RESUMEN
Immediate early genes (IEGs) are transcribed in response to neuronal activity from sensory stimulation during multiple adaptive processes in the brain. The transcriptional profile of IEGs is indicative of the duration of neuronal activity, but its sensitivity to the strength of depolarization remains unknown. Also unknown is whether activity history of graded potential changes influence future neuronal activity. In this work with dissociated rat cortical neurons, we found that mild depolarization-mediated by elevated extracellular potassium (K+)-induces a wide array of rapid IEGs and transiently depresses transcriptional and signaling responses to a successive stimulus. This latter effect was independent of de novo transcription, translation, and signaling via calcineurin or mitogen-activated protein kinase. Furthermore, as measured by multiple electrode arrays and calcium imaging, mild depolarization acutely subdues subsequent spontaneous and bicuculline-evoked activity via calcium- and N-methyl-d-aspartate receptor-dependent mechanisms. Collectively, this work suggests that a recent history of graded potential changes acutely depress neuronal intrinsic properties and subsequent responses. Such effects may have several potential downstream implications, including reducing signal-to-noise ratio during synaptic plasticity processes.
Asunto(s)
Potenciales de Acción , Calcineurina , Genes Inmediatos-Precoces , Neuronas , Transcripción Genética , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Bicuculina/farmacología , Calcineurina/genética , Calcineurina/metabolismo , Calcio/metabolismo , Antagonistas de Receptores de GABA-A/farmacología , Genes Inmediatos-Precoces/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neuronas/efectos de los fármacos , Neuronas/fisiología , Potasio/metabolismo , Potasio/farmacología , Ratas , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismoRESUMEN
The induction of immediate-early gene (IEG) expression in brain nuclei in response to an experience is necessary for the formation of long-term memories. Additionally, the rapid dynamics of IEG induction and decay motivates the common use of IEG expression as markers for identification of neuronal assemblies ("ensembles") encoding recent experience. However, major gaps remain in understanding the rules governing the distribution of IEGs within neuronal assemblies. Thus, the extent of correlation between coexpressed IEGs, the cell specificity of IEG expression, and the spatial distribution of IEG expression have not been comprehensively studied. To address these gaps, we utilized quantitative multiplexed single-molecule fluorescence in situ hybridization (smFISH) and measured the expression of IEGs (Arc, Egr2, and Nr4a1) within spiny projection neurons (SPNs) in the dorsal striatum of mice following acute exposure to cocaine. Exploring the relevance of our observations to other brain structures and stimuli, we also analyzed data from a study of single-cell RNA sequencing of mouse cortical neurons. We found that while IEG expression is graded, the expression of multiple IEGs is tightly correlated at the level of individual neurons. Interestingly, we observed that region-specific rules govern the induction of IEGs in SPN subtypes within striatal subdomains. We further observed that IEG-expressing assemblies form spatially defined clusters within which the extent of IEG expression correlates with cluster size. Together, our results suggest the existence of IEG-expressing neuronal "superensembles," which are associated in spatial clusters and characterized by coherent and robust expression of multiple IEGs.
Asunto(s)
Encéfalo/metabolismo , Genes Inmediatos-Precoces , Neuronas/metabolismo , Animales , Conducta Animal , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Cocaína/farmacología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Expresión Génica , Genes Inmediatos-Precoces/efectos de los fármacos , Hibridación Fluorescente in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Imagen Individual de MoléculaRESUMEN
Post-traumatic stress disorder (PTSD) is characterized by depression/anxiety and memory failure, primarily fear memory. According to the reports, neuroinflammation and synaptic plasticity can play a role in the neurophysiological mechanisms underlying PTSD. Bromodomain-containing protein 4 (Brd4) intriguingly affects regulating of inflammatory responses and learning and memory. This study aimed to explore the effect of inhibiting Brd4 on depression/anxiety-like behaviors, spatial and fear memory, and underlying mechanisms in a model of PTSD. Inescapable foot shocks (IFS) with a sound reminder in 6 days were used to induce PTSD-like behaviors which were tested using contextual and cue fear tests, sucrose preference test, open-field test, elevated plus maze test, and Y-maze test. Meanwhile, the Brd4 inhibitor JQ1 was used as an intervention. The results found that IFS induced PTSD-like behaviors and indicated obvious Brd4 expression in microglia of the prefrontal cortex (PFC), hippocampus, and amygdala, pro-inflammatory cytokines over-expression, microglial activation, and nuclear factor-kappa B over-expression in PFC and hippocampus but not in amygdala. Meanwhile, the alterations of immediate early genes (IEGs) were found in PFC, hippocampus, and amygdala. Besides, dendritic spine density was reduced in PFC and hippocampus but was elevated in amygdala of rats with IFS. In addition, treatment with JQ1 significantly reduced freezing time in the contextual and cue fear test, reversed the behavioral impairment, decreased the elevated neuroinflammation, and normalized the alteration in IEGs and dendritic spine densities. The results suggested that Brd4 was involved in IFS-induced PTSD-like behaviors through regulating neuroinflammation, dynamics of IEGs, and synaptic plasticity.
Asunto(s)
Encefalitis/tratamiento farmacológico , Miedo/psicología , Regulación de la Expresión Génica/efectos de los fármacos , Genes Inmediatos-Precoces/efectos de los fármacos , Proteínas Nucleares/antagonistas & inhibidores , Trastornos por Estrés Postraumático/tratamiento farmacológico , Trastornos por Estrés Postraumático/psicología , Factores de Transcripción/antagonistas & inhibidores , Animales , Ansiedad/tratamiento farmacológico , Ansiedad/psicología , Azepinas/farmacología , Azepinas/uso terapéutico , Química Encefálica/efectos de los fármacos , Señales (Psicología) , Espinas Dendríticas/efectos de los fármacos , Depresión/tratamiento farmacológico , Depresión/psicología , Encefalitis/genética , Masculino , Memoria/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Ratas , Ratas Wistar , Triazoles/farmacología , Triazoles/uso terapéuticoRESUMEN
BACKGROUND: Pseudorabies virus (PRV), a member of the Alphaherpesviruses, is one of the most important pathogens that harm the global pig industry. Accumulated evidence indicated that PRV could infect humans under certain circumstances, inducing severe clinical symptoms such as acute human encephalitis. Currently, there are no antiviral drugs to treat PRV infections, and vaccines available only for swine could not provide full protection. Thus, new control measures are urgently needed. RESULTS: In the present study, kaempferol exhibited anti-PRV activity in mice through improving survival rate by 22.22 %, which was higher than acyclovir (Positive control) with the survival rate of 16.67 % at 6 days post infection (dpi); meanwhile, the survival rate was 0 % at 6 dpi in the infected-untreated group. Kaempferol could inhibit the virus replication in the brain, lung, kidney, heart and spleen, especially the viral gene copies were reduced by over 700-fold in the brain, which was further confirmed by immunohistochemical examination. The pathogenic changes induced by PRV infection in these organs were also alleviated. The transcription of the only immediate-early gene IE180 in the brain was significantly inhibited by kaempferol, leading to the decreased transcriptional levels of the early genes (EPO and TK). The expression of latency-associated transcript (LAT) was also inhibited in the brain, which suggested that kaempferol could inhibit PRV latency. Kaempferol-treatment could induce higher levels of IL-1ß, IL-4, IL-6, TNF-α and IFN-γ in the serum at 3 dpi which were then declined to normal levels at 5 dpi. CONCLUSIONS: These results suggested that kaempferol was expected to be a new alternative control measure for PRV infection.
Asunto(s)
Antivirales/farmacología , Herpesvirus Suido 1/efectos de los fármacos , Quempferoles/farmacología , Seudorrabia/tratamiento farmacológico , Aciclovir/farmacología , Animales , Encéfalo , Regulación Viral de la Expresión Génica , Genes Inmediatos-Precoces/efectos de los fármacos , Herpesvirus Suido 1/genética , Masculino , Ratones , Seudorrabia/mortalidad , Seudorrabia/patología , Replicación Viral/efectos de los fármacosRESUMEN
Epigenetic mechanisms have gained increasing attention as regulators of synaptic plasticity and responsiveness to drugs of abuse. In particular, it has been shown that the activity of the DNA methyltransferase 3a (Dnmt3a) mediates certain long-lasting effects of cocaine. Here we examined the role of the Dnmt isoforms, Dnmt3a1 and Dnmt3a2, within the nucleus accumbens (NAc) on transcriptional activity of immediate early genes (IEGs) and acute and long-lasting responsiveness to cocaine and cocaine conditioned cues. Using primary striatal cultures, we show that transcription of Dnmt3a2, but not that of Dnmt3a1, is activated by dopamine D1 receptor signaling and that knockdown of Dnmt3a2 using viral vector-mediated expression of Dnmt3a2-specific shRNAs impairs induction of the IEGs, Arc, FosB, and Egr2 Acute cocaine administration increases expression of Dnmt3a2 but not that of Dnmt3a1 in the NAc shell. In contrast, in the NAc core, expression of Dnmt3a1 and Dnmt3a2 was unaffected by cocaine administration. shRNA-mediated knockdown of Dnmt3a2 in vivo impairs the induction of IEGs, including Egr2 and FosB indicating that Dnmt3a2 regulates cocaine-dependent expression of plasticity genes in the rat NAc shell. Cocaine self-administration experiments in rats revealed that Dnmt3a2 regulates drug cue memories that drive reinstatement of cocaine seeking as well as incubation of this phenomenon within the NAc shell. Dnmt3a2 does not influence the primary reinforcing effects of cocaine. Thus, Dnmt3a2 mediates long-lasting cocaine cue memories within the NAc shell. Targeting Dnmt3a2 expression or function may interfere with cocaine craving and relapse.SIGNIFICANCE STATEMENT In humans, drug craving can occur in response to conditioned cues, even after extended periods of abstinence. In rats, cue-induced cocaine seeking has been shown to increase progressively during the first 2 months of abstinence from drug self-administration. This phenomenon, referred to as incubation of cocaine seeking, is consistent with the hypothesis that in humans craving increases over time and remains high following prolonged abstinence. Those long-lasting behavioral changes are likely to be mediated by epigenetic effects and neuroplastic changes within the mesolimbic brain reward system. Here we show that a specific isoform of DNA-methyltransferases in the NAc shell regulates drug cue memories that drive reinstatement of cocaine seeking after both early abstinence and incubation of cocaine craving.
Asunto(s)
Trastornos Relacionados con Cocaína/enzimología , Ansia/efectos de los fármacos , ADN (Citosina-5-)-Metiltransferasas/fisiología , Proteínas del Tejido Nervioso/fisiología , Núcleo Accumbens/enzimología , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/farmacología , Animales , Benzazepinas/farmacología , Cocaína/administración & dosificación , Trastornos Relacionados con Cocaína/genética , Trastornos Relacionados con Cocaína/fisiopatología , Condicionamiento Operante/efectos de los fármacos , Señales (Psicología) , ADN (Citosina-5-)-Metiltransferasas/biosíntesis , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Inducción Enzimática/efectos de los fármacos , Extinción Psicológica/efectos de los fármacos , Genes Inmediatos-Precoces/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Núcleo Accumbens/efectos de los fármacos , Isoformas de Proteínas/fisiología , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D1/efectos de los fármacos , Receptores de Dopamina D1/fisiología , Autoadministración , Síndrome de Abstinencia a Sustancias/fisiopatologíaRESUMEN
Neonatal ethanol exposure during the third trimester equivalent of human pregnancy in the rat significantly impairs hippocampal and prefrontal neurobehavioral functioning. Postnatal day [PD] 4-9 ethanol exposure in rats disrupts long-term context memory formation, resulting in abolished post-shock and retention test freezing in a variant of contextual fear conditioning called the Context Preexposure Facilitation Effect (CPFE). This behavioral impairment is accompanied by disrupted medial prefrontal, but not dorsal hippocampal expression of the immediate early genes (IEGs) c-Fos, Arc, Egr-1, and Npas4 (Heroux, Robinson-Drummer, Kawan, Rosen, & Stanton, 2019). The current experiment examined if systemic administration of the acetylcholinesterase inhibitor physostigmine (PHY) prior to context learning would rescue prefrontal IEG expression and freezing in the CPFE. From PD4-9, Long-Evans rats received oral intubation of ethanol (EtOH; 5.25â¯g/kg/day) or sham-intubation (SI). Rats received a systemic injection of saline (SAL) or PHY (0.01â¯mg/kg) prior to all three phases (Experiment 1) or just context exposure (Experiment 2) in the CPFE from PD31-33. A subset of rats were sacrificed 30â¯min after context learning to assay changes in IEG expression in the medial prefrontal cortex (mPFC), dorsal hippocampus (dHPC), and ventral hippocampus (vHPC). Administration of PHY prior to all three phases or just context learning rescued both post-shock and retention test freezing in the CPFE in EtOH rats without altering performance in SI rats. EtOH-SAL rats had significantly reduced mPFC but not dHPC expression of c-Fos, Arc, Egr-1, and Npas4. EtOH-PHY treatment rescued mPFC expression of c-Fos in ethanol-exposed rats and increased Arc and Npas4 regardless of dosing condition. While there was no effect of PHY on dHPC or vHPC expression of Arc, Egr-1, or Npas4, this treatment significantly boosted hippocampal expression of c-Fos regardless of ethanol treatment. These findings implicate impaired cholinergic and prefrontal function in cognitive deficits arising from 3rd-trimester equivalent alcohol exposure.
Asunto(s)
Inhibidores de la Colinesterasa/farmacología , Condicionamiento Clásico/efectos de los fármacos , Etanol/toxicidad , Fisostigmina/farmacología , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Animales , Animales Recién Nacidos , Femenino , Genes Inmediatos-Precoces/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Masculino , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiología , Embarazo , Efectos Tardíos de la Exposición Prenatal/tratamiento farmacológico , Ratas , Ratas Long-Evans , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
The peripartum period is associated with the onset of behaviors that shelter, feed and protect young offspring from harm. The neural pathway that regulates caregiving behaviors has been mapped in female rats and is conserved in mice. However, rats rely on late gestational hormones to shift their perception of infant cues from aversive to attractive, whereas laboratory mice are "spontaneously" maternal, but their level of responding depends on experience. For example, pup-naïve virgin female mice readily care for pups in the home cage, but avoid pups in a novel environment. In contrast, pup-experienced virgin mice care for pups in both contexts. Thus, virgin mice rely on experience to shift their perception of infant cues from aversive to attractive in a novel context. We hypothesize that alterations in immediate early gene activation may underlie the experience-driven shift in which neural pathways (fear/avoidance versus maternal/approach) are activated by pups to modulate context-dependent changes in maternal responding. Here we report that the effects of sodium butyrate, a drug that allows for an amplification of experience-induced histone acetylation and gene expression in virgins, are comparable to the natural onset of caregiving behaviors in postpartum mice and induce postpartum-like patterns of immediate early gene expression across brain regions. These data suggest that pups can activate a fear/defensive circuit in mice and experience-driven improvements in caregiving behavior could be regulated in part through decreased activation of this pathway.
Asunto(s)
Conducta Animal/efectos de los fármacos , Genes Inmediatos-Precoces/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Conducta Materna/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Periodo Posparto/efectos de los fármacos , Animales , Animales Recién Nacidos , Señales (Psicología) , Femenino , Conducta Materna/fisiología , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/metabolismo , Paridad/efectos de los fármacos , Paridad/genética , Periodo Posparto/fisiología , Periodo Posparto/psicología , Embarazo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genéticaRESUMEN
Morphine can influence immediate early genes (IEG) of activity-regulated cytoskeletal-associated protein (Arc) and brain-derived neurotrophic factor (BDNF) which are activated in response to physiological stimuli during learning, as well as the nerve growth factor (NGF) gene which increases the expression of several IEGs for memory formation. The purpose of the current study was first to evaluate the effect of acute (1-day) and subchronic (15-days) morphine administration on memory retrieval of rats and second to determine the hippocampal expression of NGF, BDNF and Arc genes as potential contributors in the observed effects in each setting. The effects of morphine (intraperitoneal, 10, 15 and 20 mg/kg) on memory function and gene expression were assessed using inhibitory avoidance test and real-time polymerase chain reaction, respectively. We found that a single dose of morphine at the highest dose of 20 mg/kg decreases the post-training step-through-latency, while repeated administration of the same dose for 15 successive days increases this indicator of memory retrieval. We did not detect a significant change in the hippocampal expression of Arc, BDNF or NGF genes after a single episode of morphine treatment. However, subchronic morphine administration (15 and 20 mg/kg) increased the expression of Arc and BDNF genes in a dose dependent manner. A higher mRNA expression for the NGF was observed at the higher dose of 20 mg/kg. We hypothesize that the subchronic effects were morphine-induced behavioral sensitization which may have been enhanced through increased hippocampal Arc expression.
Asunto(s)
Expresión Génica/efectos de los fármacos , Hipocampo/metabolismo , Aprendizaje/efectos de los fármacos , Memoria/efectos de los fármacos , Morfina/farmacología , ARN Mensajero/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Proteínas del Citoesqueleto/genética , Genes Inmediatos-Precoces/efectos de los fármacos , Masculino , Factor de Crecimiento Nervioso/genética , Proteínas del Tejido Nervioso/genética , Ratas WistarRESUMEN
Stressful events evoke long-term changes in behavioral responses; however, the underlying mechanisms in the brain are not well understood. Previous work has shown that epigenetic changes and immediate-early gene (IEG) induction in stress-activated dentate gyrus (DG) granule neurons play a crucial role in these behavioral responses. Here, we show that an acute stressful challenge [i.e., forced swimming (FS)] results in DNA demethylation at specific CpG (5'-cytosine-phosphate-guanine-3') sites close to the c-Fos (FBJ murine osteosarcoma viral oncogene homolog) transcriptional start site and within the gene promoter region of Egr-1 (early growth response protein 1) specifically in the DG. Administration of the (endogenous) methyl donor S-adenosyl methionine (SAM) did not affect CpG methylation and IEG gene expression at baseline. However, administration of SAM before the FS challenge resulted in an enhanced CpG methylation at the IEG loci and suppression of IEG induction specifically in the DG and an impaired behavioral immobility response 24 h later. The stressor also specifically increased the expression of the de novo DNA methyltransferase Dnmt3a [DNA (cytosine-5-)-methyltransferase 3 alpha] in this hippocampus region. Moreover, stress resulted in an increased association of Dnmt3a enzyme with the affected CpG loci within the IEG genes. No effects of SAM were observed on stress-evoked histone modifications, including H3S10p-K14ac (histone H3, phosphorylated serine 10 and acetylated lysine-14), H3K4me3 (histone H3, trimethylated lysine-4), H3K9me3 (histone H3, trimethylated lysine-9), and H3K27me3 (histone H3, trimethylated lysine-27). We conclude that the DNA methylation status of IEGs plays a crucial role in FS-induced IEG induction in DG granule neurons and associated behavioral responses. In addition, the concentration of available methyl donor, possibly in conjunction with Dnmt3a, is critical for the responsiveness of dentate neurons to environmental stimuli in terms of gene expression and behavior.
Asunto(s)
Metilación de ADN , Giro Dentado/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Regulación de la Expresión Génica , Genes fos , S-Adenosilmetionina/farmacología , Estrés Fisiológico/genética , Estrés Psicológico/genética , Animales , Islas de CpG , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/efectos de los fármacos , ADN Metiltransferasa 3A , Giro Dentado/efectos de los fármacos , Reacción Cataléptica de Congelación/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Genes Inmediatos-Precoces/efectos de los fármacos , Código de Histonas/efectos de los fármacos , Masculino , Regiones Promotoras Genéticas/genética , Ratas , Ratas Wistar , NataciónRESUMEN
Upon synaptic stimulation and glutamate release, glutamate receptors are activated to regulate several downstream effectors and signaling pathways resulting in synaptic modification. One downstream intracellular effect, in particular, is the expression of immediate-early genes (IEGs), which have been proposed to be important in synaptic plasticity because of their rapid expression following synaptic activation and key role in memory formation. In this study, we screened a natural compound library in order to find a compound that could induce the expression of IEGs in primary cortical neurons and discovered that psoralidin, a natural compound isolated from the seeds of Psoralea corylifolia, stimulated synaptic modulation. Psoralidin activated mitogen-activated protein kinase (MAPK) signaling, which in turn induced the expression of neuronal IEGs, particularly Arc, Egr-1, and c-fos. N-methyl-D-aspartate (NMDA) receptors activation and extracellular calcium influx were implicated in the psoralidin-induced intracellular changes. In glutamate dose-response curve, psoralidin shifted glutamate EC50 to lower values without enhancing maximum activity. Interestingly, psoralidin increased the density, area, and intensity of excitatory synapses in primary hippocampal neurons, which were mediated by NMDA receptor activation and MAPK signaling. These results suggest that psoralidin triggers synaptic remodeling through activating NMDA receptor and subsequent MAPK signaling cascades and therefore could possibly serve as an NMDA receptor modulator.
Asunto(s)
Benzofuranos/farmacología , Corteza Cerebral/metabolismo , Cumarinas/farmacología , Genes Inmediatos-Precoces/fisiología , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Sinapsis/metabolismo , Animales , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Expresión Génica , Genes Inmediatos-Precoces/efectos de los fármacos , Ratones , Ratones Endogámicos ICR , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Embarazo , Sinapsis/efectos de los fármacosRESUMEN
Cytomegalovirus (CMV) is a ubiquitous human pathogen that increases the morbidity and mortality of immunocompromised individuals. The current FDA-approved treatments for CMV infection are intended to be virus specific, yet they have significant adverse side effects, including nephrotoxicity and hematological toxicity. Thus, there is a medical need for safer and more effective CMV therapeutics. Using a high-content screen, we identified the cardiac glycoside convallatoxin as an effective compound that inhibits CMV infection. Using a panel of cardiac glycoside variants, we assessed the structural elements critical for anti-CMV activity by both experimental and in silico methods. Analysis of the antiviral effects, toxicities, and pharmacodynamics of different variants of cardiac glycosides identified the mechanism of inhibition as reduction of methionine import, leading to decreased immediate-early gene translation without significant toxicity. Also, convallatoxin was found to dramatically reduce the proliferation of clinical CMV strains, implying that its mechanism of action is an effective strategy to block CMV dissemination. Our study has uncovered the mechanism and structural elements of convallatoxin, which are important for effectively inhibiting CMV infection by targeting the expression of immediate-early genes. IMPORTANCE: Cytomegalovirus is a highly prevalent virus capable of causing severe disease in certain populations. The current FDA-approved therapeutics all target the same stage of the viral life cycle and induce toxicity and viral resistance. We identified convallatoxin, a novel cell-targeting antiviral that inhibits CMV infection by decreasing the synthesis of viral proteins. At doses low enough for cells to tolerate, convallatoxin was able to inhibit primary isolates of CMV, including those resistant to the anti-CMV drug ganciclovir. In addition to identifying convallatoxin as a novel antiviral, limiting mRNA translation has a dramatic impact on CMV infection and proliferation.
Asunto(s)
Antivirales/farmacología , Infecciones por Citomegalovirus/prevención & control , Citomegalovirus/efectos de los fármacos , Metionina/metabolismo , Estrofantinas/farmacología , Antivirales/química , Transporte Biológico Activo/efectos de los fármacos , Glicósidos Cardíacos/química , Glicósidos Cardíacos/farmacología , Línea Celular , Citomegalovirus/genética , Citomegalovirus/fisiología , Infecciones por Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/virología , Genes Inmediatos-Precoces/efectos de los fármacos , Genes Virales/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Estrofantinas/química , Relación Estructura-Actividad , Replicación Viral/efectos de los fármacosRESUMEN
The transition from casual to compulsive drug use is thought to occur as a consequence of repeated drug taking leading to neuroadaptive changes in brain circuitry involved in emotion and cognition. At the basis of such neuroadaptations lie changes in the expression of immediate early genes (IEGs) implicated in transcriptional regulation, synaptic plasticity and intracellular signalling. However, little is known about how IEG expression patterns change during long-term drug self-administration. The present study, therefore, compares the effects of 10 and 60-day self-administration of cocaine and sucrose on the expression of 17 IEGs in brain regions implicated in addictive behaviour, i.e. dorsal striatum, ventral striatum and medial prefrontal cortex (mPFC). Increased expression after cocaine self-administration was found for 6 IEGs in dorsal and ventral striatum (c-fos, Mkp1, Fosb/ΔFosb, Egr2, Egr4, and Arc) and 10 IEGs in mPFC (same 6 IEGs as in striatum, plus Bdnf, Homer1, Sgk1 and Rgs2). Five of these 10 IEGs (Egr2, Fosb/ΔFosb, Bdnf, Homer1 and Jun) and Trkb in mPFC were responsive to long-term sucrose self-administration. Importantly, no major differences were found between IEG expression patterns after 10 or 60 days of cocaine self-administration, except Fosb/ΔFosb in dorsal striatum and Egr2 in mPFC, whereas the amount of cocaine obtained per session was comparable for short-term and long-term self-administration. These steady changes in IEG expression are, therefore, associated with stable self-administration behaviour rather than the total amount of cocaine consumed. Thus, sustained impulses to IEG regulation during prolonged cocaine self-administration may evoke neuroplastic changes underlying compulsive drug use.
Asunto(s)
Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Genes Inmediatos-Precoces/efectos de los fármacos , Neostriado/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Estriado Ventral/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Cocaína/administración & dosificación , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Inhibidores de Captación de Dopamina/administración & dosificación , Regulación de la Expresión Génica , Masculino , Neostriado/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Ratas , Ratas Wistar , Autoadministración , Sacarosa/administración & dosificación , Sacarosa/farmacología , Edulcorantes/administración & dosificación , Edulcorantes/farmacología , Transcriptoma/genética , Estriado Ventral/metabolismoRESUMEN
Dexamethasone-induced Ras-related protein 1 (Rasd1) is a member of the Ras superfamily of monomeric G proteins that have a regulatory function in signal transduction. Here we investigated the role of Rasd1 in regulating estrogen-induced gene expression in primary cultures of rat anterior pituitary cells. Rasd1 mRNA expression in anterior pituitary cells decreased after treatment with forskolin or serum and increased after treatment with 17ß-estradiol (E2). Increases in Rasd1 mRNA expression occurred as early as 0.5 h after E2 treatment, peaked at 1 h and were sustained for as long as 96 h. This rapid and profound increase in Rasd1 mRNA expression induced by E2 was also seen in GH4C1 cells, an estrogen receptor-positive somatolactotroph cell line. Among pituitary estrogen-responsive late genes studied, basal mRNA expression of Pim3 and Igf1 genes was decreased by RNA interference-mediated knockdown of Rasd1 expression, whereas basal expression of the Giot1 gene was increased. Moreover, Rasd1 knockdown enhanced stimulation of Pim3 mRNA expression and attenuated inhibition of Fosl1 mRNA expression 24 h after E2 treatment. These changes in mRNA expression were accompanied by enhanced activity of promoters containing CRE, AP-1 and SRE binding sequences. These results suggest that Rasd1 is an estrogen-responsive immediate early gene and modulates E2 induction of at least several late genes in anterior pituitary cells.
Asunto(s)
Estradiol/farmacología , Genes Inmediatos-Precoces , Hormonas Adenohipofisarias/metabolismo , Proteínas ras/fisiología , Animales , Células Cultivadas , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Genes Inmediatos-Precoces/efectos de los fármacos , Genes Inmediatos-Precoces/fisiología , Regiones Promotoras Genéticas/efectos de los fármacos , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transcripción Genética/efectos de los fármacos , Proteínas ras/genéticaRESUMEN
UNLABELLED: Cytomegalovirus (CMV) is a ubiquitous beta-herpesvirus whose reactivation from latency is a major cause of morbidity and mortality in immunocompromised hosts. Mouse CMV (MCMV) is a well-established model virus to study virus-host interactions. We showed in this study that the CD8-independent antiviral function of myeloid dendritic cells (mDC) is biologically relevant for the inhibition of MCMV replication in vivo and in vitro. In vivo ablation of CD11c(+) DC resulted in higher viral titers and increased susceptibility to MCMV infection in the first 3 days postinfection. We developed in vitro coculture systems in which we cocultivated MCMV-infected endothelial cells or fibroblasts with T cell subsets and/or dendritic cells. While CD8 T cells failed to control MCMV replication, bone marrow-derived mDC reduced viral titers by a factor of up to 10,000. Contact of mDC with the infected endothelial cells was crucial for their antiviral activity. Soluble factors secreted by the mDC blocked MCMV replication at the level of immediate early (IE) gene expression, yet the viral lytic cycle reinitiated once the mDC were removed from the cells. On the other hand, the mDC did not impair MCMV replication in cells deficient for the interferon (IFN) alpha/beta receptor (IFNAR), arguing that type I interferons were critical for viral control by mDC. In light of our recent observation that type I IFN is sufficient for the induction of latency immediately upon infection, our results imply that IFN secreted by mDC may play an important role in the establishment of CMV latency. IMPORTANCE: Numerous studies have focused on the infection of DC with cytomegaloviruses and on the establishment of latency within them. However, almost all of these studies have relied on the infection of DC monocultures in vitro, whereas DC are just one among many cell types present in an infection site in vivo. To mimic this aspect of the in vivo situation, we cocultured DC with infected endothelial cells or fibroblasts. Our data suggest that direct contact with virus-infected endothelial cells activates CD11c(+) DC, which leads to reversible suppression of MCMV replication at the level of IE gene expression by a mechanism that depends on type I IFN. The effect matches the formal definition of viral latency. Therefore, our data argue that the interplay of dendritic cells and infected neighboring cells might play an important role in the establishment of viral latency.
Asunto(s)
Citomegalovirus/fisiología , Células Dendríticas/inmunología , Regulación de la Expresión Génica/inmunología , Genes Inmediatos-Precoces/efectos de los fármacos , Interferón Tipo I/metabolismo , Células Mieloides/metabolismo , Replicación Viral/fisiología , Animales , Linfocitos T CD8-positivos/inmunología , Citomegalovirus/inmunología , Toxina Diftérica/administración & dosificación , Citometría de Flujo , Interferón Tipo I/inmunología , Interferón Tipo I/farmacología , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Células Mieloides/inmunología , Células 3T3 NIH , Replicación Viral/efectos de los fármacosRESUMEN
Constitutive activation of the extracellular-signal-regulated kinases 1 and 2 (ERK1/2) are central to regulating the proliferation and survival of many cancer cells. The current inhibitors of ERK1/2 target ATP binding or the catalytic site and are therefore limited in their utility for elucidating the complex biological roles of ERK1/2 through its phosphorylation and regulation of over 100 substrate proteins. To overcome this limitation, a combination of computational and experimental methods was used to identify low-molecular-mass inhibitors that are intended to target ERK1/2 substrate-docking domains and selectively interfere with ERK1/2 regulation of substrate proteins. In the present study, we report the identification and characterization of compounds with a thienyl benzenesulfonate scaffold that were designed to inhibit ERK1/2 substrates containing an F-site or DEF (docking site for ERK, FXF) motif. Experimental evidence shows the compounds inhibit the expression of F-site containing immediate early genes (IEGs) of the Fos family, including c-Fos and Fra1, and transcriptional regulation of the activator protein-1 (AP-1) complex. Moreover, this class of compounds selectively induces apoptosis in melanoma cells containing mutated BRaf and constitutively active ERK1/2 signalling, including melanoma cells that are inherently resistant to clinically relevant kinase inhibitors. These findings represent the identification and initial characterization of a novel class of compounds that inhibit ERK1/2 signalling functions and their potential utility for elucidating ERK1/2 and other signalling events that control the growth and survival of cancer cells containing elevated ERK1/2 activity.
Asunto(s)
Genes Inmediatos-Precoces/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanoma/tratamiento farmacológico , Proteínas Proto-Oncogénicas B-raf/genética , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Simulación por Computador , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Expresión Génica/efectos de los fármacos , Células HeLa , Humanos , Células Jurkat , Ligandos , Sistema de Señalización de MAP Quinasas/genética , Melanoma/genética , Melanoma/patología , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Fosforilación , Regiones Promotoras Genéticas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-fos/química , Proteínas Proto-Oncogénicas c-fos/metabolismo , Elemento de Respuesta al Suero , Factor de Transcripción AP-1/genéticaRESUMEN
How the expression of immediate early genes (IEGs) is controlled in response to neurotransmissions is unknown. Using cultured rat cortical cells, we investigated the expression of IEGs regulated by Ca(2+) and/or cAMP signals. The expression of c-fos was transiently induced by treatment of cells with high potassium (high K(+)), which evoked depolarization, or forskolin, an adenylate cyclase activator. c-fos expression was persistently and synergistically induced by simultaneous treatment with high K(+) and forskolin via cAMP-response element (CRE). Microarray analysis indicated the expression profiles of IEGs caused by depolarization in the presence or absence of forskolin. When a novel index was included to investigate the profile of IEGs, we found that high K(+)-induced expression of IEGs was stimulatory or negatively changed in the presence of forskolin, suggesting distinct convergent effects of Ca(2+) and cAMP signals on the expression of IEGs.
Asunto(s)
Señalización del Calcio , AMP Cíclico/metabolismo , Genes Inmediatos-Precoces , Neuronas/metabolismo , Animales , Células Cultivadas , Colforsina/farmacología , Expresión Génica/efectos de los fármacos , Genes Inmediatos-Precoces/efectos de los fármacos , Genes fos/efectos de los fármacos , Neuronas/efectos de los fármacos , Potasio/farmacología , Ratas , Elementos de RespuestaRESUMEN
Previous data has shown that prior history of immune challenge may affect central and behavioural responses to subsequent immune challenge, either leading to exaggerated responses via priming mechanisms or lessened responses via endotoxin tolerance. In this set of experiments we have examined how previously lipopolysaccharide (LPS)-induced sepsis shapes the response to subsequent treatment with lower dose LPS. After treatment with LPS (5 mg/kg) or saline mice were allowed to recover for 3-4 months before being challenged with a lower dose of LPS (100 µg/kg) for assessment of sickness behaviours. Performance on the open field test and the tail suspension test was assessed, and no evidence was found that prior sepsis altered sickness or depressive-like behaviour following LPS treatment. We then examined the responsiveness of the circadian system of mice to LPS. We found that in control animals, LPS induced a significant phase delay of the behavioural rhythm and that this was not the case in post-septic animals (4-6 weeks after sepsis), indicating that prior sepsis alters the responsivity of the circadian system to subsequent immune challenge. We further assessed the induction of the immediate early genes c-Fos and EGR1 in the hippocampus and the suprachiasmatic nucleus (SCN; the master circadian pacemaker) by LPS in control or post-septic animals, and found that post-septic animals show elevated expression in the hippocampus but not the SCN. These data suggest that previous sepsis has some effect on behavioural and molecular responses to subsequent immune challenge in mice.
Asunto(s)
Trastornos Cronobiológicos/etiología , Conducta de Enfermedad/fisiología , Polisacáridos/toxicidad , Sepsis/inducido químicamente , Sepsis/complicaciones , Análisis de Varianza , Animales , Ritmo Circadiano/efectos de los fármacos , Citocinas/metabolismo , Modelos Animales de Enfermedad , Conducta Exploratoria , Regulación de la Expresión Génica/genética , Genes Inmediatos-Precoces/efectos de los fármacos , Suspensión Trasera , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Conducta de Enfermedad/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Factores de TiempoRESUMEN
Cadmium (Cd) is a heavy metal widely used or effused by industries. Serious environmental Cd pollution has been reported over the past two centuries, whereas the mechanisms underlying Cd-mediated diseases are not fully understood. Interestingly, an increase in reactive oxygen species (ROS) after Cd exposure has been shown. Our group has demonstrated that sleep is triggered via accumulation of ROS during neuronal activities, and we thus hypothesize the involvement of Cd poisoning in sleep-wake irregularities. In the present study, we analyzed the effects of Cd intake (1-100 ppm CdCl2 in drinking water) on rats by monitoring sleep encephalograms and locomotor activities. The results demonstrated that 100 ppm CdCl2 administration for 28 h was sufficient to increase non-rapid-eye-movement (non-REM) sleep and reduce locomotor activities during the night (the rat active phase). In contrast, free-running locomotor rhythms under constant dim red light and their re-entrainment to 12:12-h light/dark cycles were intact under chronic (1 month) 100 ppm CdCl2 administrations, suggesting a limited influence on circadian clock movements at this dosage. The relative amount of oxidized glutathione increased in the brain after the 28-h 100 ppm CdCl2 administrations similar to the levels in cultured astrocytes receiving H2O2 or CdCl2 in culture medium. Therefore, we propose Cd-induced sleep as a consequence of oxidative stress. As oxidized glutathione is an endogenous sleep substance, we suggest that Cd rapidly induces sleepiness and influences activity performance by occupying intrinsic sleep-inducing mechanisms. In conclusion, we propose increased non-REM sleep during the active phase as an index of acute Cd exposure.
Asunto(s)
Cloruro de Cadmio/administración & dosificación , Cloruro de Cadmio/efectos adversos , Agua Potable/química , Fases del Sueño/efectos de los fármacos , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Ritmo Circadiano/efectos de los fármacos , Genes Inmediatos-Precoces/efectos de los fármacos , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Numerous studies with the neural activity marker Fos indicate that cocaine activates only a small proportion of sparsely distributed striatal neurons. Until now, efficient methods were not available to assess neuroadaptations induced specifically within these activated neurons. We used fluorescence-activated cell sorting (FACS) to purify striatal neurons activated during cocaine-induced locomotion in naive and cocaine-sensitized cfos-lacZ transgenic rats. Activated neurons were labeled with an antibody against ß-galactosidase, the protein product of the lacZ gene. Cocaine induced a unique gene expression profile selectively in the small proportion of activated neurons that was not observed in the nonactivated majority of neurons. These genes included altered levels of the immediate early genes arc, fosB, and nr4a3, as well as genes involved in p38 MAPK signaling and cell-type specificity. We propose that this FACS method can be used to study molecular neuroadaptations in specific neurons encoding the behavioral effects of abused drugs and other learned behaviors.
Asunto(s)
Cocaína/farmacología , Cuerpo Estriado/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Genes Inmediatos-Precoces/efectos de los fármacos , Neuronas/efectos de los fármacos , Análisis de Varianza , Animales , Cuerpo Estriado/metabolismo , Femenino , Citometría de Flujo , Expresión Génica/efectos de los fármacos , Inmunohistoquímica , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
Reinstatement of extinguished operant responding for drug is an appropriate model of relapse to drug abuse. Due to the difficulty of implementing in mice the procedure of instrumental intravenous self-administration, mechanisms of reinstatement have so far been studied almost exclusively in rats. A mouse model of reinstatement of cocaine seeking has recently been characterized (Soria et al. 2008). The aim of the present study was to assess regional brain activation, as measured by induction of the immediate early genes (IEG) arc and zif268, during priming- or cue-elicited reinstatement of cocaine seeking using this new mouse model and the in situ hybridization technique. We have demonstrated that cue-elicited reinstatement of cocaine seeking was associated with induction of the IEG in the medial prefrontal cortex (prelimbic and infralimbic) and basolateral amygdala. Priming-induced reinstatement produced a more widespread up-regulation of those genes in forebrain regions including medial prefrontal, orbitofrontal and motor cortex, dorsal striatum and basolateral amygdala. These patterns of IEG expression are in agreement with previous results obtained in rats and thus indicate that the new mouse model of reinstatement is functionally equivalent to rat models. That comparability adds to the usefulness of the mouse model as a tool for addressing neurobiological mechanisms of addiction.