ig2RicinB were constructed. The insoluble α-1,3-glucan hydrolytic, α-1,3-glucan binding, and fungal cell wall hydrolytic activities of the deletion enzymes were almost the same and lower than those of Agl-EK14. Kinetic analysis revealed that the Km values of the deletion enzymes were similar and uniformly higher than those of Agl-EK14. These results suggest that the deletion of RicinB causes a decline in binding and hydrolytic activity and increases the Km value. To confirm the role of RicinB, Ig1, Ig2, and RicinB were fused with green fluorescent protein (GFP). As a result, RicinB-fused GFP (GFP-RicinB) showed binding to insoluble α-1,3-glucan and Aspergillus oryzae cell walls, whereas Ig1- and Ig2-fused GFP did not. These results indicated that RicinB is involved in α-1,3-glucan binding. The fusion protein GFP-Ig1Ig2RicinB was also constructed and GFP-Ig1Ig2RicinB showed strong binding to the cell wall of A. oryzae compared to GFP-RicinB. Gel filtration column chromatography suggested that the strong binding was due to GFP-Ig1Ig2RicinB loosely associated with itself.


Asunto(s)
Pared Celular , Flavobacterium , Glucanos , Dominios Proteicos , Flavobacterium/enzimología , Flavobacterium/genética , Flavobacterium/metabolismo , Pared Celular/metabolismo , Glucanos/metabolismo , Hidrólisis , Dominio Catalítico , Cinética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/química , Señales de Clasificación de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA