Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.485
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 607(7919): 527-533, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35794479

RESUMEN

Immature dentate granule cells (imGCs) arising from adult hippocampal neurogenesis contribute to plasticity and unique brain functions in rodents1,2 and are dysregulated in multiple human neurological disorders3-5. Little is known about the molecular characteristics of adult human hippocampal imGCs, and even their existence is under debate1,6-8. Here we performed single-nucleus RNA sequencing aided by a validated machine learning-based analytic approach to identify imGCs and quantify their abundance in the human hippocampus at different stages across the lifespan. We identified common molecular hallmarks of human imGCs across the lifespan and observed age-dependent transcriptional dynamics in human imGCs that suggest changes in cellular functionality, niche interactions and disease relevance, that differ from those in mice9. We also found a decreased number of imGCs with altered gene expression in Alzheimer's disease. Finally, we demonstrated the capacity for neurogenesis in the adult human hippocampus with the presence of rare dentate granule cell fate-specific proliferating neural progenitors and with cultured surgical specimens. Together, our findings suggest the presence of a substantial number of imGCs in the adult human hippocampus via low-frequency de novo generation and protracted maturation, and our study reveals their molecular properties across the lifespan and in Alzheimer's disease.


Asunto(s)
Envejecimiento , Hipocampo , Longevidad , Neurogénesis , Neuronas , Adulto , Envejecimiento/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Proliferación Celular , Giro Dentado/citología , Giro Dentado/patología , Perfilación de la Expresión Génica , Hipocampo/citología , Hipocampo/patología , Humanos , Longevidad/genética , Aprendizaje Automático , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo , Neuronas/patología , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Transcripción Genética
2.
J Cell Physiol ; 239(5): e31249, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38501376

RESUMEN

The hippocampal dentate gyrus, responds to diverse pathological stimuli through neurogenesis. This phenomenon, observed following brain injury or neurodegeneration, is postulated to contribute to neuronal repair and functional recovery, thereby presenting an avenue for endogenous neuronal restoration. This study investigated the extent of regenerative response in hippocampal neurogenesis by leveraging the well-established kainic acid-induced status epilepticus model in vivo. In our study, we observed the activation and proliferation of neuronal progenitors or neural stem cell (NSC) and their subsequent migration to the injury sites following the seizure. At the injury sites, new neurons (Tuj1+BrdU+ and NeuN+BrdU+) have been generated indicating regenerative and reparative roles of the progenitor cells. We further detected whether this transient neurogenic burst, which might be a response towards an attempt to repair the brain, is associated with persistent long-term exhaustion of the dentate progenitor cells and impairment of adult neurogenesis marked by downregulation of Ki67, HoPX, and Sox2 with BrdU+ cell in the later part of life. Our studies suggest that the adult brain has the constitutive endogenous regenerative potential for brain repair to restore the damaged neurons, meanwhile, in the long term, it accelerates the depletion of the finite NSC pool in the hippocampal neurogenic niche by changing its proliferative and neurogenic capacity. A thorough understanding of the impact of modulating adult neurogenesis will eventually be required to design novel therapeutics to stimulate or assist brain repair while simultaneously preventing the adverse effects of early robust neurogenesis on the proliferative potential of endogenous neuronal progenitors.


Asunto(s)
Hipocampo , Células-Madre Neurales , Neurogénesis , Animales , Células-Madre Neurales/metabolismo , Hipocampo/patología , Hipocampo/metabolismo , Proliferación Celular , Masculino , Nicho de Células Madre , Giro Dentado/patología , Giro Dentado/fisiopatología , Neuronas/metabolismo , Neuronas/patología , Ácido Kaínico/toxicidad , Estado Epiléptico/inducido químicamente , Estado Epiléptico/patología , Estado Epiléptico/metabolismo , Regeneración Nerviosa , Modelos Animales de Enfermedad , Ratones , Movimiento Celular
3.
Neuroimage ; 292: 120607, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38614372

RESUMEN

INTRODUCTION: In Alzheimer's disease (AD), early diagnosis facilitates treatment options and leads to beneficial outcomes for patients, their carers and the healthcare system. The neuropsychological battery of the Uniform Data Set (UDSNB3.0) assesses cognition in ageing and dementia, by measuring scores across different cognitive domains such as attention, memory, processing speed, executive function and language. However, its neuroanatomical correlates have not been investigated using 7 Tesla MRI (7T MRI). METHODS: We used 7T MRI to investigate the correlations between hippocampal subfield volumes and the UDSNB3.0 in 24 individuals with Amyloidß-status AD and 18 age-matched controls, with respective age ranges of 60 (42-76) and 62 (52-79) years. AD participants with a Medial Temporal Atrophy scale of higher than 2 on 3T MRI were excluded from the study. RESULTS: A significant difference in the entire hippocampal volume was observed in the AD group compared to healthy controls (HC), primarily influenced by CA1, the largest hippocampal subfield. Notably, no significant difference in whole brain volume between the groups implied that hippocampal volume loss was not merely reflective of overall brain atrophy. UDSNB3.0 cognitive scores showed significant differences between AD and HC, particularly in Memory, Language, and Visuospatial domains. The volume of the Dentate Gyrus (DG) showed a significant association with the Memory and Executive domain scores in AD patients as assessed by the UDSNB3.0.. The data also suggested a non-significant trend for CA1 volume associated with UDSNB3.0 Memory, Executive, and Language domain scores in AD. In a reassessment focusing on hippocampal subfields and MoCA memory subdomains in AD, associations were observed between the DG and Cued, Uncued, and Recognition Memory subscores, whereas CA1 and Tail showed associations only with Cued memory. DISCUSSION: This study reveals differences in the hippocampal volumes measured using 7T MRI, between individuals with early symptomatic AD compared with healthy controls. This highlights the potential of 7T MRI as a valuable tool for early AD diagnosis and the real-time monitoring of AD progression and treatment efficacy. CLINICALTRIALS: GOV: ID NCT04992975 (Clinicaltrial.gov 2023).


Asunto(s)
Enfermedad de Alzheimer , Región CA1 Hipocampal , Giro Dentado , Imagen por Resonancia Magnética , Trastornos de la Memoria , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Masculino , Imagen por Resonancia Magnética/métodos , Femenino , Anciano , Giro Dentado/diagnóstico por imagen , Giro Dentado/patología , Persona de Mediana Edad , Región CA1 Hipocampal/diagnóstico por imagen , Región CA1 Hipocampal/patología , Trastornos de la Memoria/diagnóstico por imagen , Trastornos de la Memoria/patología , Adulto , Péptidos beta-Amiloides/metabolismo
4.
Neurobiol Dis ; 199: 106591, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38969233

RESUMEN

Gain-of-function mutations in SCN8A cause developmental and epileptic encephalopathy (DEE), a disorder characterized by early-onset refractory seizures, deficits in motor and intellectual functions, and increased risk of sudden unexpected death in epilepsy. Altered activity of neurons in the corticohippocampal circuit has been reported in mouse models of DEE. We examined the effect of chronic seizures on gene expression in the hippocampus by single-nucleus RNA sequencing in mice expressing the patient mutation SCN8A-p.Asn1768Asp (N1768D). One hundred and eighty four differentially expressed genes were identified in dentate gyrus granule cells, many more than in other cell types. Electrophysiological recording from dentate gyrus granule cells demonstrated an elevated firing rate. Targeted reduction of Scn8a expression in the dentate gyrus by viral delivery of an shRNA resulted in doubling of median survival time from 4 months to 8 months, whereas delivery of shRNA to the CA1 and CA3 regions did not result in lengthened survival. These data indicate that granule cells of the dentate gyrus are a specific locus of pathology in SCN8A-DEE.


Asunto(s)
Giro Dentado , Canal de Sodio Activado por Voltaje NAV1.6 , Neuronas , Animales , Canal de Sodio Activado por Voltaje NAV1.6/genética , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Giro Dentado/patología , Giro Dentado/metabolismo , Ratones , Neuronas/metabolismo , Neuronas/patología , Ratones Transgénicos , Masculino , Mutación
5.
BMC Neurosci ; 25(1): 45, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333878

RESUMEN

BACKGROUND: Exposure to chemical toxins, including insecticides, harms bodily organs like the brain. This study examined the neuroprotective of thymoquinone on the cypermethrin's harmful effects on the histoarchitecture of the dentate gyrus and motor deficit in the dentate gyrus. METHODS: Forty adult male rats (180-200 g) were randomly divided into 5 groups (n = 8 per group). Groups I, II, III, IV, and V received oral administration of 0.5 ml of phosphate-buffered saline, cypermethrin (20 mg/kg), thymoquinone (10 mg/kg), cypermethrin (20 mg/kg) + thymoquinone (5 mg/kg), and cypermethrin (20 mg/kg) + thymoquinone (10 mg/kg) for 14 days respectively. The novel object recognition test that assesses intermediate-term memory was done on days 14 and 21 of the experiment. At the end of these treatments, the animals were euthanized and taken for cytoarchitectural (hematoxylin and eosin; Cresyl violet) and immunohistochemical studies (Nuclear factor erythroid 2-related factor 2 (Nrf2), Parvalbumin, and B-cell lymphoma 2 (Bcl2). RESULT: The study shows that thymoquinone at 5 and 10 mg/kg improved Novelty preference and discrimination index. Thymoquinone enhanced Nissl body integrity, increased GABBAergic interneuron expression, nuclear factor erythroid 2-derived factor 2, and enhanced Bcl-2 expression in the dentate gyrus. It also improved the concentration of nuclear factor erythroid 2-derived factor 2, increased the activities of superoxide dismutase and glutathione, and decreased the concentration of malondialdehyde level against cypermethrin-induced neurotoxicity. CONCLUSION: thymoquinone could be a therapeutic agent against cypermethrin poisoning.


Asunto(s)
Benzoquinonas , Giro Dentado , Neuronas GABAérgicas , Trastornos de la Memoria , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Piretrinas , Transducción de Señal , Animales , Piretrinas/toxicidad , Masculino , Estrés Oxidativo/efectos de los fármacos , Benzoquinonas/farmacología , Giro Dentado/efectos de los fármacos , Giro Dentado/metabolismo , Giro Dentado/patología , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Transducción de Señal/efectos de los fármacos , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Ratas , Factor 2 Relacionado con NF-E2/metabolismo , Insecticidas/toxicidad , Fármacos Neuroprotectores/farmacología , Ratas Wistar
6.
Neuropathol Appl Neurobiol ; 50(5): e13008, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39375854

RESUMEN

The dentate gyrus (DG) plays a critical role in hippocampal circuitry, providing a "gate-like" function to the downstream cornu ammonis (CA) sectors. Despite this critical role, pathologies in DG are less commonly described than those in the CA sectors in the diagnosis of mesial temporal lobe epilepsy (mTLE). To elucidate the role of the DG in mTLE, we analysed hippocampal sclerosis (HS), no-HS, non-TLE epilepsy control, and non-epilepsy control cohorts using morphometry and gene expression profiling techniques. Morphometry techniques analysed DG cell spacing, nucleus size, and nucleus circularity. Our data show distinct DG morphometry and RNA expression profiles between HS and No-HS. Dentate granule cells are more dispersed in patients with HS, and the DG shows an elevated expression of the complement system, apoptosis, and extracellular matrix remodelling-related RNA. We also observe an overall decrease in neurogenesis-related RNA in HS DG. Interestingly, regardless of the pathological diagnosis, the DG morphometry correlates with post-operative outcomes. Increased cell spacing is observed in the DG of mTLE cases that achieve seizure freedom post-operatively. This study reveals the possible prognostic value of DG morphometry, as well as supporting the notion that HS and no-HS TLE may be distinct disease entities with differing contributing mechanisms.


Asunto(s)
Giro Dentado , Epilepsia del Lóbulo Temporal , Transcriptoma , Epilepsia del Lóbulo Temporal/patología , Epilepsia del Lóbulo Temporal/genética , Humanos , Masculino , Giro Dentado/patología , Adulto , Femenino , Persona de Mediana Edad , Esclerosis/patología , Perfilación de la Expresión Génica/métodos , Neuronas/patología , Neuronas/metabolismo , Hipocampo/patología , Hipocampo/metabolismo , Adulto Joven
7.
Epilepsia ; 65(7): 2127-2137, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761065

RESUMEN

OBJECTIVE: The mechanistic target of rapamycin (mTOR) pathway has been implicated in promoting epileptogenesis in animal models of acquired epilepsy, such as posttraumatic epilepsy (PTE) following traumatic brain injury (TBI). However, the specific anatomical regions and neuronal populations mediating mTOR's role in epileptogenesis are not well defined. In this study, we tested the hypothesis that mTOR activation in dentate gyrus granule cells promotes neuronal death, mossy fiber sprouting, and PTE in the controlled cortical impact (CCI) model of TBI. METHODS: An adeno-associated virus (AAV)-Cre viral vector was injected into the hippocampus of Rptorflox/flox (regulatory-associated protein of mTOR) mutant mice to inhibit mTOR activation in dentate gyrus granule cells. Four weeks after AAV-Cre or AAV-vehicle injection, mice underwent CCI injury and were subsequently assessed for mTOR pathway activation by Western blotting, neuronal death, and mossy fiber sprouting by immunopathological analysis, and posttraumatic seizures by video-electroencephalographic monitoring. RESULTS: AAV-Cre injection primarily affected the dentate gyrus and inhibited hippocampal mTOR activation following CCI injury. AAV-Cre-injected mice had reduced neuronal death in dentate gyrus detected by Fluoro-Jade B staining and decreased mossy fiber sprouting by ZnT3 immunostaining. Finally, AAV-Cre-injected mice exhibited a decrease in incidence of PTE. SIGNIFICANCE: mTOR pathway activation in dentate gyrus granule cells may at least partly mediate pathological abnormalities and epileptogenesis in models of TBI and PTE. Targeted modulation of mTOR activity in this hippocampal network may represent a focused therapeutic approach for antiepileptogenesis and prevention of PTE.


Asunto(s)
Giro Dentado , Modelos Animales de Enfermedad , Epilepsia Postraumática , Serina-Treonina Quinasas TOR , Animales , Giro Dentado/metabolismo , Giro Dentado/patología , Ratones , Serina-Treonina Quinasas TOR/metabolismo , Epilepsia Postraumática/etiología , Fibras Musgosas del Hipocampo/efectos de los fármacos , Masculino , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Ratones Endogámicos C57BL , Neuronas/patología , Neuronas/metabolismo , Electroencefalografía , Ratones Transgénicos
8.
Cell Biochem Funct ; 42(2): e3958, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38396357

RESUMEN

Iron accumulation in the brain causes oxidative stress, blood-brain barrier (BBB) breakdown, and neurodegeneration. We examined the preventive effects of acetylated oligopeptides (AOP) from whey protein on iron-induced hippocampal damage compared to N-acetyl cysteine (NAC). This 5-week study used 40 male albino rats. At the start, all rats received 150 mg/kg/day of oral NAC for a week. The 40 animals were then randomly divided into four groups: Group I (control) received a normal diet; Group II (iron overload) received 60 mg/kg/day intraperitoneal iron dextran 5 days a week for 4 weeks; Group III (NAC group) received 150 mg/kg/day NAC and iron dextran; and Group IV (AOP group) received 150 mg/kg/day AOP and iron dextran. Enzyme-linked immunosorbent assay, spectrophotometry, and qRT-PCR were used to measure MMP-9, tissue inhibitor metalloproteinase-1 (TIMP-1), MDA, reduced glutathione (GSH) levels, and nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) gene expression. Histopathological and immunohistochemical detection of nestin, claudin, caspase, and GFAP was also done. MMP-9, TIMP-1, MDA, caspase, and GFAP rose in the iron overload group, while GSH, Nrf2, HO-1, nestin, and claudin decreased. The NAC and AOP administrations improved iron overload-induced biochemical and histological alterations. We found that AOP and NAC can protect the brain hippocampus from iron overload, improve BBB disruption, and provide neuroprotection with mostly no significant difference from healthy controls.


Asunto(s)
Acetilcisteína , Sobrecarga de Hierro , Oligopéptidos , Animales , Masculino , Ratas , Acetilcisteína/farmacología , Acetilcisteína/metabolismo , Caspasas/metabolismo , Claudinas/genética , Giro Dentado/metabolismo , Giro Dentado/patología , Dextranos/metabolismo , Dextranos/farmacología , Regulación hacia Abajo , Glutatión/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Hierro/metabolismo , Hierro/farmacología , Sobrecarga de Hierro/complicaciones , Sobrecarga de Hierro/tratamiento farmacológico , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/farmacología , Nestina/genética , Nestina/metabolismo , Nestina/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/farmacología , Regulación hacia Arriba , Oligopéptidos/farmacología , Hemo-Oxigenasa 1/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo
9.
Brain Behav Immun ; 110: 13-29, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36796706

RESUMEN

BACKGROUND: The dentate gyrus (DG) has been implicated in the pathophysiology of depression. Many studies have revealed the cellular types, neural circuits, and morphological changes of the DG involved in the development of depression. However, the molecular regulating its intrinsic activity in depression is unknown. METHODS: Utilizing the mode of depression induced by lipopolysaccharide (LPS), we investigate the involvement of the sodium leak channel (NALCN) in inflammation-induced depressive-like behaviors of male mice. The expression of NALCN was detected by immunohistochemistry and real-time polymerase chain reaction. DG microinjection of the adeno-associated virus or lentivirus was carried out using a stereotaxic instrument and followed by behavioral tests. Neuronal excitability and NALCN conductance were recorded by whole-cell patch-clamp techniques. RESULTS: The expression and function of NALCN were reduced in both the dorsal and ventral DG in LPS-treated mice; whereas, only knocking down NALCN in the ventral pole produced depressive-like behaviors and this effect of NALCN was specific to ventral glutamatergic neurons. The excitability of ventral glutamatergic neurons was impaired by both the knockdown of NALCN and/or the treatment of LPS. Then, the overexpression of NALCN in the ventral glutamatergic neurons decreased the susceptibility of mice to inflammation-induced depression, and the intracranial injection of substance P (non-selective NALCN activator) into the ventral DG rapidly ameliorated inflammation-induced depression-like behaviors in an NALCN-dependent manner. CONCLUSIONS: NALCN, which drives the neuronal activity of the ventral DG glutamatergic neurons, uniquely regulates depressive-like behaviors and susceptibility to depression. Therefore, the NALCN of glutamatergic neurons in the ventral DG may present a molecular target for rapid antidepressant drugs.


Asunto(s)
Giro Dentado , Depresión , Canales Iónicos , Lipopolisacáridos , Animales , Masculino , Ratones , Giro Dentado/metabolismo , Giro Dentado/patología , Depresión/genética , Depresión/metabolismo , Ácido Glutámico/metabolismo , Inflamación/complicaciones , Canales Iónicos/metabolismo , Lipopolisacáridos/farmacología , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Sodio/metabolismo
10.
Epilepsia ; 64(6): 1432-1443, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36869624

RESUMEN

The hippocampal formation plays a central role in the development of temporal lobe epilepsy (TLE), a disease characterized by recurrent, unprovoked epileptic discharges. TLE is a neurologic disorder characterized by acute long-lasting seizures (i.e., abnormal electrical activity in the brain) or seizures that occur in close proximity without recovery, typically after a brain injury or status epilepticus. After status epilepticus, epileptogenic hyperexcitability develops gradually over the following months to years, resulting in the emergence of chronic, recurrent seizures. Acting as a filter or gate, the hippocampal dentate gyrus (DG) normally prevents excessive excitation from propagating through the hippocampus, and is considered a critical region in the progression of epileptogenesis in pathological conditions. Importantly, lipid-derived endogenous cannabinoids (endocannabinoids), which are produced on demand as retrograde messengers, are central regulators of neuronal activity in the DG circuit. In this review, we summarize recent findings concerning the role of the DG in controlling hyperexcitability and propose how DG regulation by cannabinoids (CBs) could provide avenues for therapeutic interventions. We also highlight possible pathways and manipulations that could be relevant for the control of hyperexcitation. The use of CB compounds to treat epilepsies is controversial, as anecdotal evidence is not always validated by clinical trials. Recent publications shed light on the importance of the DG as a region regulating incoming hippocampal excitability during epileptogenesis. We review recent findings concerning the modulation of the hippocampal DG circuitry by CBs and discuss putative underlying pathways. A better understanding of the mechanisms by which CBs exert their action during seizures may be useful to improve therapies.


Asunto(s)
Cannabinoides , Epilepsia del Lóbulo Temporal , Epilepsia , Estado Epiléptico , Humanos , Animales , Hipocampo/patología , Convulsiones/patología , Epilepsia/etiología , Epilepsia/patología , Epilepsia del Lóbulo Temporal/patología , Neuronas/patología , Estado Epiléptico/patología , Giro Dentado/patología , Modelos Animales de Enfermedad
11.
Proc Natl Acad Sci U S A ; 117(32): 19578-19589, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32727894

RESUMEN

The CreER/LoxP system is widely accepted to track neural lineages and study gene functions upon tamoxifen (TAM) administration. We have observed that prenatal TAM treatment caused high rates of delayed delivery and fetal mortality. This substance could produce undesired results, leading to data misinterpretation. Here, we report that administration of TAM during early stages of cortical neurogenesis promoted precocious neural differentiation, while it inhibited neural progenitor cell (NPC) proliferation. The TAM-induced inhibition of NPC proliferation led to deficits in cortical neurogenesis, dendritic morphogenesis, synaptic formation, and cortical patterning in neonatal and postnatal offspring. Mechanistically, by employing single-cell RNA-sequencing (scRNA-seq) analysis combined with in vivo and in vitro assays, we show TAM could exert these drastic effects mainly through dysregulating the Wnt-Dmrta2 signaling pathway. In adult mice, administration of TAM significantly attenuated NPC proliferation in both the subventricular zone and the dentate gyrus. This study revealed the cellular and molecular mechanisms for the adverse effects of TAM on corticogenesis, suggesting that care must be taken when using the TAM-induced CreER/LoxP system for neural lineage tracing and genetic manipulation studies in both embryonic and adult brains.


Asunto(s)
Encéfalo/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/patología , Tamoxifeno/efectos adversos , Animales , Encéfalo/embriología , Encéfalo/patología , Diferenciación Celular , Proliferación Celular , Giro Dentado/efectos de los fármacos , Giro Dentado/patología , Femenino , Ventrículos Laterales/efectos de los fármacos , Ventrículos Laterales/patología , Ratones , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/patología , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , RNA-Seq , Análisis de la Célula Individual , Factores de Transcripción/metabolismo , Vía de Señalización Wnt/efectos de los fármacos
12.
J Biol Chem ; 296: 100620, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33811862

RESUMEN

Mouse models of various neuropsychiatric disorders, such as schizophrenia, often display an immature dentate gyrus, characterized by increased numbers of immature neurons and neuronal progenitors and a dearth of mature neurons. We previously demonstrated that the CRMP5-associated GTPase (CRAG), a short splice variant of Centaurin-γ3/AGAP3, is highly expressed in the dentate gyrus. CRAG promotes cell survival and antioxidant defense by inducing the activation of serum response factors at promyelocytic leukemia protein bodies, which are nuclear stress-responsive domains, during neuronal development. However, the physiological role of CRAG in neuronal development remains unknown. Here, we analyzed the role of CRAG using dorsal forebrain-specific CRAG/Centaurin-γ3 knockout mice. The mice revealed maturational abnormality of the hippocampal granule cells, including increased doublecortin-positive immature neurons and decreased calbindin-positive mature neurons, a typical phenotype of immature dentate gyri. Furthermore, the mice displayed hyperactivity in the open-field test, a common measure of exploratory behavior, suggesting that these mice may serve as a novel model for neuropsychiatric disorder associated with hyperactivity. Thus, we conclude that CRAG is required for the maturation of neurons in the dentate gyrus, raising the possibility that its deficiency might promote the development of psychiatric disorders in humans.


Asunto(s)
Giro Dentado/patología , GTP Fosfohidrolasas/fisiología , Células-Madre Neurales/patología , Neurogénesis , Neuronas/patología , Prosencéfalo/patología , Agitación Psicomotora/patología , Animales , Giro Dentado/metabolismo , Conducta Exploratoria , Femenino , Masculino , Ratones , Ratones Noqueados , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Prosencéfalo/metabolismo , Agitación Psicomotora/etiología , Agitación Psicomotora/metabolismo
13.
J Neuroinflammation ; 19(1): 142, 2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35690821

RESUMEN

BACKGROUND: It has been demonstrated that reactive astrocytes can be polarized into pro-inflammatory A1 phenotype or anti-inflammatory A2 phenotype under neurotoxic and neurodegenerative conditions. Microglia have been suggested to play a critical role in astrocyte phenotype polarization by releasing pro- and anti-inflammatory mediators. In this study, we examined whether trimethyltin (TMT) insult can induce astrocyte polarization in the dentate gyrus of mice, and whether protein kinase Cδ (PKCδ) plays a role in TMT-induced astrocyte phenotype polarization. METHODS: Male C57BL/6 N mice received TMT (2.6 mg/kg, i.p.), and temporal changes in the mRNA expression of A1 and A2 phenotype markers were evaluated in the hippocampus. In addition, temporal and spatial changes in the protein expression of C3, S100A10, Iba-1, and p-PKCδ were examined in the dentate gyrus. Rottlerin (5 mg/kg, i.p. × 5 at 12-h intervals) was administered 3-5 days after TMT treatment, and the expression of A1 and A2 transcripts, p-PKCδ, Iba-1, C3, S100A10, and C1q was evaluated 6 days after TMT treatment. RESULTS: TMT treatment significantly increased the mRNA expression of A1 and A2 phenotype markers, and the increased expression of A1 markers remained longer than that of A2 markers. The immunoreactivity of the representative A1 phenotype marker, C3 and A2 phenotype marker, S100A10 peaked 6 days after TMT insult in the dentate gyrus. While C3 was expressed evenly throughout the dentate gyrus, S100A10 was highly expressed in the hilus and inner molecular layer. In addition, TMT insult induced microglial p-PKCδ expression. Treatment with rottlerin, a PKCδ inhibitor, decreased Iba-1 and C3 expression, but did not affect S100A10 expression, suggesting that PKCδ inhibition attenuates microglial activation and A1 astrocyte phenotype polarization. Consistently, rottlerin significantly reduced the expression of C1q and tumor necrosis factor-α (TNFα), which has been suggested to be released by activated microglia and induce A1 astrocyte polarization. CONCLUSION: We demonstrated the temporal and spatial profiles of astrocyte polarization after TMT insult in the dentate gyrus of mice. Taken together, our results suggest that PKCδ plays a role in inducing A1 astrocyte polarization by promoting microglial activation and consequently increasing the expression of pro-inflammatory mediators after TMT insult.


Asunto(s)
Astrocitos , Complemento C1q , Acetofenonas , Animales , Astrocitos/metabolismo , Benzopiranos , Complemento C1q/metabolismo , Giro Dentado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Fenotipo , ARN Mensajero/metabolismo , Compuestos de Trimetilestaño
14.
Ann Neurol ; 89(5): 952-966, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33550655

RESUMEN

OBJECTIVE: Apolipoprotein E (ApoE) genotype is the strongest genetic risk factor for late-onset Alzheimer's disease, with the ε4 allele increasing risk in a dose-dependent fashion. In addition to ApoE4 playing a crucial role in amyloid-ß deposition, recent evidence suggests that it also plays an important role in tau pathology and tau-mediated neurodegeneration. It is not known, however, whether therapeutic reduction of ApoE4 would exert protective effects on tau-mediated neurodegeneration. METHODS: Herein, we used antisense oligonucleotides (ASOs) against human APOE to reduce ApoE4 levels in the P301S/ApoE4 mouse model of tauopathy. We treated P301S/ApoE4 mice with ApoE or control ASOs via intracerebroventricular injection at 6 and 7.5 months of age and performed brain pathological assessments at 9 months of age. RESULTS: Our results indicate that treatment with ApoE ASOs reduced ApoE4 protein levels by ~50%, significantly protected against tau pathology and associated neurodegeneration, decreased neuroinflammation, and preserved synaptic density. These data were also corroborated by a significant reduction in levels of neurofilament light chain (NfL) protein in plasma of ASO-treated mice. INTERPRETATION: We conclude that reducing ApoE4 levels should be explored further as a therapeutic approach for APOE4 carriers with tauopathy including Alzheimer's disease. ANN NEUROL 2021;89:952-966.


Asunto(s)
Apolipoproteína E4/antagonistas & inhibidores , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/etiología , Oligonucleótidos Antisentido/uso terapéutico , Tauopatías/complicaciones , Tauopatías/tratamiento farmacológico , Animales , Apolipoproteína E4/sangre , Apolipoproteína E4/genética , Colesterol/metabolismo , Giro Dentado/patología , Encefalitis/prevención & control , Técnicas de Sustitución del Gen , Inyecciones Intraventriculares , Ratones , Ratones Endogámicos C57BL , Proteínas de Neurofilamentos/metabolismo , Oligonucleótidos Antisentido/administración & dosificación , Sinapsis/efectos de los fármacos , Sinapsis/patología , Proteínas tau/metabolismo
15.
Nature ; 531(7595): 508-12, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-26982728

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory decline and subsequent loss of broader cognitive functions. Memory decline in the early stages of AD is mostly limited to episodic memory, for which the hippocampus has a crucial role. However, it has been uncertain whether the observed amnesia in the early stages of AD is due to disrupted encoding and consolidation of episodic information, or an impairment in the retrieval of stored memory information. Here we show that in transgenic mouse models of early AD, direct optogenetic activation of hippocampal memory engram cells results in memory retrieval despite the fact that these mice are amnesic in long-term memory tests when natural recall cues are used, revealing a retrieval, rather than a storage impairment. Before amyloid plaque deposition, the amnesia in these mice is age-dependent, which correlates with a progressive reduction in spine density of hippocampal dentate gyrus engram cells. We show that optogenetic induction of long-term potentiation at perforant path synapses of dentate gyrus engram cells restores both spine density and long-term memory. We also demonstrate that an ablation of dentate gyrus engram cells containing restored spine density prevents the rescue of long-term memory. Thus, selective rescue of spine density in engram cells may lead to an effective strategy for treating memory loss in the early stages of AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Giro Dentado/citología , Giro Dentado/fisiología , Modelos Animales de Enfermedad , Memoria a Largo Plazo/fisiología , Envejecimiento , Amnesia/patología , Amnesia/fisiopatología , Precursor de Proteína beta-Amiloide/genética , Animales , Espinas Dendríticas/patología , Espinas Dendríticas/fisiología , Giro Dentado/patología , Giro Dentado/fisiopatología , Intervención Médica Temprana , Humanos , Potenciación a Largo Plazo , Masculino , Memoria Episódica , Ratones , Ratones Transgénicos , Optogenética , Placa Amiloide , Presenilina-1/genética , Sinapsis/metabolismo , Transgenes/genética , Proteínas tau/genética
16.
Mol Cell Proteomics ; 19(1): 128-141, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31699905

RESUMEN

Synaptic dysfunction is an early pathogenic event in Alzheimer disease (AD) that contributes to network disturbances and cognitive decline. Some synapses are more vulnerable than others, including the synapses of the perforant path, which provides the main excitatory input to the hippocampus. To elucidate the molecular mechanisms underlying the dysfunction of these synapses, we performed an explorative proteomic study of the dentate terminal zone of the perforant path. The outer two-thirds of the molecular layer of the dentate gyrus, where the perforant path synapses are located, was microdissected from five subjects with AD and five controls. The microdissected tissues were dissolved and digested by trypsin. Peptides from each sample were labeled with different isobaric tags, pooled together and pre-fractionated into 72 fractions by high-resolution isoelectric focusing. Each fraction was then analyzed by liquid chromatography-mass spectrometry. We quantified the relative expression levels of 7322 proteins, whereof 724 showed significantly altered levels in AD. Our comprehensive data analysis using enrichment and pathway analyses strongly indicated that presynaptic signaling, such as exocytosis and synaptic vesicle cycle processes, is severely disturbed in this area in AD, whereas postsynaptic proteins remained unchanged. Among the significantly altered proteins, we selected three of the most downregulated synaptic proteins; complexin-1, complexin-2 and synaptogyrin-1, for further validation, using a new cohort consisting of six AD and eight control cases. Semi-quantitative analysis of immunohistochemical staining confirmed decreased levels of complexin-1, complexin-2 and synaptogyrin-1 in the outer two-thirds of the molecular layer of the dentate gyrus in AD. Our in-depth proteomic analysis provides extensive knowledge on the potential molecular mechanism underlying synaptic dysfunction related to AD and supports that presynaptic alterations are more important than postsynaptic changes in early stages of the disease. The specific synaptic proteins identified could potentially be targeted to halt synaptic dysfunction in AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Giro Dentado/patología , Vía Perforante/patología , Proteínas/metabolismo , Proteoma , Sinapsis/patología , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Estudios de Casos y Controles , Estudios de Cohortes , Giro Dentado/metabolismo , Femenino , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Neuronas/metabolismo , Neuronas/patología , Vía Perforante/metabolismo , Proteómica/métodos , Sinapsis/metabolismo , Transmisión Sináptica
17.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35163053

RESUMEN

Astrocytes and microglia are the first cells to react to neurodegeneration, e.g., in Alzheimer's disease (AD); however, the data on changes in glial support during the most common (sporadic) type of the disease are sparse. Using senescence-accelerated OXYS rats, which simulate key characteristics of sporadic AD, and Wistar rats (parental normal strain, control), we investigated hippocampal neurogenesis and glial changes during AD-like pathology. Using immunohistochemistry, we showed that the early stage of the pathology is accompanied by a lower intensity of neurogenesis and decreased astrocyte density in the dentate gyrus. The progressive stage is concurrent with reactive astrogliosis and microglia activation, as confirmed by increased cell densities and by the acquisition of cell-specific gene expression profiles, according to transcriptome sequencing data. Besides, here, we continued to analyze the anti-AD effects of prolonged supplementation with mitochondria-targeted antioxidant SkQ1. The antioxidant did not affect neurogenesis, partly normalized the gene expression profile of astrocytes and microglia, and shifted the resting/activated microglia ratio toward a decrease in the activated-cell density. In summary, both astrocytes and microglia are more vulnerable to AD-associated neurodegeneration in the CA3 area than in other hippocampal areas; SkQ1 had an anti-inflammatory effect and is a promising modality for AD prevention and treatment.


Asunto(s)
Enfermedad de Alzheimer/dietoterapia , Enfermedad de Alzheimer/patología , Giro Dentado/patología , Plastoquinona/análogos & derivados , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/genética , Animales , Astrocitos/química , Astrocitos/efectos de los fármacos , Astrocitos/patología , Giro Dentado/química , Giro Dentado/efectos de los fármacos , Suplementos Dietéticos , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Plastoquinona/administración & dosificación , Plastoquinona/farmacología , Ratas , Ratas Wistar
18.
J Neurosci ; 40(5): 974-995, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31959697

RESUMEN

Multiple insults to the brain lead to neuronal cell death, thus raising the question to what extent can lost neurons be replenished by adult neurogenesis. Here we focused on the hippocampus and especially the dentate gyrus (DG), a vulnerable brain region and one of the two sites where adult neuronal stem cells (NSCs) reside. While adult hippocampal neurogenesis was extensively studied with regard to its contribution to cognitive enhancement, we focused on their underestimated capability to repair a massively injured, nonfunctional DG. To address this issue, we inflicted substantial DG-specific damage in mice of either sex either by diphtheria toxin-based ablation of >50% of mature DG granule cells (GCs) or by prolonged brain-specific VEGF overexpression culminating in extensive, highly selective loss of DG GCs (thereby also reinforcing the notion of selective DG vulnerability). The neurogenic system promoted effective regeneration by increasing NSCs proliferation/survival rates, restoring a nearly original DG mass, promoting proper rewiring of regenerated neurons to their afferent and efferent partners, and regaining of lost spatial memory. Notably, concomitantly with the natural age-related decline in the levels of neurogenesis, the regenerative capacity of the hippocampus also subsided with age. The study thus revealed an unappreciated regenerative potential of the young DG and suggests hippocampal NSCs as a critical reservoir enabling recovery from catastrophic DG damage.SIGNIFICANCE STATEMENT Adult hippocampal neurogenesis has been extensively studied in the context of its role in cognitive enhancement, but whether, and to what extent can dentate gyrus (DG)-resident neural stem cells drive regeneration of an injured DG has remained unclear. Here we show that DG neurogenesis acts to replace lost neurons and restore lost functions even following massive (>50%) neuronal loss. Age-related decline of neurogenesis is paralleled by a progressive decline of regenerative capacity. Considering also the exceptional vulnerability of the DG to insults, these findings provide a further rationale for maintaining DG neurogenesis in adult life.


Asunto(s)
Giro Dentado/fisiopatología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Animales , Proliferación Celular , Supervivencia Celular , Giro Dentado/lesiones , Giro Dentado/patología , Femenino , Masculino , Ratones Transgénicos
19.
J Neurochem ; 157(3): 642-655, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32275776

RESUMEN

Successful completion of daily activities relies on the ability to select the relevant features of the environment for memory and recall. Disruption to these processes can lead to various disorders, such as attention-deficit hyperactivity disorder (ADHD). Dopamine is a neurotransmitter implicated in the regulation of several processes, including attention. In addition to the higher-order brain function, dopamine is implicated in the regulation of adult neurogenesis. Previously, we generated mice lacking Shati, an N-acetyltransferase-8-like protein on a C57BL/6J genetic background (Shati/Nat8l-/- ). These mice showed a series of changes in the dopamine system and ADHD-like behavioral phenotypes. Therefore, we hypothesized that deficiency of Shati/Nat8l would affect neurogenesis and attentional behavior in mice. We found aberrant morphology of neurons and impaired neurogenesis in the dentate gyrus of Shati/Nat8l-/- mice. Additionally, research has suggested that impaired neurogenesis might be because of the reduction of dopamine in the hippocampus. Galantamine (GAL) attenuated the attentional impairment observed in the object-based attention test via increasing the dopamine release in the hippocampus of Shati/Nat8l-/- mice. The α7 nicotinic acetylcholine receptor antagonist, methyllycaconitine, and dopamine D1 receptor antagonist, SCH23390, blocked the ameliorating effect of GAL on attentional impairment in Shati/Nat8l-/- mice. These results suggest that the ameliorating effect of GAL on Shati/Nat8l-/- attentional impairment is associated with activation of D1 receptors following increased dopamine release in the hippocampus via α7 nicotinic acetylcholine receptor. In summary, Shati/Nat8l is important in both morphogenesis and neurogenesis in the dentate gyrus and attention, possible via modulation of dopaminergic transmission. Cover Image for this issue: https://doi.org/10.1111/jnc.15061.


Asunto(s)
Acetiltransferasas/deficiencia , Acetiltransferasas/genética , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno por Déficit de Atención con Hiperactividad/psicología , Giro Dentado/patología , Neuronas Dopaminérgicas/patología , Neurogénesis/genética , Animales , Atención/efectos de los fármacos , Benzazepinas/farmacología , Espinas Dendríticas/efectos de los fármacos , Giro Dentado/efectos de los fármacos , Giro Dentado/metabolismo , Dopamina/metabolismo , Dopamina/fisiología , Antagonistas de Dopamina/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Femenino , Galantamina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Antagonistas Nicotínicos/farmacología , Nootrópicos/farmacología , Transmisión Sináptica/efectos de los fármacos
20.
Mol Psychiatry ; 25(7): 1559-1568, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-30867562

RESUMEN

Electroconvulsive therapy (ECT) is the most effective treatment for depression, yet its working mechanism remains unclear. In the animal analog of ECT, neurogenesis in the dentate gyrus (DG) of the hippocampus is observed. In humans, volume increase of the hippocampus has been reported, but accurately measuring the volume of subfields is limited with common MRI protocols. If the volume increase of the hippocampus in humans is attributable to neurogenesis, it is expected to be exclusively present in the DG, whereas other processes (angiogenesis, synaptogenesis) also affect other subfields. Therefore, we acquired an optimized MRI scan at 7-tesla field strength allowing sensitive investigation of hippocampal subfields. A further increase in sensitivity of the within-subjects measurements is gained by automatic placement of the field of view. Patients receive two MRI scans: at baseline and after ten bilateral ECT sessions (corresponding to a 5-week interval). Matched controls are also scanned twice, with a similar 5-week interval. A total of 31 participants (23 patients, 8 controls) completed the study. A large and significant increase in DG volume was observed after ECT (M = 75.44 mm3, std error = 9.65, p < 0.001), while other hippocampal subfields were unaffected. We note that possible type II errors may be present due to the small sample size. In controls no changes in volume were found. Furthermore, an increase in DG volume was related to a decrease in depression scores, and baseline DG volume predicted clinical response. These findings suggest that the volume change of the DG is related to the antidepressant properties of ECT, and may reflect neurogenesis.


Asunto(s)
Giro Dentado , Depresión/patología , Depresión/terapia , Terapia Electroconvulsiva , Tamaño de los Órganos , Giro Dentado/citología , Giro Dentado/patología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA