Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.370
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 168(5): 856-866.e12, 2017 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-28215707

RESUMEN

HSP90 acts as a protein-folding buffer that shapes the manifestations of genetic variation in model organisms. Whether HSP90 influences the consequences of mutations in humans, potentially modifying the clinical course of genetic diseases, remains unknown. By mining data for >1,500 disease-causing mutants, we found a strong correlation between reduced phenotypic severity and a dominant (HSP90 ≥ HSP70) increase in mutant engagement by HSP90. Examining the cancer predisposition syndrome Fanconi anemia in depth revealed that mutant FANCA proteins engaged predominantly by HSP70 had severely compromised function. In contrast, the function of less severe mutants was preserved by a dominant increase in HSP90 binding. Reducing HSP90's buffering capacity with inhibitors or febrile temperatures destabilized HSP90-buffered mutants, exacerbating FA-related chemosensitivities. Strikingly, a compensatory FANCA somatic mutation from an "experiment of nature" in monozygotic twins both prevented anemia and reduced HSP90 binding. These findings provide one plausible mechanism for the variable expressivity and environmental sensitivity of genetic diseases.


Asunto(s)
Anemia de Fanconi/genética , Anemia de Fanconi/patología , Proteínas HSP90 de Choque Térmico/genética , Pliegue de Proteína , Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación A de la Anemia de Fanconi/química , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Mutación Missense , Dominios y Motivos de Interacción de Proteínas , Estrés Fisiológico , Gemelos Monocigóticos
2.
Cell ; 160(1-2): 13-5, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25594170

RESUMEN

The human geneticist Archibald Garrod noted in 1931 that, "It is, of necessity, no easy matter to distinguish between immunity which is inborn and that which has been acquired" (The Inborn Factors in Disease). In this issue of Cell, Brodin et al. show that the heritability of blood counts rapidly decreases with age for the lymphoid subsets responsible for adaptive immunity, unlike cells from other hematopoietic lineages.


Asunto(s)
Inmunidad , Gemelos Dicigóticos , Gemelos Monocigóticos , Humanos
3.
Cell ; 160(1-2): 37-47, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25594173

RESUMEN

There is considerable heterogeneity in immunological parameters between individuals, but its sources are largely unknown. To assess the relative contribution of heritable versus non-heritable factors, we have performed a systems-level analysis of 210 healthy twins between 8 and 82 years of age. We measured 204 different parameters, including cell population frequencies, cytokine responses, and serum proteins, and found that 77% of these are dominated (>50% of variance) and 58% almost completely determined (>80% of variance) by non-heritable influences. In addition, some of these parameters become more variable with age, suggesting the cumulative influence of environmental exposure. Similarly, the serological responses to seasonal influenza vaccination are also determined largely by non-heritable factors, likely due to repeated exposure to different strains. Lastly, in MZ twins discordant for cytomegalovirus infection, more than half of all parameters are affected. These results highlight the largely reactive and adaptive nature of the immune system in healthy individuals.


Asunto(s)
Inmunidad , Gemelos Dicigóticos , Gemelos Monocigóticos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Proteínas Sanguíneas/análisis , Proteínas Sanguíneas/inmunología , Niño , Citocinas/inmunología , Infecciones por Citomegalovirus/inmunología , Humanos , Vacunas contra la Influenza/inmunología , Persona de Mediana Edad , Adulto Joven
4.
Nat Immunol ; 18(5): 541-551, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28288099

RESUMEN

Inflammatory bowel diseases involve the dynamic interaction of host genetics, the microbiome and inflammatory responses. Here we found lower expression of NLRP12 (which encodes a negative regulator of innate immunity) in human ulcerative colitis, by comparing monozygotic twins and other patient cohorts. In parallel, Nlrp12 deficiency in mice caused increased basal colonic inflammation, which led to a less-diverse microbiome and loss of protective gut commensal strains (of the family Lachnospiraceae) and a greater abundance of colitogenic strains (of the family Erysipelotrichaceae). Dysbiosis and susceptibility to colitis associated with Nlrp12 deficency were reversed equally by treatment with antibodies targeting inflammatory cytokines and by the administration of beneficial commensal Lachnospiraceae isolates. Fecal transplants from mice reared in specific-pathogen-free conditions into germ-free Nlrp12-deficient mice showed that NLRP12 and the microbiome each contributed to immunological signaling that culminated in colon inflammation. These findings reveal a feed-forward loop in which NLRP12 promotes specific commensals that can reverse gut inflammation, while cytokine blockade during NLRP12 deficiency can reverse dysbiosis.


Asunto(s)
Clostridiales/fisiología , Colitis Ulcerosa/inmunología , Colon/fisiología , Firmicutes/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Microbiota , ARN Ribosómico 16S/análisis , Animales , Biodiversidad , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/microbiología , Colon/microbiología , Sulfato de Dextran , Heces/microbiología , Interacción Gen-Ambiente , Humanos , Inmunidad Innata/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microbiota/genética , Microbiota/inmunología , Simbiosis , Gemelos Monocigóticos
5.
Cell ; 159(4): 789-99, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25417156

RESUMEN

Host genetics and the gut microbiome can both influence metabolic phenotypes. However, whether host genetic variation shapes the gut microbiome and interacts with it to affect host phenotype is unclear. Here, we compared microbiotas across >1,000 fecal samples obtained from the TwinsUK population, including 416 twin pairs. We identified many microbial taxa whose abundances were influenced by host genetics. The most heritable taxon, the family Christensenellaceae, formed a co-occurrence network with other heritable Bacteria and with methanogenic Archaea. Furthermore, Christensenellaceae and its partners were enriched in individuals with low body mass index (BMI). An obese-associated microbiome was amended with Christensenella minuta, a cultured member of the Christensenellaceae, and transplanted to germ-free mice. C. minuta amendment reduced weight gain and altered the microbiome of recipient mice. Our findings indicate that host genetics influence the composition of the human gut microbiome and can do so in ways that impact host metabolism.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Heces/microbiología , Microbiota , Animales , Bacterias/metabolismo , Índice de Masa Corporal , Femenino , Tracto Gastrointestinal/microbiología , Vida Libre de Gérmenes , Humanos , Masculino , Ratones , Obesidad/microbiología , Gemelos Dicigóticos , Gemelos Monocigóticos
6.
Nature ; 603(7899): 152-158, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35173329

RESUMEN

Multiple sclerosis (MS) is a chronic inflammatory disorder of the central nervous system underpinned by partially understood genetic risk factors and environmental triggers and their undefined interactions1,2. Here we investigated the peripheral immune signatures of 61 monozygotic twin pairs discordant for MS to dissect the influence of genetic predisposition and environmental factors. Using complementary multimodal high-throughput and high-dimensional single-cell technologies in conjunction with data-driven computational tools, we identified an inflammatory shift in a monocyte cluster of twins with MS, coupled with the emergence of a population of IL-2 hyper-responsive transitional naive helper T cells as MS-related immune alterations. By integrating data on the immune profiles of healthy monozygotic and dizygotic twin pairs, we estimated the variance in CD25 expression by helper T cells displaying a naive phenotype to be largely driven by genetic and shared early environmental influences. Nonetheless, the expanding helper T cells of twins with MS, which were also elevated in non-twin patients with MS, emerged independent of the individual genetic makeup. These cells expressed central nervous system-homing receptors, exhibited a dysregulated CD25-IL-2 axis, and their proliferative capacity positively correlated with MS severity. Together, our matched-pair analysis of the extended twin approach allowed us to discern genetically and environmentally determined features of an MS-associated immune signature.


Asunto(s)
Esclerosis Múltiple , Predisposición Genética a la Enfermedad/genética , Humanos , Interleucina-2/genética , Ligando OX40 , Gemelos Dicigóticos/genética , Gemelos Monocigóticos/genética
7.
Am J Hum Genet ; 111(9): 1932-1952, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39137780

RESUMEN

Whole-skin DNA methylation variation has been implicated in several diseases, including melanoma, but its genetic basis has not yet been fully characterized. Using bulk skin tissue samples from 414 healthy female UK twins, we performed twin-based heritability and methylation quantitative trait loci (meQTL) analyses for >400,000 DNA methylation sites. We find that the human skin DNA methylome is on average less heritable than previously estimated in blood and other tissues (mean heritability: 10.02%). meQTL analysis identified local genetic effects influencing DNA methylation at 18.8% (76,442) of tested CpG sites, as well as 1,775 CpG sites associated with at least one distal genetic variant. As a functional follow-up, we performed skin expression QTL (eQTL) analyses in a partially overlapping sample of 604 female twins. Colocalization analysis identified over 3,500 shared genetic effects affecting thousands of CpG sites (10,067) and genes (4,475). Mediation analysis of putative colocalized gene-CpG pairs identified 114 genes with evidence for eQTL effects being mediated by DNA methylation in skin, including in genes implicating skin disease such as ALOX12 and CSPG4. We further explored the relevance of skin meQTLs to skin disease and found that skin meQTLs and CpGs under genetic influence were enriched for multiple skin-related genome-wide and epigenome-wide association signals, including for melanoma and psoriasis. Our findings give insights into the regulatory landscape of epigenomic variation in skin.


Asunto(s)
Islas de CpG , Metilación de ADN , Epigenoma , Sitios de Carácter Cuantitativo , Piel , Humanos , Femenino , Piel/metabolismo , Islas de CpG/genética , Anciano , Estudio de Asociación del Genoma Completo , Persona de Mediana Edad , Gemelos Monocigóticos/genética , Melanoma/genética , Reino Unido , Epigénesis Genética
8.
Cell ; 151(7): 1431-42, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23260136

RESUMEN

De novo mutation plays an important role in autism spectrum disorders (ASDs). Notably, pathogenic copy number variants (CNVs) are characterized by high mutation rates. We hypothesize that hypermutability is a property of ASD genes and may also include nucleotide-substitution hot spots. We investigated global patterns of germline mutation by whole-genome sequencing of monozygotic twins concordant for ASD and their parents. Mutation rates varied widely throughout the genome (by 100-fold) and could be explained by intrinsic characteristics of DNA sequence and chromatin structure. Dense clusters of mutations within individual genomes were attributable to compound mutation or gene conversion. Hypermutability was a characteristic of genes involved in ASD and other diseases. In addition, genes impacted by mutations in this study were associated with ASD in independent exome-sequencing data sets. Our findings suggest that regional hypermutation is a significant factor shaping patterns of genetic variation and disease risk in humans.


Asunto(s)
Trastorno Autístico/genética , Estudio de Asociación del Genoma Completo , Mutación de Línea Germinal , Tasa de Mutación , Animales , Línea Celular , Exones , Femenino , Humanos , Masculino , Edad Materna , Pan troglodytes/genética , Edad Paterna , Análisis de Secuencia de ADN , Gemelos Monocigóticos
9.
Hum Mol Genet ; 33(7): 583-593, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38142287

RESUMEN

To control genetic background and early life milieu in genome-wide DNA methylation analysis for blood lipids, we recruited Chinese discordant monozygotic twins to explore the relationships between DNA methylations and total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG). 132 monozygotic (MZ) twins were included with discordant lipid levels and completed data. A linear mixed model was conducted in Epigenome-wide association study (EWAS). Generalized estimating equation model was for gene expression analysis. We conducted Weighted correlation network analysis (WGCNA) to build co-methylated interconnected network. Additional Qingdao citizens were recruited for validation. Inference about Causation through Examination of Familial Confounding (ICE FALCON) was used to infer the possible direction of these relationships. A total of 476 top CpGs reached suggestively significant level (P < 10-4), of which, 192 CpGs were significantly associated with TG (FDR < 0.05). They were used to build interconnected network and highlight crucial genes from WGCNA. Finally, four CpGs in GATA4 were validated as risk factors for TC; six CpGs at ITFG2-AS1 were negatively associated with TG; two CpGs in PLXND1 played protective roles in HDL-C. ICE FALCON indicated abnormal TC was regarded as the consequence of DNA methylation in CpGs at GATA4, rather than vice versa. Four CpGs in ITFG2-AS1 were both causes and consequences of modified TG levels. Our results indicated that DNA methylation levels of 12 CpGs in GATA4, ITFG2-AS1, and PLXND1 were relevant to TC, TG, and HDL-C, respectively, which might provide new epigenetic insights into potential clinical treatment of dyslipidemia.


Asunto(s)
Epigénesis Genética , Gemelos Monocigóticos , Humanos , Epigénesis Genética/genética , Gemelos Monocigóticos/genética , Metilación de ADN/genética , Lípidos/genética , Triglicéridos/genética , LDL-Colesterol/genética , China
10.
Blood ; 143(18): 1837-1844, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38170173

RESUMEN

ABSTRACT: Idiopathic multicentric Castleman disease (iMCD) is a rare cytokine-driven disorder characterized by systemic inflammation, generalized lymphadenopathy, and organ dysfunction. Here, we present an unusual occurrence of iMCD in identical twins and examined the immune milieu within the affected lymphoid organs and the host circulation using multiomic high-dimensional profiling. Using spatial enhanced resolution omics sequencing (Stereo-seq) transcriptomic profiling, we performed unsupervised spatially constrained clustering to identify different anatomic structures, mapping the follicles and interfollicular regions. After a cell segmentation approach, interleukin 6 (IL-6) pathway genes significantly colocalized with endothelial cells and fibroblastic reticular cells, confirming observations using a single-cell sequencing approach (10× Chromium). Furthermore, single-cell sequencing of peripheral blood mononuclear cells revealed an "inflammatory" peripheral monocytosis enriched for the expression of S100A family genes in both twins. In summary, we provided evidence of the putative cell-of-origin of IL-6 signals in iMCD and described a distinct monocytic host immune response phenotype through a unique identical twin model.


Asunto(s)
Enfermedad de Castleman , Interleucina-6 , Análisis de la Célula Individual , Gemelos Monocigóticos , Humanos , Enfermedad de Castleman/patología , Enfermedad de Castleman/genética , Gemelos Monocigóticos/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Femenino , Enfermedades en Gemelos/genética , Enfermedades en Gemelos/patología , Persona de Mediana Edad , Perfilación de la Expresión Génica
11.
PLoS Genet ; 19(2): e1010556, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36802379

RESUMEN

X-chromosome inactivation (XCI) silences one X in female cells to balance sex-differences in X-dosage. A subset of X-linked genes escape XCI, but the extent to which this phenomenon occurs and how it varies across tissues and in a population is as yet unclear. To characterize incidence and variability of escape across individuals and tissues, we conducted a transcriptomic study of escape in adipose, skin, lymphoblastoid cell lines and immune cells in 248 healthy individuals exhibiting skewed XCI. We quantify XCI escape from a linear model of genes' allelic fold-change and XIST-based degree of XCI skewing. We identify 62 genes, including 19 lncRNAs, with previously unknown patterns of escape. We find a range of tissue-specificity, with 11% of genes escaping XCI constitutively across tissues and 23% demonstrating tissue-restricted escape, including cell type-specific escape across immune cells of the same individual. We also detect substantial inter-individual variability in escape. Monozygotic twins share more similar escape than dizygotic twins, indicating that genetic factors may underlie inter-individual differences in escape. However, discordant escape also occurs within monozygotic co-twins, suggesting environmental factors also influence escape. Altogether, these data indicate that XCI escape is an under-appreciated source of transcriptional differences, and an intricate phenotype impacting variable trait expressivity in females.


Asunto(s)
Cromosomas Humanos X , Inactivación del Cromosoma X , Humanos , Femenino , Inactivación del Cromosoma X/genética , Cromosomas Humanos X/genética , Genes Ligados a X/genética , Gemelos Monocigóticos/genética , Fenotipo
12.
N Engl J Med ; 387(15): 1395-1403, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36239646

RESUMEN

We describe the case of identical twin boys who presented with low body weight despite excessive caloric intake. An evaluation of their fibroblasts showed elevated oxygen consumption and decreased mitochondrial membrane potential. Exome analysis revealed a de novo heterozygous variant in ATP5F1B, which encodes the ß subunit of mitochondrial ATP synthase (also called complex V). In yeast, mutations affecting the same region loosen coupling between the proton motive force and ATP synthesis, resulting in high rates of mitochondrial respiration. Expression of the mutant allele in human cell lines recapitulates this phenotype. These data support an autosomal dominant mitochondrial uncoupling syndrome with hypermetabolism. (Funded by the National Institutes of Health.).


Asunto(s)
Enfermedades Mitocondriales , ATPasas de Translocación de Protón Mitocondriales , Fosforilación Oxidativa , Consumo de Oxígeno , Humanos , Masculino , Adenosina Trifosfato/metabolismo , Enfermedades en Gemelos/genética , Enfermedades en Gemelos/metabolismo , Fibroblastos/metabolismo , Mitocondrias/metabolismo , Enfermedades Mitocondriales/congénito , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Mutación , Consumo de Oxígeno/genética , Consumo de Oxígeno/fisiología , Gemelos Monocigóticos/genética
13.
Mol Psychiatry ; 29(10): 3208-3222, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38704507

RESUMEN

Schizophrenia affects approximately 1% of the world population. Genetics, epigenetics, and environmental factors are known to play a role in this psychiatric disorder. While there is a high concordance in monozygotic twins, about half of twin pairs are discordant for schizophrenia. To address the question of how and when concordance in monozygotic twins occur, we have obtained fibroblasts from two pairs of schizophrenia discordant twins (one sibling with schizophrenia while the second one is unaffected by schizophrenia) and three pairs of healthy twins (both of the siblings are healthy). We have prepared iPSC models for these 3 groups of patients with schizophrenia, unaffected co-twins, and the healthy twins. When the study started the co-twins were considered healthy and unaffected but both the co-twins were later diagnosed with a depressive disorder. The reprogrammed iPSCs were differentiated into hippocampal neurons to measure the neurophysiological abnormalities in the patients. We found that the neurons derived from the schizophrenia patients were less arborized, were hypoexcitable with immature spike features, and exhibited a significant reduction in synaptic activity with dysregulation in synapse-related genes. Interestingly, the neurons derived from the co-twin siblings who did not have schizophrenia formed another distinct group that was different from the neurons in the group of the affected twin siblings but also different from the neurons in the group of the control twins. Importantly, their synaptic activity was not affected. Our measurements that were obtained from schizophrenia patients and their monozygotic twin and compared also to control healthy twins point to hippocampal synaptic deficits as a central mechanism in schizophrenia.


Asunto(s)
Células Madre Pluripotentes Inducidas , Neuronas , Esquizofrenia , Transmisión Sináptica , Gemelos Monocigóticos , Gemelos Monocigóticos/genética , Humanos , Esquizofrenia/genética , Esquizofrenia/fisiopatología , Masculino , Femenino , Células Madre Pluripotentes Inducidas/metabolismo , Transmisión Sináptica/fisiología , Transmisión Sináptica/genética , Adulto , Neuronas/metabolismo , Hipocampo/metabolismo , Persona de Mediana Edad , Fibroblastos/metabolismo , Hermanos , Enfermedades en Gemelos/genética , Diferenciación Celular/genética , Diferenciación Celular/fisiología
14.
Mol Psychiatry ; 29(10): 2921-2928, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38600227

RESUMEN

Psychiatric comorbidity can be accounted for by a latent general psychopathology factor (p factor), which quantifies the variance that is shared to varying degrees by every dimension of psychopathology. It is unclear whether the entire continuum of the p factor shares the same genetic origin. We investigated whether mild, moderate, and extreme elevations on the p factor shared the same genetic etiology by, first, examining the linearity of the association between p factors across siblings (N = 580,891 pairs). Second, we estimated the group heritability in a twin sample (N = 17,170 pairs), which involves testing whether the same genetic variants influence both extreme and normal variations in the p factor. In both samples, the p factor was based on 10 register-based psychiatric diagnoses. Results showed that the association between siblings' p factors appeared linear, even into the extreme range. Likewise, the twin group heritabilities ranged from 0.42 to 0.45 (95% CI: 0.33-0.57) depending on the thresholds defining the probands (2-3.33 SD beyond the mean; >2 SD beyond the mean; >4.33 SD beyond the mean; and >5.33 SD beyond the mean), and these estimates were highly similar to the estimated individual differences heritability (0.41, 95% CI: 0.39-0.43), indicating that scores above and below these thresholds shared a common genetic origin. Together, these results suggest that the entire continuum of the p factor shares the same genetic origin, with common genetic variants likely playing an important role. This implies, first, genetic risk factors for the aspect that is shared between all forms of psychopathology (i.e., genetic risk factors for the p factor) might be generalizable between population-based cohorts with a higher prevalence of milder cases, and clinical samples with a preponderance of more severe cases. Second, prioritizing low-cost genome-wide association studies capable of identifying common genetic variants, rather than expensive whole genome sequencing that can identify rare variants, may increase the efficiency when studying the genetic architecture of the p factor.


Asunto(s)
Trastornos Mentales , Psicopatología , Humanos , Masculino , Femenino , Suecia/epidemiología , Trastornos Mentales/genética , Trastornos Mentales/epidemiología , Adulto , Psicopatología/métodos , Sistema de Registros , Hermanos , Persona de Mediana Edad , Predisposición Genética a la Enfermedad/genética , Familia , Comorbilidad , Enfermedades en Gemelos/genética , Gemelos/genética , Gemelos Monocigóticos/genética
15.
Mol Psychiatry ; 29(9): 2622-2633, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38519640

RESUMEN

Several lines of evidence indicate the involvement of neuroinflammatory processes in the pathophysiology of schizophrenia (SCZ). Microglia are brain resident immune cells responding toward invading pathogens and injury-related products, and additionally, have a critical role in improving neurogenesis and synaptic functions. Aberrant activation of microglia in SCZ is one of the leading hypotheses for disease pathogenesis, but due to the lack of proper human cell models, the role of microglia in SCZ is not well studied. We used monozygotic twins discordant for SCZ and healthy individuals to generate human induced pluripotent stem cell-derived microglia to assess the transcriptional and functional differences in microglia between healthy controls, affected twins and unaffected twins. The microglia from affected twins had increased expression of several common inflammation-related genes compared to healthy individuals. Microglia from affected twins had also reduced response to interleukin 1 beta (IL1ß) treatment, but no significant differences in migration or phagocytotic activity. Ingenuity Pathway Analysis (IPA) showed abnormalities related to extracellular matrix signaling. RNA sequencing predicted downregulation of extracellular matrix structure constituent Gene Ontology (GO) terms and hepatic fibrosis pathway activation that were shared by microglia of both affected and unaffected twins, but the upregulation of major histocompatibility complex (MHC) class II receptors was observed only in affected twin microglia. Also, the microglia of affected twins had heterogeneous response to clozapine, minocycline, and sulforaphane treatments. Overall, despite the increased expression of inflammatory genes, we observed no clear functional signs of hyperactivation in microglia from patients with SCZ. We conclude that microglia of the patients with SCZ have gene expression aberrations related to inflammation response and extracellular matrix without contributing to increased microglial activation.


Asunto(s)
Microglía , Esquizofrenia , Gemelos Monocigóticos , Humanos , Microglía/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Masculino , Femenino , Adulto , Células Madre Pluripotentes Inducidas/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Sulfóxidos/farmacología , Inflamación/genética , Inflamación/metabolismo , Persona de Mediana Edad , Isotiocianatos
16.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-37885155

RESUMEN

Normal cortical growth and the resulting folding patterns are crucial for normal brain function. Although cortical development is largely influenced by genetic factors, environmental factors in fetal life can modify the gene expression associated with brain development. As the placenta plays a vital role in shaping the fetal environment, affecting fetal growth through the exchange of oxygen and nutrients, placental oxygen transport might be one of the environmental factors that also affect early human cortical growth. In this study, we aimed to assess the placental oxygen transport during maternal hyperoxia and its impact on fetal brain development using MRI in identical twins to control for genetic and maternal factors. We enrolled 9 pregnant subjects with monochorionic diamniotic twins (30.03 ± 2.39 gestational weeks [mean ± SD]). We observed that the fetuses with slower placental oxygen delivery had reduced volumetric and surface growth of the cerebral cortex. Moreover, when the difference between placenta oxygen delivery increased between the twin pairs, sulcal folding patterns were more divergent. Thus, there is a significant relationship between placental oxygen transport and fetal brain cortical growth and folding in monochorionic twins.


Asunto(s)
Placenta , Gemelos Monocigóticos , Femenino , Humanos , Embarazo , Desarrollo Fetal , Retardo del Crecimiento Fetal/metabolismo , Oxígeno/metabolismo , Placenta/diagnóstico por imagen , Placenta/metabolismo
17.
Hum Brain Mapp ; 45(8): e26717, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38798116

RESUMEN

Twin studies have found gross cerebellar volume to be highly heritable. However, whether fine-grained regional volumes within the cerebellum are similarly heritable is still being determined. Anatomical MRI scans from two independent datasets (QTIM: Queensland Twin IMaging, N = 798, mean age 22.1 years; QTAB: Queensland Twin Adolescent Brain, N = 396, mean age 11.3 years) were combined with an optimised and automated cerebellum parcellation algorithm to segment and measure 28 cerebellar regions. We show that the heritability of regional volumetric measures varies widely across the cerebellum ( h 2 $$ {h}^2 $$ 47%-91%). Additionally, the good to excellent test-retest reliability for a subsample of QTIM participants suggests that non-genetic variance in cerebellar volumes is due primarily to unique environmental influences rather than measurement error. We also show a consistent pattern of strong associations between the volumes of homologous left and right hemisphere regions. Associations were predominantly driven by genetic effects shared between lobules, with only sparse contributions from environmental effects. These findings are consistent with similar studies of the cerebrum and provide a first approximation of the upper bound of heritability detectable by genome-wide association studies.


Asunto(s)
Cerebelo , Imagen por Resonancia Magnética , Adolescente , Niño , Humanos , Adulto Joven , Cerebelo/diagnóstico por imagen , Cerebelo/anatomía & histología , Tamaño de los Órganos , Gemelos Monocigóticos
18.
Int J Obes (Lond) ; 48(8): 1148-1156, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38773251

RESUMEN

OBJECTIVES: Central obesity poses significant health risks because it increases susceptibility to multiple chronic diseases. Epigenetic features such as DNA methylation may be associated with specific obesity traits, which could help us understand how genetic and environmental factors interact to influence the development of obesity. This study aims to identify DNA methylation sites associated with the waist circumference (WC) in Northern Han Chinese population, and to elucidate potential causal relationships. METHODS: A total of 59 pairs of WC discordant monozygotic twins (ΔWC >0) were selected from the Qingdao Twin Registry in China. Generalized estimated equation model was employed to estimate the methylation levels of CpG sites on WC. Causal relationships between methylation and WC were assessed through the examination of family confounding factors using FAmiliaL CONfounding (ICE FALCON). Additionally, the findings of the epigenome-wide analysis were corroborated in the validation stage. RESULTS: We identified 26 CpG sites with differential methylation reached false discovery rate (FDR) < 0.05 and 22 differentially methylated regions (slk-corrected p < 0.05) strongly linked to WC. These findings provided annotations for 26 genes, with notable emphasis on MMP17, ITGA11, COL23A1, TFPI, A2ML1-AS1, MRGPRE, C2orf82, and NINJ2. ICE FALCON analysis indicated the DNA methylation of ITGA11 and TFPI had a causal effect on WC and vice versa (p < 0.05). Subsequent validation analysis successfully replicated 10 (p < 0.05) out of the 26 identified sites. CONCLUSIONS: Our research has ascertained an association between specific epigenetic variations and WC in the Northern Han Chinese population. These DNA methylation features can offer fresh insights into the epigenetic regulation of obesity and WC as well as hints to plausible biological mechanisms.


Asunto(s)
Metilación de ADN , Epigenoma , Gemelos Monocigóticos , Circunferencia de la Cintura , Humanos , Gemelos Monocigóticos/genética , Circunferencia de la Cintura/genética , Masculino , Femenino , China/epidemiología , Epigenoma/genética , Metilación de ADN/genética , Persona de Mediana Edad , Estudio de Asociación del Genoma Completo , Adulto , Epigénesis Genética , Pueblo Asiatico/genética , Obesidad Abdominal/genética , Pueblos del Este de Asia
19.
J Hum Genet ; 69(8): 357-363, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38649436

RESUMEN

Handgrip strength is a crucial indicator to monitor the change of cognitive function over time, but its mechanism still needs to be further explored. We sampled 59 monozygotic twin pairs to explore the potential mediating effect of DNA methylation (DNAm) on the association between handgrip strength and cognitive function. The initial step was the implementation of an epigenome-wide association analysis (EWAS) in the study participants, with the aim of identifying DNAm variations that are associated with handgrip strength. Following that, we conducted an assessment of the mediated effect of DNAm by the use of mediation analysis. In order to do an ontology enrichment study for CpGs, the GREAT program was used. There was a significant positive association between handgrip strength and cognitive function (ß = 0.194, P < 0.001). The association between handgrip strength and DNAm of 124 CpGs was found to be statistically significant at a significance level of P < 1 × 10-4. Fifteen differentially methylated regions (DMRs) related to handgrip strength were found in genes such as SNTG2, KLB, CDH11, and PANX2. Of the 124 CpGs, 4 within KRBA1, and TRAK1 mediated the association between handgrip strength and cognitive function: each 1 kg increase in handgrip strength was associated with a potential decrease of 0.050 points in cognitive function scores, mediated by modifications in DNAm. The parallel mediating effect of these 4 CpGs was -0.081. The presence of DNAm variation associated with handgrip strength may play a mediated role in the association between handgrip strength and cognitive function.


Asunto(s)
Cognición , Islas de CpG , Metilación de ADN , Fuerza de la Mano , Gemelos Monocigóticos , Humanos , Fuerza de la Mano/fisiología , Gemelos Monocigóticos/genética , Metilación de ADN/genética , Masculino , Femenino , Cognición/fisiología , Persona de Mediana Edad , Islas de CpG/genética , Adulto , Epigénesis Genética , Estudio de Asociación del Genoma Completo , Anciano
20.
Clin Genet ; 105(2): 159-172, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37899590

RESUMEN

The investigation of environmental effects on clinical measurements using individual samples is challenging because their genetic and environmental factors are different. However, using monozygotic twins (MZ) makes it possible to investigate the influence of environmental factors as they have the same genetic factors within pairs because the difference in the clinical traits within the MZ mostly reflect the influence of environmental factors. We hypothesized that the within-pair differences in the traits that are strongly affected by genetic factors become larger after genetic risk score (GRS) correction. Using 278 Japanese MZ pairs, we compared the change in within-pair differences in each of the 45 normalized clinical measurements before and after GRS correction, and we also attempted to correct for the effects of genetic factors to identify Cytosine-phosphodiester-Guanine (CpG) sites in DNA sequences with epigenetic effects that are regulated by genetic factors. Five traits were classified into the high heritability group, which was strongly affected by genetic factors. CpG sites could be classified into three groups: regulated only by environmental factors, regulated by environmental factors masked by genetic factors, and regulated only by genetic factors. Our method has the potential to identify trait-related methylation sites that have not yet been discovered.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Humanos , Islas de CpG/genética , Metilación de ADN/genética , Puntuación de Riesgo Genético , Japón , Laboratorios Clínicos , Gemelos Monocigóticos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA