Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 814
Filtrar
Más filtros

Intervalo de año de publicación
1.
Biol Reprod ; 109(6): 799-811, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-37672213

RESUMEN

Galectins are a phylogenetically conserved family of soluble ß-galactoside binding proteins. There are 16 different of galectins, each with a specific function determined by its distinct distribution and spatial structure. Galectin-13, galectin-14, and galectin-16 are distinct from other galectin members in that they are primarily found in placental tissue. These galectins, also referred to as placental galectins, play critical roles in regulating pregnancy-associated processes, such as placenta formation and maternal immune tolerance to the embedded embryo. The unique structural characteristics and the inability to bind lactose of placental galectins have recently received significant attention. This review primarily examines the novel structural features of placental galectins, which distinguish them from the classic galectins. Furthermore, it explores the correlation between these structural features and the loss of ß-galactoside binding ability. In addition, the newly discovered functions of placental galectins in recent years are also summarized in our review. A detailed understanding of the roles of placental galectins may contribute to the discovery of new mechanisms causing numerous pregnancy diseases and enable the development of new diagnostic and therapeutic strategies for the treatment of these diseases, ultimately benefiting the health of mothers and offspring.


Asunto(s)
Galectinas , Placenta , Femenino , Embarazo , Humanos , Placenta/metabolismo , Galectinas/química , Galectinas/metabolismo , Galactósidos/química , Galactósidos/metabolismo
2.
Glycoconj J ; 40(1): 85-95, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36287345

RESUMEN

The Dalbergieae lectin group encompasses several lectins with significant differences in their carbohydrate specificities and biological properties. The current work reports on the purification and characterization of a GalNAc/Gal-specific lectin from Vataireopsis araroba (Aguiar) Ducke, designated as VaL. The lectin was purified from the seeds in a single step using guar gum affinity chromatography. The lectin migrated as a single band of about 35 kDa on SDS-PAGE and, in native conditions, occurs as a homodimer. The purified lectin is stable at temperatures up to 60 °C and in a pH range from 7 to 8 and requires divalent cations for its activity. Sugar-inhibition assays demonstrate the lectin specificity towards N-acetyl-D-galactosamine, D-galactose and related sugars. Furthermore, glycan array analyses show that VaL interacts preferentially with glycans containing terminal GalNAc/Galß1-4GlcNAc. Biological activity assays were performed using three insect cell lines: CF1 midgut cells from the spruce budworm Choristoneura fumiferana, S2 embryo cells from the fruit fly Drosophila melanogaster, and GutAW midgut cells from the corn earworm Helicoverpa zea. In vitro assays indicated a biostatic effect for VaL on CF1 cells, but not on S2 and GutAW cells. The lectin presented a biostatic effect by reducing the cell growth and inducing cell agglutination, suggesting an interaction with glycans on the cell surface. VaL has been characterized as a galactoside-specific lectin of the Dalbergieae tribe, with sequence similarity to lectins from Vatairea and Arachis.


Asunto(s)
Fabaceae , Lectinas , Animales , Lectinas/metabolismo , Fabaceae/química , Fabaceae/metabolismo , Drosophila melanogaster , Carbohidratos/análisis , Semillas/química , Polisacáridos/metabolismo , Galactósidos/análisis , Galactósidos/metabolismo , Lectinas de Plantas/química
3.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-37849239

RESUMEN

Coupling transcription of a cloned gene to the lac operon with induction by isopropylthio-ß-galactoside (IPTG) has been a favoured approach for recombinant protein expression using Escherichia coli as a heterologous host for more than six decades. Despite a wealth of experimental data gleaned over this period, a quantitative relationship between extracellular IPTG concentration and consequent levels of recombinant protein expression remains surprisingly elusive across a broad spectrum of experimental conditions. This is because gene expression under lac operon regulation is tightly correlated with intracellular IPTG concentration due to allosteric regulation of the lac repressor protein (lacY). An in-silico mathematical model established that uptake of IPTG across the cytoplasmic membrane of E. coli by simple diffusion was negligible. Conversely, lacY mediated active transport was a rapid process, taking only some seconds for internal and external IPTG concentrations to equalize. Optimizing kcat and KM parameters by targeted mutation of the galactoside binding site in lacY could be a future strategy to improve the performance of recombinant protein expression. For example, if kcat were reduced whilst KM was increased, active transport of IPTG across the cytoplasmic membrane would be reduced, thereby lessening the metabolic burden on the cell and expediating accumulation of recombinant protein. The computational model described herein is made freely available and is amenable to optimize recombinant protein expression in other heterologous hosts. ONE-SENTENCE SUMMARY: A computational model made freely available to optimize recombinant protein expression in Escherichia coli other heterologous hosts.


Asunto(s)
Escherichia coli , Galactósidos , Escherichia coli/genética , Escherichia coli/metabolismo , Isopropil Tiogalactósido/metabolismo , Isopropil Tiogalactósido/farmacología , Galactósidos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Membrana Celular/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(2): 977-981, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31889006

RESUMEN

LacY catalyzes accumulation of galactosides against a concentration gradient by coupling galactoside and H+ transport (i.e., symport). While alternating access of sugar- and H+-binding sites to either side of the membrane is driven by binding and dissociation of sugar, the electrochemical H+ gradient ([Formula: see text]) functions kinetically by decreasing the Km for influx 50- to 100-fold with no change in Kd The affinity of protonated LacY for sugar has an apparent pK (pKapp) of ∼10.5, due specifically to the pKa of Glu325, a residue that plays an irreplaceable role in coupling. In this study, rates of lactose/H+ efflux were measured from pH 5.0 to 9.0 in the absence or presence of a membrane potential (ΔΨ, interior positive), and the effect of the imposed ΔΨ on the kinetics of efflux was also studied in right-side-out membrane vesicles. The findings reveal that [Formula: see text] induces an asymmetry in the transport cycle based on the following observations: 1) the efflux rate of WT LacY exhibits a pKapp of ∼7.2 that is unaffected by the imposed ΔΨ; 2) ΔΨ increases the rate of efflux at all tested pH values, but enhancement is almost 2 orders of magnitude less than observed for influx; 3) mutant Glu325 - Ala does little or no efflux in the absence or presence of ΔΨ, and ambient pH has no effect; and 4) the effect of ΔΨ (interior positive) on the Km for efflux is almost insignificant relative to the 50- to 100-fold decrease in the Km for influx driven by ΔΨ (interior negative).


Asunto(s)
Galactósidos/metabolismo , Potenciales de la Membrana/fisiología , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Protones , Sitios de Unión , Transporte Biológico , Concentración de Iones de Hidrógeno , Transporte Iónico , Cinética , Lactosa/metabolismo , Proteínas de Transporte de Membrana/genética , Modelos Moleculares
5.
Angew Chem Int Ed Engl ; 62(7): e202215535, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36398566

RESUMEN

Bacterial adhesion, biofilm formation and host cell invasion of the ESKAPE pathogen Pseudomonas aeruginosa require the tetravalent lectins LecA and LecB, which are therefore drug targets to fight these infections. Recently, we have reported highly potent divalent galactosides as specific LecA inhibitors. However, they suffered from very low solubility and an intrinsic chemical instability due to two acylhydrazone motifs, which precluded further biological evaluation. Here, we isosterically substituted the acylhydrazones and systematically varied linker identity and length between the two galactosides necessary for LecA binding. The optimized divalent LecA ligands showed improved stability and were up to 1000-fold more soluble. Importantly, these properties now enabled their biological characterization. The lead compound L2 potently inhibited LecA binding to lung epithelial cells, restored wound closure in a scratch assay and reduced the invasiveness of P. aeruginosa into host cells.


Asunto(s)
Adhesinas Bacterianas , Pseudomonas aeruginosa , Humanos , Adhesinas Bacterianas/química , Pseudomonas aeruginosa/metabolismo , Factores de Virulencia/metabolismo , Galactósidos/química , Galactósidos/metabolismo , Galactósidos/farmacología , Adhesión Bacteriana
6.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35563169

RESUMEN

In this study, we performed an association analysis of metabolomics and transcriptomics to reveal the anthocyanin biosynthesis mechanism in a new purple-leaf tea cultivar Zikui (Camellia sinensis cv. Zikui) (ZK). Three glycosylated anthocyanins were identified, including petunidin 3-O-glucoside, cyanidin 3-O-galactoside, and cyanidin 3-O-glucoside, and their contents were the highest in ZK leaves at 15 days. This is the first report on petunidin 3-O-glucoside in purple-leaf tea. Integrated analysis of the transcriptome and metabolome identified eleven dependent transcription factors, among which CsMYB90 had strong correlations with petunidin 3-O-glucoside, cyanidin 3-O-galactoside, and cyanidin 3-O-glucoside (PCC > 0.8). Furthermore, we also identified key correlated structural genes, including two positively correlated F3'H (flavonoid-3'-hydroxylase) genes, two positively correlated ANS (anthocyanin synthase) genes, and three negatively correlated PPO (polyphenol oxidase) genes. Overexpression of CsMYB90 in tobacco resulted in dark-purple transgenic calluses. These results showed that the increased accumulation of three anthocyanins in ZK may promote purple-leaf coloration because of changes in the expression levels of genes, including CsMYB90, F3'Hs, ANSs, and PPOs. These findings reveal new insight into the molecular mechanism of anthocyanin biosynthesis in purple-leaf tea plants and provide a series of candidate genes for the breeding of anthocyanin-rich cultivars.


Asunto(s)
Camellia sinensis , Antocianinas/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Galactósidos/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucósidos/metabolismo , Metabolómica , Fitomejoramiento , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Té/metabolismo , Transcriptoma
7.
J Biol Chem ; 295(52): 18426-18435, 2020 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-33127644

RESUMEN

α-Linked galactose is a common carbohydrate motif in nature that is processed by a variety of glycoside hydrolases from different families. Terminal Galα1-3Gal motifs are found as a defining feature of different blood group and tissue antigens, as well as the building block of the marine algal galactan λ-carrageenan. The blood group B antigen and linear α-Gal epitope can be processed by glycoside hydrolases in family GH110, whereas the presence of genes encoding GH110 enzymes in polysaccharide utilization loci from marine bacteria suggests a role in processing λ-carrageenan. However, the structure-function relationships underpinning the α-1,3-galactosidase activity within family GH110 remain unknown. Here we focus on a GH110 enzyme (PdGH110B) from the carrageenolytic marine bacterium Pseudoalteromonas distincta U2A. We showed that the enzyme was active on Galα1-3Gal but not the blood group B antigen. X-ray crystal structures in complex with galactose and unhydrolyzed Galα1-3Gal revealed the parallel ß-helix fold of the enzyme and the structural basis of its inverting catalytic mechanism. Moreover, an examination of the active site reveals likely adaptations that allow accommodation of fucose in blood group B active GH110 enzymes or, in the case of PdGH110, accommodation of the sulfate groups found on λ-carrageenan. Overall, this work provides insight into the first member of a predominantly marine clade of GH110 enzymes while also illuminating the structural basis of α-1,3-galactoside processing by the family as a whole.


Asunto(s)
Antígenos de Grupos Sanguíneos/metabolismo , Carragenina/metabolismo , Galactósidos/metabolismo , Glicósido Hidrolasas/química , Pseudoalteromonas/enzimología , Antígenos de Grupos Sanguíneos/química , Carragenina/química , Dominio Catalítico , Cristalografía por Rayos X , Galactósidos/química , Glicósido Hidrolasas/clasificación , Glicósido Hidrolasas/metabolismo , Hidrólisis , Modelos Moleculares , Filogenia , Conformación Proteica , Especificidad por Sustrato
8.
PLoS Pathog ; 15(2): e1007589, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30818370

RESUMEN

Human T Lymphotropic virus (HTLV) infection can persist in individuals resulting, at least in part, from viral escape of the innate immunity, including inhibition of type I interferon response in infected T-cells. Plasmacytoid dendritic cells (pDCs) are known to bypass viral escape by their robust type I interferon production. Here, we demonstrated that pDCs produce type I interferons upon physical cell contact with HTLV-infected cells, yet pDC activation inversely correlates with the ability of the HTLV-producing cells to transmit infection. We show that pDCs sense surface associated-HTLV present with glycan-rich structure referred to as biofilm-like structure, which thus represents a newly described viral structure triggering the antiviral response by pDCs. Consistently, heparan sulfate proteoglycans and especially the cell surface pattern of terminal ß-galactoside glycosylation, modulate the transmission of the immunostimulatory RNA to pDCs. Altogether, our results uncover a function of virus-containing cell surface-associated glycosylated structures in the activation of innate immunity.


Asunto(s)
Células Dendríticas/fisiología , Infecciones por HTLV-I/metabolismo , Citocinas , Galactósidos/metabolismo , Glicosilación , Infecciones por HTLV-I/inmunología , Virus Linfotrópico T Tipo 1 Humano/inmunología , Virus Linfotrópico T Tipo 1 Humano/patogenicidad , Virus Linfotrópico T Tipo 2 Humano/inmunología , Virus Linfotrópico T Tipo 2 Humano/patogenicidad , Humanos , Inmunidad Innata/fisiología , Interferón Tipo I/inmunología , Interferón-alfa/inmunología , Interferón-alfa/metabolismo , Células Jurkat , Linfocitos T/inmunología , Linfocitos T/fisiología
9.
Microb Cell Fact ; 20(1): 71, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33736637

RESUMEN

BACKGROUND: The spore-forming lactic acid bacterium Bacillus coagulans MA-13 has been isolated from canned beans manufacturing and successfully employed for the sustainable production of lactic acid from lignocellulosic biomass. Among lactic acid bacteria, B. coagulans strains are generally recognized as safe (GRAS) for human consumption. Low-cost microbial production of industrially valuable products such as lactic acid and various enzymes devoted to the hydrolysis of oligosaccharides and lactose, is of great importance to the food industry. Specifically, α- and ß-galactosidases are attractive for their ability to hydrolyze not-digestible galactosides present in the food matrix as well as in the human gastrointestinal tract. RESULTS: In this work we have explored the potential of B. coagulans MA-13 as a source of metabolites and enzymes to improve the digestibility and the nutritional value of food. A combination of mass spectrometry analysis with conventional biochemical approaches has been employed to unveil the intra- and extra- cellular glycosyl hydrolase (GH) repertoire of B. coagulans MA-13 under diverse growth conditions. The highest enzymatic activity was detected on ß-1,4 and α-1,6-glycosidic linkages and the enzymes responsible for these activities were unambiguously identified as ß-galactosidase (GH42) and α-galactosidase (GH36), respectively. Whilst the former has been found only in the cytosol, the latter is localized also extracellularly. The export of this enzyme may occur through a not yet identified secretion mechanism, since a typical signal peptide is missing in the α-galactosidase sequence. A full biochemical characterization of the recombinant ß-galactosidase has been carried out and the ability of this enzyme to perform homo- and hetero-condensation reactions to produce galacto-oligosaccharides, has been demonstrated. CONCLUSIONS: Probiotics which are safe for human use and are capable of producing high levels of both α-galactosidase and ß-galactosidase are of great importance to the food industry. In this work we have proven the ability of B. coagulans MA-13 to over-produce these two enzymes thus paving the way for its potential use in treatment of gastrointestinal diseases.


Asunto(s)
Bacillus coagulans/enzimología , Galactósidos/metabolismo , Oligosacáridos/biosíntesis , Prebióticos , beta-Galactosidasa/metabolismo , Bacillus coagulans/crecimiento & desarrollo , Bacillus coagulans/metabolismo , Biocatálisis , Clonación Molecular , Estabilidad de Enzimas , Galactosa/análisis , Galactosa/metabolismo , Glicosilación , Concentración de Iones de Hidrógeno , Oligosacáridos/química , Análisis de Secuencia de ADN , Especificidad por Sustrato , alfa-Galactosidasa/metabolismo , beta-Galactosidasa/química , beta-Galactosidasa/genética
10.
Methods ; 172: 86-94, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31472270

RESUMEN

The "gene scissors" CRISPR-Cas currently revolutionize the field of molecular biology with an enormous impact on society due to the broad application potentials in biomedicine, biotechnology and agriculture. We have developed simple CRISPR-Cas experiments that can serve to introduce pupils, students and non-scientists alike to the fascinating power of targeted gene editing. The experimental course is divided into two parts. In part 1, we target plasmid borne lacZ to convert blue E. coli to white E. coli. In part 2, we analyse the CRISPR-Cas9 mediated double strand breaks in the lacZ gene by a) colony PCR, b) colony cracking gel or c) restriction digest of the plasmids. Experimental work is embedded in short theoretical lecture parts that provide background of CRISPR-Cas and a step-by-step tutorial for the practical work. Though the experiment is robust, inexpensive and simple it should be noted that guidance by an expert instructor is required. Based on our experience, a full day lab course has a positive influence on the participants' attitude towards research in general. This is true for high school students as well as non-scientists (age groups 16-70 years).


Asunto(s)
Sistemas CRISPR-Cas/genética , Educación/métodos , Edición Génica/métodos , Biología Molecular/educación , Adolescente , Adulto , Anciano , Compuestos Cromogénicos/metabolismo , Color , Roturas del ADN de Doble Cadena , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Galactósidos/metabolismo , Humanos , Indoles/metabolismo , Operón Lac/genética , Persona de Mediana Edad , Plásmidos/genética , Instituciones Académicas , Estudiantes , Adulto Joven , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
11.
Parasitology ; 148(6): 648-654, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33461629

RESUMEN

Galectins are a family of proteins that bind ß-galactosides and play key roles in a variety of cellular processes including host defence. They have been well studied in hosts but less so in gastrointestinal nematodes. Both host and parasite galectins are present in the gastrointestinal tract following infection. Parasite galectins can both bind antibody, especially highly glycosylated IgE and be bound by antibody. Parasite galectins may act as molecular sponges that soak up antibody. Host galectins promote mast cell degranulation while parasite galectins inhibit degranulation. Host and parasite galectins can also bind mucins and influence mucus viscosity. As the protective response against gastrointestinal nematode infection is partly dependent on IgE mediated mast cell degranulation and mucus, the interactions between host and parasite galectins play key roles in determining the outcome of infection.


Asunto(s)
Galactósidos/metabolismo , Galectinas/metabolismo , Infecciones por Nematodos/metabolismo , Animales , Galectinas/química , Interacciones Huésped-Parásitos , Estructura Molecular , Polisacáridos/metabolismo
12.
Mar Drugs ; 19(5)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068166

RESUMEN

α-Neoagarobiose (NAB)/neoagarooligosaccharide (NAO) hydrolase plays an important role as an exo-acting 3,6-anhydro-α-(1,3)-L-galactosidase in agarose utilization. Agarose is an abundant polysaccharide found in red seaweeds, comprising 3,6-anhydro-L-galactose (AHG) and D-galactose residues. Unlike agarose degradation, which has been reported in marine microbes, recent metagenomic analysis of Bacteroides plebeius, a human gut bacterium, revealed the presence of genes encoding enzymes involved in agarose degradation, including α-NAB/NAO hydrolase. Among the agarolytic enzymes, BpGH117 has been partially characterized. Here, we characterized the exo-acting α-NAB/NAO hydrolase BpGH117, originating from B. plebeius. The optimal temperature and pH for His-tagged BpGH117 activity were 35 °C and 9.0, respectively, indicative of its unique origin. His-tagged BpGH117 was thermostable up to 35 °C, and the enzyme activity was maintained at 80% of the initial activity at a pre-incubation temperature of 40 °C for 120 min. Km and Vmax values for NAB were 30.22 mM and 54.84 U/mg, respectively, and kcat/Km was 2.65 s-1 mM-1. These results suggest that His-tagged BpGH117 can be used for producing bioactive products such as AHG and agarotriose from agarose efficiently.


Asunto(s)
Bacteroides/enzimología , Disacaridasas/biosíntesis , Disacaridasas/química , Disacáridos/metabolismo , Ácido Edético/farmacología , Pruebas de Enzimas , Escherichia coli/genética , Galactósidos/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Iones/farmacología , Cinética , Oligosacáridos/metabolismo , Estabilidad Proteica , Análisis de Secuencia de Proteína , Temperatura
13.
Proc Natl Acad Sci U S A ; 115(50): 12716-12721, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30478058

RESUMEN

The lactose permease of Escherichia coli (LacY) utilizes an alternating access symport mechanism with multiple conformational intermediates, but only inward (cytoplasmic)- or outward (periplasmic)-open structures have been characterized by X-ray crystallography. It is demonstrated here with sugar-binding studies that cross-linking paired-Cys replacements across the closed cytoplasmic cavity stabilize an occluded conformer with an inaccessible sugar-binding site. In addition, a nanobody (Nb) that stabilizes a periplasmic-open conformer with an easily accessible sugar-binding site in WT LacY fails to cause the cytoplasmic cross-linked mutants to become accessible to galactoside, showing that the periplasmic cavity is closed. These results are consistent with tight association of the periplasmic ends in two pairs of helices containing clusters of small residues in the packing interface between N- and C-terminal six-helix bundles of the symporter. However, after reduction of the disulfide bond, the Nb markedly increases the rate of galactoside binding, indicating unrestricted access to the Nb epitope and the galactoside-binding site from the periplasm. The findings indicate that the cross-linked cytoplasmic double-Cys mutants resemble an occluded apo-intermediate in the transport cycle.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Monosacáridos/química , Simportadores/química , Sitios de Unión , Cristalografía por Rayos X/métodos , Citoplasma/metabolismo , Escherichia coli/metabolismo , Galactósidos/química , Galactósidos/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Periplasma/metabolismo , Simportadores/metabolismo
14.
Proc Natl Acad Sci U S A ; 115(16): 4146-4151, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29602806

RESUMEN

Binding kinetics of α-galactopyranoside homologs with fluorescent aglycones of different sizes and shapes were determined with the lactose permease (LacY) of Escherichia coli by FRET from Trp151 in the binding site of LacY to the fluorophores. Fast binding was observed with LacY stabilized in an outward-open conformation (kon = 4-20 µM-1·s-1), indicating unobstructed access to the binding site even for ligands that are much larger than lactose. Dissociation rate constants (koff) increase with the size of the aglycone so that Kd values also increase but remain in the micromolar range for each homolog. Phe27 (helix I) forms an apparent constriction in the pathway for sugar by protruding into the periplasmic cavity. However, replacement of Phe27 with a bulkier Trp does not create an obstacle in the pathway even for large ligands, since binding kinetics remain unchanged. High accessibility of the binding site is also observed in a LacY/nanobody complex with partially blocked periplasmic opening. Remarkably, E. coli expressing WT LacY catalyzes transport of α- or ß-galactopyranosides with oversized aglycones such as bodipy or Aldol518, which may require an extra space within the occluded intermediate. The results confirm that LacY specificity is strictly directed toward the galactopyranoside ring and also clearly indicate that the opening on the periplasmic side is sufficiently wide to accommodate the large galactoside derivatives tested here. We conclude that the actual pathway for the substrate entering from the periplasmic side is wider than the pore diameter calculated in the periplasmic-open X-ray structures.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Galactósidos/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Simportadores/metabolismo , Sitios de Unión , Transporte Biológico Activo , Cristalografía por Rayos X , Proteínas de Escherichia coli/química , Colorantes Fluorescentes , Galactosa/química , Galactosa/metabolismo , Galactósidos/química , Cinética , Ligandos , Modelos Moleculares , Estructura Molecular , Proteínas de Transporte de Monosacáridos/química , Periplasma/metabolismo , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Simportadores/química
15.
Mikrochim Acta ; 189(1): 4, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34855041

RESUMEN

Synthetic biology approaches for rewiring of bacterial constructs to express particular intracellular factors upon induction with the target analyte are emerging as sensing paradigms for applications in environmental and in vivo monitoring. To aid in the design and optimization of bacterial constructs for sensing analytes, there is a need for lysis-free intracellular detection modalities that monitor the signal level and kinetics of expressed factors within different modified bacteria in a multiplexed manner, without requiring cumbersome surface immobilization. Herein, an electrochemical detection system on nanoporous gold that is electrofabricated with a biomaterial redox capacitor is presented for quantifying ß-galactosidase expressed inside modified Escherichia coli constructs upon induction with dopamine. This nanostructure-mediated redox amplification approach on a microfluidic platform allows for multiplexed assessment of the expressed intracellular factors from different bacterial constructs suspended in distinct microchannels, with no need for cell lysis or immobilization. Since redox mediators present over the entire depth of the microchannel can interact with the electrode and with the E. coli construct in each channel, the platform exhibits high sensitivity and enables multiplexing. We envision its application in assessing synthetic biology-based approaches for comparing specificity, sensitivity, and signal response time upon induction with target analytes of interest.


Asunto(s)
Catecoles/química , Quitosano/química , Técnicas Electroquímicas/métodos , Proteínas de Escherichia coli/análisis , Nanoporos , beta-Galactosidasa/análisis , Dopamina/farmacología , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Galactósidos/química , Galactósidos/metabolismo , Oro/química , Límite de Detección , Técnicas Analíticas Microfluídicas , Oxidación-Reducción , Rutenio/química , Transactivadores/metabolismo , beta-Galactosidasa/metabolismo
16.
J Biol Chem ; 294(31): 11701-11711, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31186348

RESUMEN

Bifidobacteria are exposed to substantial amounts of dietary ß-galactosides. Distinctive preferences for growth on different ß-galactosides are observed within Bifidobacterium members, but the basis of these preferences remains unclear. We previously described the first ß-(1,6)/(1,3)-galactosidase from Bifidobacterium animalis subsp. lactis Bl-04. This enzyme is relatively promiscuous, exhibiting only 5-fold higher efficiency on the preferred ß-(1,6)-galactobiose than the ß-(1,4) isomer. Here, we characterize the solute-binding protein (Bal6GBP) that governs the specificity of the ABC transporter encoded by the same ß-galactoside utilization locus. We observed that although Bal6GBP recognizes both ß-(1,6)- and ß-(1,4)-galactobiose, Bal6GBP has a 1630-fold higher selectivity for the former, reflected in dramatic differences in growth, with several hours lag on less preferred ß-(1,4)- and ß-(1,3)-galactobiose. Experiments performed in the presence of varying proportions of ß-(1,4)/ß-(1,6)-galactobioses indicated that the preferred substrate was preferentially depleted from the culture supernatant. This established that the poor growth on the nonpreferred ß-(1,4) was due to inefficient uptake. We solved the structure of Bal6GBP in complex with ß-(1,6)-galactobiose at 1.39 Å resolution, revealing the structural basis of this strict selectivity. Moreover, we observed a close evolutionary relationship with the human milk disaccharide lacto-N-biose-binding protein from Bifidobacterium longum, indicating that the recognition of the nonreducing galactosyl is essentially conserved, whereas the adjacent position is diversified to fit different glycosidic linkages and monosaccharide residues. These findings indicate that oligosaccharide uptake has a pivotal role in governing selectivity for distinct growth substrates and have uncovered evolutionary trajectories that shape the diversification of sugar uptake proteins within Bifidobacterium.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Bifidobacterium animalis/crecimiento & desarrollo , Galactosidasas/metabolismo , Galactósidos/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Bifidobacterium animalis/enzimología , Bifidobacterium animalis/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Evolución Molecular , Galactosidasas/química , Galactósidos/química , Cinética , Simulación de Dinámica Molecular , Unión Proteica , Especificidad por Sustrato
17.
J Bacteriol ; 201(15)2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31138628

RESUMEN

Bacillus subtilis is a heterotrophic soil bacterium that hydrolyzes different polysaccharides mainly found in the decomposed plants. These carbohydrates are mainly cellulose, hemicellulose, and the raffinose family of oligosaccharides (RFOs). RFOs are soluble α-galactosides, such as raffinose, stachyose, and verbascose, that rank second only after sucrose in abundance. Genome sequencing and transcriptome analysis of B. subtilis indicated the presence of a putative α-galactosidase-encoding gene (melA) located in the msmRE-amyDC-melA operon. Characterization of the MelA protein showed that it is a strictly Mn2+- and NAD+-dependent α-galactosidase able to hydrolyze melibiose, raffinose, and stachyose. Transcription of the msmER-amyDC-melA operon is under control of a σA-type promoter located upstream of msmR (P msmR ), which is negatively regulated by MsmR. The activity of P msmR was induced in the presence of melibiose and raffinose. MsmR is a transcriptional repressor that binds to two binding sites at P msmR located upstream of the -35 box and downstream of the transcriptional start site. MsmEX-AmyCD forms an ATP-binding cassette (ABC) transporter that probably transports melibiose into the cell. Since msmRE-amyDC-melA is a melibiose utilization system, we renamed the operon melREDCAIMPORTANCEBacillus subtilis utilizes different polysaccharides produced by plants. These carbohydrates are primarily degraded by extracellular hydrolases, and the resulting oligo-, di-, and monosaccharides are transported into the cytosol via phosphoenolpyruvate-dependent phosphotransferase systems (PTS), major facilitator superfamily, and ATP-binding cassette (ABC) transporters. In this study, a new carbohydrate utilization system of B. subtilis responsible for the utilization of α-galactosides of the raffinose family of oligosaccharides (RFOs) was investigated. RFOs are synthesized from sucrose in plants and are mainly found in the storage organs of plant leaves. Our results revealed the modus operandi of a new carbohydrate utilization system in B. subtilis.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/genética , Oligosacáridos/metabolismo , Operón , Rafinosa/metabolismo , Bacillus subtilis/metabolismo , Galactósidos/metabolismo , Melibiosa/metabolismo , Sacarosa/metabolismo , alfa-Galactosidasa/genética , alfa-Galactosidasa/metabolismo
18.
Anal Chem ; 91(22): 14705-14711, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31650833

RESUMEN

Colorectal cancer is a major cause of cancer-related deaths worldwide. Histologic diagnosis using biopsy samples of colorectal neoplasms is the most important step in determining the treatment methods, but these methods have limitations in accuracy and effectiveness. Herein, we report a dual-recognition two-photon probe and its application in the discrimination between human colorectal neoplasms. The probe is composed of two monosaccharides, d-glucosamine and ß-d-galactopyranoside, in a fluorophore for the monitoring of both glucose uptake and ß-gal hydrolysis. In vitro/cell imaging studies revealed the excellent selectivity and sensitivity of the probe for glucose transporter-mediated glucose uptake and ß-gal activity. Cancer-specific uptake was monitored by increased fluorescence intensity, and additional screening of cancer cells was achieved by changes in emission ratio owing to the higher activity of ß-gal. Using human colon tissues and two-photon microscopy, we found that the plot of intensity versus ratio can accurately discriminate between colorectal neoplasms in the order of cancer progression (normal, adenoma, and carcinoma).


Asunto(s)
Neoplasias Colorrectales/diagnóstico por imagen , Colorantes Fluorescentes/química , Galactósidos/química , Glucosamina/análogos & derivados , Adenoma/diagnóstico por imagen , Carcinoma/diagnóstico por imagen , Línea Celular Tumoral , Neoplasias Colorrectales/clasificación , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/metabolismo , Colorantes Fluorescentes/efectos de la radiación , Galactósidos/síntesis química , Galactósidos/metabolismo , Galactósidos/efectos de la radiación , Glucosamina/síntesis química , Glucosamina/metabolismo , Glucosamina/efectos de la radiación , Humanos , Microscopía Fluorescente/métodos , Fotones , beta-Galactosidasa/metabolismo
19.
Bioconjug Chem ; 30(3): 785-792, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30629410

RESUMEN

Cholera is a potentially fatal bacterial infection that affects a large number of people in developing countries. It is caused by the cholera toxin (CT), an AB5 toxin secreted by Vibrio cholera. The toxin comprises a toxic A-subunit and a pentameric B-subunit that bind to the intestinal cell surface. Several monovalent and multivalent inhibitors of the toxin have been synthesized but are too complicated and expensive for practical use in developing countries. Meta-nitrophenyl α-galactoside (MNPG) is a known promising ligand for CT, and here mono- and multivalent compounds based on MNPG were synthesized. We present the synthesis of MNPG in greatly improved yields and its use while linked to a multivalent scaffold. We used economical polymers as multivalent scaffolds, namely, polyacrylamide, dextran, and hyperbranched polyglycerols (hPGs). Copper-catalyzed alkyne azide cycloaddition reaction (CuAAC) produced the inhibitors that were tested in an ELISA-type assay and an intestinal organoid swelling inhibition assay. The inhibitory properties varied widely depending on the type of polymer, and the most potent conjugates showed IC50 values in the nanomolar range.


Asunto(s)
Toxina del Cólera/antagonistas & inhibidores , Galactósidos/metabolismo , Polímeros/farmacología , Toxina del Cólera/metabolismo , Ensayo de Inmunoadsorción Enzimática , Ligandos , Vibrio cholerae/metabolismo
20.
Anal Biochem ; 587: 113452, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31563443

RESUMEN

Microdroplets have received increasing interest as practical platforms for high-throughput biochemical analysis. Typically, numerous discrete aqueous microdroplets containing biochemical targets are generated in a continuous oil phase and characterized using a flow-through configuration. Although this approach is capable of extremely high throughput, it is challenging to provide dynamic characterization of time-dependent reaction kinetics. In this paper, we present a practical and affordable method to create and analyze a massive array of static aqueous microdroplets immersed in oil for biochemical analysis. The discrete microdroplets were produced by an air-spray gun, imaged by automated microscopy, and then characterized by image processing. The location, area, and fluorescence intensity of randomly generated individual microdroplets were automatically registered for high-throughput characterization. With this approach, we rapidly produced and characterized a static microdroplet array of over 0.7 million microdroplets with an average volume of 300 fL and a mean population density of 1.5*105 microdroplets/cm2. Using the developed setup, we demonstrated the dependency of the microdroplets' fluorescence intensity on their volume, as well as characterized the time-dependent enzyme reaction kinetics of ß-galactosidase-mediated cleavage of the substrate fluorescein di-ß-d-galactopyranoside (FDG). The new approach described herein provides an inexpensive alternative solution for high-throughput analysis of dynamic biochemical processes.


Asunto(s)
Automatización , Ensayos Analíticos de Alto Rendimiento , beta-Galactosidasa/análisis , Galactósidos/química , Galactósidos/metabolismo , Microscopía Fluorescente , Tamaño de la Partícula , Propiedades de Superficie , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA