Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 40(15): e106800, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34156108

RESUMEN

How organisms integrate metabolism with the external environment is a central question in biology. Here, we describe a novel regulatory small molecule, a proteogenic dipeptide Tyr-Asp, which improves plant tolerance to oxidative stress by directly interfering with glucose metabolism. Specifically, Tyr-Asp inhibits the activity of a key glycolytic enzyme, glyceraldehyde 3-phosphate dehydrogenase (GAPC), and redirects glucose toward pentose phosphate pathway (PPP) and NADPH production. In line with the metabolic data, Tyr-Asp supplementation improved the growth performance of both Arabidopsis and tobacco seedlings subjected to oxidative stress conditions. Moreover, inhibition of Arabidopsis phosphoenolpyruvate carboxykinase (PEPCK) activity by a group of branched-chain amino acid-containing dipeptides, but not by Tyr-Asp, points to a multisite regulation of glycolytic/gluconeogenic pathway by dipeptides. In summary, our results open the intriguing possibility that proteogenic dipeptides act as evolutionarily conserved small-molecule regulators at the nexus of stress, protein degradation, and metabolism.


Asunto(s)
Arabidopsis/efectos de los fármacos , Dipéptidos/farmacología , Gliceraldehído-3-Fosfato Deshidrogenasas/antagonistas & inhibidores , Nicotiana/efectos de los fármacos , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Simulación por Computador , Dipéptidos/química , Dipéptidos/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/química , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , NADP/metabolismo , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Vía de Pentosa Fosfato/efectos de los fármacos , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Proteínas de Plantas/antagonistas & inhibidores , Plantones/efectos de los fármacos , Plantones/metabolismo , Nicotiana/metabolismo
2.
Nature ; 561(7722): 263-267, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30209366

RESUMEN

Starvation poses a fundamental challenge to cell survival. Whereas the role of autophagy in promoting energy homeostasis in this setting has been extensively characterized1, other mechanisms are less well understood. Here we reveal that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) inhibits coat protein I (COPI) transport by targeting a GTPase-activating protein (GAP) towards ADP-ribosylation factor 1 (ARF1) to suppress COPI vesicle fission. GAPDH inhibits multiple other transport pathways, also by targeting ARF GAPs. Further characterization suggests that this broad inhibition is activated by the cell during starvation to reduce energy consumption. These findings reveal a remarkable level of coordination among the intracellular transport pathways that underlies a critical mechanism of cellular energy homeostasis.


Asunto(s)
Metabolismo Energético , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Homeostasis , Adenilato Quinasa/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/metabolismo , Animales , Autofagia , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Línea Celular , Chlorocebus aethiops , Cricetulus , Fibroblastos , Proteínas Activadoras de GTPasa/antagonistas & inhibidores , Proteínas Activadoras de GTPasa/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/química , Humanos , Ratones , Fosforilación , Ribonucleótidos/metabolismo , Inanición
3.
Proc Natl Acad Sci U S A ; 116(51): 26057-26065, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31772010

RESUMEN

Protein aggregation is a complex physiological process, primarily determined by stress-related factors revealing the hidden aggregation propensity of proteins that otherwise are fully soluble. Here we report a mechanism by which glycolytic glyceraldehyde-3-phosphate dehydrogenase of Arabidopsis thaliana (AtGAPC1) is primed to form insoluble aggregates by the glutathionylation of its catalytic cysteine (Cys149). Following a lag phase, glutathionylated AtGAPC1 initiates a self-aggregation process resulting in the formation of branched chains of globular particles made of partially misfolded and totally inactive proteins. GSH molecules within AtGAPC1 active sites are suggested to provide the initial destabilizing signal. The following removal of glutathione by the formation of an intramolecular disulfide bond between Cys149 and Cys153 reinforces the aggregation process. Physiological reductases, thioredoxins and glutaredoxins, could not dissolve AtGAPC1 aggregates but could efficiently contrast their growth. Besides acting as a protective mechanism against overoxidation, S-glutathionylation of AtGAPC1 triggers an unexpected aggregation pathway with completely different and still unexplored physiological implications.


Asunto(s)
Arabidopsis/metabolismo , Glutatión/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/química , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Anotación de Secuencia Molecular , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dominio Catalítico , Glutarredoxinas/metabolismo , Glutatión/química , Disulfuro de Glutatión/química , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/química , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Cinética , Simulación de Dinámica Molecular , Oxidación-Reducción , Pliegue de Proteína , Solubilidad , Tiorredoxinas/metabolismo
4.
Arch Biochem Biophys ; 698: 108744, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33385367

RESUMEN

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) shows great diversity of functions, interaction partners and post-translational modifications. GAPDH undergoes glycation of positively charged residues in diabetic patient's tissues and therefore may change interaction with partners. The influence of GAPDH glycation on interaction with two important partners, α-synuclein and RNA, has been investigated in silico using molecular dynamics simulations and in vitro using surface plasmon resonance measurements. Since positively charged groove including substrate- and NAD+-binding sites is proposed as potential binding site for α-synuclein and RNA, GAPDH was glycated on residues in grooves and randomly distributed over the whole surface. Lysine residues were replaced with negatively charged carboxymethyl lysine as a widespread advanced glycation end product. As results, GAPDH glycation suppressed the interaction with α-synuclein and RNA. Although the modified GAPDH residues participated in binding with α-synuclein, no stable binding site with both glycated forms was observed. Glycation along the whole GAPDH surface completely suppressed interaction with RNA, whereas the alternative possible RNA binding site was identified in case of groove glycation. The findings were supported by direct measurement of the binding affinity. The obtained results clarify effect of glycation on GAPDH interaction with α-synuclein and RNA and elucidate a possible mechanism of interplay between glycation occurred in diabetes and neurodegenerative diseases, which GAPDH and α-synuclein are involved in.


Asunto(s)
Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Procesamiento Proteico-Postraduccional , ARN/metabolismo , alfa-Sinucleína/metabolismo , Animales , Sitios de Unión , Línea Celular Tumoral , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/química , Glicosilación , Humanos , Simulación de Dinámica Molecular , Unión Proteica , ARN/química , Conejos , alfa-Sinucleína/química
5.
Regul Toxicol Pharmacol ; 119: 104817, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33171209

RESUMEN

The production of soy leghemoglobin C2 (LegH) by Pichia pastoris (syn. K. phaffii) was developed by Impossible Foods to serve as a sustainable source of flavor and aroma in plant-based meats. The potential allergenicity and toxicity of a LegH from a new production process was analyzed using bioinformatics, proteomics and a pepsin digestion assay on leghemoglobin, and residual host proteins. LegH in the new preparation had the same proteoform as in the previous preparations as well as in soy root nodule extracts. Results of seven Pichia proteins, each representing ≥1% of the total protein content, showed no significant sequence matches to any known allergens with the exception of one, which matched the highly conserved wheat GAPDH, whose protein homolog is found in fungi and humans. Based on the data, it is unlikely that there is any risk of cross reactivity between LegH Prep and GAPDH. Pichia protein sequences showed very good alignment to homologous proteins from many common yeasts including Saccharomyces sp. In addition, LegH and Pichia proteins were all rapidly digested in a pepsin digest assay. In conclusion, LegH Prep from this P. pastoris production process is unlikely to pose a risk of food allergenicity.


Asunto(s)
Alérgenos/toxicidad , Proteínas Fúngicas/toxicidad , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/toxicidad , Leghemoglobina/toxicidad , Saccharomycetales/genética , Alérgenos/química , Alérgenos/genética , Secuencia de Aminoácidos , Hipersensibilidad a los Alimentos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/química , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Leghemoglobina/química , Leghemoglobina/genética , Espectrometría de Masas , Proteómica
6.
Protein Expr Purif ; 175: 105697, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32681951

RESUMEN

Trichoderma virens genome harbors two isoforms of GAPDH, one (gGPD) involved in glycolysis and the other one (vGPD) in secondary metabolism. vGPD is expressed as part of the "vir" cluster responsible for the biosynthesis of volatile sesquiterpenes. The secondary metabolism-associated GAPDH is tolerant to the anti-cancer metabolite heptelidic acid (HA), produced by T. virens. Characterizing the HA-tolerant form of GAPDH, thus has implications in cancer therapy. In order to get insight into the mechanism of HA-tolerance of vGPD, we have purified recombinant form of this protein. The protein displays biochemical and biophysical characteristics analogous to the gGPD isoform. It exists as a tetramer with Tm of about 56.5 °C, and displays phosphorylation enzyme activity with Km and Kcat of 0.38 mM and 2.55 sec-1, respectively. The protein weakly binds to the sequence upstream of the vir4 gene that codes for the core enzyme (a terpene cyclase) of the "vir" cluster. The EMSA analysis indicates that vGPD may not act as a transcription factor driving the "vir" cluster, at least not by directly binding to the promoter region. We also succeeded in obtaining small crystals of this protein. We have constructed structural models of vGPD and gGPD of T. virens. In silico constrained docking analysis reveals weaker binding of heptelidic acid in vGPD, compared to gGPD protein.


Asunto(s)
Proteínas Fúngicas , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante) , Hypocrea/genética , Simulación del Acoplamiento Molecular , Estabilidad de Enzimas , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/biosíntesis , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/química , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/aislamiento & purificación , Hypocrea/enzimología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Sesquiterpenos/química
7.
Int J Mol Sci ; 21(11)2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32532033

RESUMEN

The oral cavity of healthy individuals is inhabited by commensals, with species of Streptococcus being the most abundant and prevalent in sites not affected by periodontal diseases. The development of chronic periodontitis is linked with the environmental shift in the oral microbiome, leading to the domination of periodontopathogens. Structure-function studies showed that Streptococcus gordonii employs a "moonlighting" protein glyceraldehyde-3-phosphate dehydrogenase (SgGAPDH) to bind heme, thus forming a heme reservoir for exchange with other proteins. Secreted or surface-associated SgGAPDH coordinates Fe(III)heme using His43. Hemophore-like heme-binding proteins of Porphyromonas gingivalis (HmuY), Prevotella intermedia (PinO) and Tannerella forsythia (Tfo) sequester heme complexed to SgGAPDH. Co-culturing of P. gingivalis with S. gordonii results in increased hmuY gene expression, indicating that HmuY might be required for efficient inter-bacterial interactions. In contrast to the DhmuY mutant strain, the wild type strain acquires heme and forms deeper biofilm structures on blood agar plates pre-grown with S. gordonii. Therefore, our novel paradigm of heme acquisition used by P. gingivalis appears to extend to co-infections with other oral bacteria and offers a mechanism for the ability of periodontopathogens to obtain sufficient heme in the host environment. Importantly, P. gingivalis is advantaged in terms of acquiring heme, which is vital for its growth survival and virulence.


Asunto(s)
Proteínas Bacterianas/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Hemo/metabolismo , Porphyromonas gingivalis/metabolismo , Streptococcus gordonii/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Biopelículas/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/química , Histidina/metabolismo , Humanos , Microbiota , Boca/microbiología , Mutación , Porphyromonas gingivalis/patogenicidad , Porphyromonas gingivalis/fisiología , Streptococcus gordonii/fisiología
8.
Microb Pathog ; 127: 359-367, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30553015

RESUMEN

GAPDH being a key enzyme in the glycolytic pathway is one of the surface adhesins of many Gram-positive bacteria including Streptococcus agalactiae. This anchorless adhesin is known to bind to host plasminogen (PLG) and fibrinogen (Fg), which enhances the virulence and modulates the host immune system. The crystal structure of the recombinant GAPDH from S. agalactiae (SagGAPDH) was determined at 2.6 Šresolution by molecular replacement. The structure was found to be highly conserved with a typical NAD binding domain and a catalytic domain. In this paper, using biolayer interferometry studies, we report that the multifunctional SagGAPDH enzyme binds to a variety of host molecules such as PLG, Fg, laminin, transferrin and mucin with a KD value of 4.4 × 10-7 M, 9.8 × 10-7 M, 1 × 10-5 M, 9.7 × 10-12 M and 1.4 × 10-7 M respectively. The ligand affinity blots reveal that SagGAPDH binds specifically to α and ß subunits of Fg and the competitive binding ELISA assay reveals that the Fg and PLG binding sites on GAPDH does not overlap each other. The PLG binding motif of GAPDH varies with organisms, however positively charged residues in the hydrophobic surroundings is essential for PLG binding. The lysine analogue competitive binding assay and lysine succinylation experiments deciphered the role of SagGAPDH lysines in PLG binding. On structural comparison with S. pneumoniae GAPDH, K171 of SagGAPDH is being predicted to be involved in PLG binding. Further SagGAPDH exhibited enzymatic activity in the presence of Fg, PLG and transferrin. This suggests that these host molecules does not mask the active site and bind at some other region of GAPDH.


Asunto(s)
Adhesinas Bacterianas/química , Adhesinas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/química , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Cinética , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Streptococcus agalactiae/enzimología
9.
Nucleic Acids Res ; 45(3): 1186-1199, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28180299

RESUMEN

Acetylation of histones regulates gene expression in eukaryotes. In the yeast Saccharomyces cerevisiae it depends mainly upon the ADA and SAGA histone acetyltransferase complexes for which Gcn5 is the catalytic subunit. Previous screens have determined that global acetylation is reduced in cells lacking subunits of the Ccr4­Not complex, a global regulator of eukaryotic gene expression. In this study we have characterized the functional connection between the Ccr4­Not complex and SAGA. We show that SAGA mRNAs encoding a core set of SAGA subunits are tethered together for co-translational assembly of the encoded proteins. Ccr4­Not subunits bind SAGA mRNAs and promote the co-translational assembly of these subunits. This is needed for integrity of SAGA. In addition, we determine that a glycolytic enzyme, the glyceraldehyde-3-phosphate dehydrogenase Tdh3, a prototypical moonlighting protein, is tethered at this site of Ccr4­Not-dependent co-translational SAGA assembly and functions as a chaperone.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/química , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Histona Acetiltransferasas/química , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Modelos Biológicos , Mutación , Multimerización de Proteína/genética , Subunidades de Proteína , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleasas/química , Ribonucleasas/genética , Ribonucleasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Transactivadores/química , Factores de Transcripción/química
10.
Extremophiles ; 22(1): 121-129, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29177716

RESUMEN

Genome sequence of the hyperthermophilic archaeon Pyrobaculum calidifontis contains an open reading frame, Pcal_0632, annotated as glyceraldehyde-3-phosphate dehydrogenase, which is partially overlapped with phosphoglycerate kinase. In the phylogenetic tree, Pcal_0632 clustered with phosphorylating glyceraldehyde-3-phosphate dehydrogenases characterized from hyperthermophilic archaea and exhibited highest identity of 54% with glyceraldehyde-3-phosphate dehydrogenase from Sulfolobus tokodaii. To examine biochemical function of the protein, Pcal_0632 gene was expressed in Escherichia coli and the gene product was purified. The recombinant enzyme catalyzed the conversion of glyceraldehyde 3-phosphate and inorganic phosphate into 1,3-bisphosphoglycerate utilizing both NAD and NADP as cofactor with a marked preference for NADP. The enzyme was highly stable against temperature and denaturants. Half-life of the enzyme was 60 min at 100 °C. It retained more than 60% of its activity even after an incubation of 72 h at room temperature in the presence of 6 M urea. High thermostability and resistance against denaturants make Pcal_0632 a novel glyceraldehyde-3-phosphate dehydrogenase.


Asunto(s)
Proteínas Arqueales/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Pyrobaculum/enzimología , Termotolerancia , Proteínas Arqueales/química , Estabilidad de Enzimas , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/química , Desnaturalización Proteica , Especificidad por Sustrato
11.
Cell Mol Life Sci ; 73(3): 637-48, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26265182

RESUMEN

A hallmark to decipher bioprocesses is to characterize protein-protein interactions in living cells. To do this, the development of innovative methodologies, which do not alter proteins and their natural environment, is particularly needed. Here, we report a method (LUCK, Laser UV Cross-linKing) to in vivo cross-link proteins by UV-laser irradiation of living cells. Upon irradiation of HeLa cells under controlled conditions, cross-linked products of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were detected, whose yield was found to be a linear function of the total irradiation energy. We demonstrated that stable dimers of GAPDH were formed through intersubunit cross-linking, as also observed when the pure protein was irradiated by UV-laser in vitro. We proposed a defined patch of aromatic residues located at the enzyme subunit interface as the cross-linking sites involved in dimer formation. Hence, by this technique, UV-laser is able to photofix protein surfaces that come in direct contact. Due to the ultra-short time scale of UV-laser-induced cross-linking, this technique could be extended to weld even transient protein interactions in their native context.


Asunto(s)
Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/química , Rayos Láser , Mapeo de Interacción de Proteínas/métodos , Animales , Simulación por Computador , Dimerización , Células HeLa , Humanos , Modelos Moleculares , Estructura Terciaria de Proteína , Conejos , Rayos Ultravioleta
12.
Exp Parasitol ; 179: 7-19, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28552792

RESUMEN

Malaria rapid diagnostic tests (RDTs) are immunochromatographic tests detecting Plasmodial histidine-rich protein 2 (HRP2), lactate dehydrogenase (LDH) and aldolase. HRP2 is only expressed by Plasmodium falciparum parasites and the protein is not expressed in several geographic isolates. LDH-based tests lack sensitivity compared to HRP2 tests. This study explored the potential of the Plasmodial glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), as a new malaria diagnostic biomarker. The P. falciparum and P. yoelii proteins were recombinantly expressed in BL21(DE3) Escherischia coli host cells and affinity purified. Two epitopes (CADGFLLIGEKKVSVFA and CAEKDPSQIPWGKCQV) specific to P. falciparum GAPDH and one common to all mammalian malaria species (CKDDTPIYVMGINH) were identified. Antibodies were raised in chickens against the two recombinant proteins and the three epitopes and affinity purified. The antibodies detected the native protein in parasite lysates as a 38 kDa protein and immunofluorescence verified a parasite cytosolic localization for the native protein. The antibodies suggested a 4-6 fold higher concentration of native PfGAPDH compared to PfLDH in immunoprecipitation and ELISA formats, consistent with published proteomic data. PfGAPDH shows interesting potential as a malaria diagnostic biomarker.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Malaria Falciparum/diagnóstico , Plasmodium falciparum/enzimología , Secuencia de Aminoácidos , Animales , Anticuerpos Antiprotozoarios/biosíntesis , Especificidad de Anticuerpos , Antígenos de Protozoos/aislamiento & purificación , Biomarcadores/análisis , Western Blotting , Pollos , Cromatografía de Afinidad , Cromatografía en Gel , Diagnóstico Diferencial , Ensayo de Inmunoadsorción Enzimática , Epítopos/inmunología , Epítopos/aislamiento & purificación , Técnica del Anticuerpo Fluorescente , Fructosa-Bifosfato Aldolasa/aislamiento & purificación , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/química , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/inmunología , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/inmunología , Inmunoglobulina G/aislamiento & purificación , Inmunoglobulinas/inmunología , Inmunoprecipitación , L-Lactato Deshidrogenasa/inmunología , L-Lactato Deshidrogenasa/aislamiento & purificación , L-Lactato Deshidrogenasa/metabolismo , Plasmodium falciparum/inmunología , Plasmodium yoelii/enzimología , Plasmodium yoelii/inmunología , Proteínas Protozoarias/aislamiento & purificación , Conejos , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
13.
J Nanosci Nanotechnol ; 16(6): 6505-10, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27427744

RESUMEN

Chinese Bama minipigs could be potential donors for the supply of xenografts because they are genetically stable, highly inbred, and inexpensive. However, porcine endogenous retrovirus (PERV) is commonly integrated in pig genomes and could cause a cross-species infection by xenotransplantation. For screening out the pigs with low copy numbers of PERV proviruses, we have developed a novel semiquantitative analysis approach based on magnetic nanoparticles (MNPs) and chemiluminescence (CL) for estimating relative copy numbers (RCNs) of PERV proviruses in Chinese Bama minipigs. The CL intensities of PERV proviruses and the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were respectively determined with this method, and the RCNs of PERV proviruses were calculated by the equation: RCN of PERV provirus = CL intensity of PERV provirus/CL intensity of GAPDH. The results showed that PERVs were integrated in the genomes of Bama minipigs at different copy numbers, and the copy numbers of PERV-C subtype were greatly low. Two Bama minipigs with low copy numbers of PERV proviruses were detected out and could be considered as xenograft donor candidates. Although only semiquantitation can be achieved, this approach has potential for screening out safe and suitable pig donors for xenotransplantation.


Asunto(s)
Retrovirus Endógenos/genética , Dosificación de Gen , Mediciones Luminiscentes , Imanes/química , Nanopartículas , Provirus/genética , Porcinos Enanos/virología , Animales , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/química , Porcinos
14.
Mol Plant Microbe Interact ; 28(4): 379-86, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25584724

RESUMEN

Although the plant hormone salicylic acid (SA) plays a central role in signaling resistance to viral infection, the underlying mechanisms are only partially understood. Identification and characterization of SA's direct targets have been shown to be an effective strategy for dissecting the complex SA-mediated defense signaling network. In search of additional SA targets, we previously developed two sensitive approaches that utilize SA analogs in conjunction with either a photoaffinity labeling technique or surface plasmon resonance-based technology to identify and evaluate candidate SA-binding proteins (SABPs) from Arabidopsis. Using these approaches, we have now identified several members of the Arabidopsis glyceraldehyde 3-phosphate dehydrogenase (GAPDH) protein family, including two chloroplast-localized and two cytosolic isoforms, as SABPs. Cytosolic GAPDH is a well-known glycolytic enzyme; it also is an important host factor involved in the replication of Tomato bushy stunt virus (TBSV), a single-stranded RNA virus. Using a yeast cell-free extract, an in vivo yeast replication system, and plant protoplasts, we demonstrate that SA inhibits TBSV replication. SA does so by inhibiting the binding of cytosolic GAPDH to the negative (-)RNA strand of TBSV. Thus, this study reveals a novel molecular mechanism through which SA regulates virus replication.


Asunto(s)
Proteínas de Arabidopsis/efectos de los fármacos , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/efectos de los fármacos , Interacciones Huésped-Patógeno/efectos de los fármacos , Ácido Salicílico/farmacología , Tombusvirus/genética , Replicación Viral/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/virología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/química , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo
15.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 12): 2372-85, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26627646

RESUMEN

Oxygenic photosynthetic organisms produce sugars through the Calvin-Benson cycle, a metabolism that is tightly linked to the light reactions of photosynthesis and is regulated by different mechanisms, including the formation of protein complexes. Two enzymes of the cycle, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK), form a supramolecular complex with the regulatory protein CP12 with the formula (GAPDH-CP122-PRK)2, in which both enzyme activities are transiently inhibited during the night. Small-angle X-ray scattering analysis performed on both the GAPDH-CP12-PRK complex and its components, GAPDH-CP12 and PRK, from Arabidopsis thaliana showed that (i) PRK has an elongated, bent and screwed shape, (ii) the oxidized N-terminal region of CP12 that is not embedded in the GAPDH-CP12 complex prefers a compact conformation and (iii) the interaction of PRK with the N-terminal region of CP12 favours the approach of two GAPDH tetramers. The interaction between the GAPDH tetramers may contribute to the overall stabilization of the GAPDH-CP12-PRK complex, the structure of which is presented here for the first time.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/química , Proteínas Portadoras/química , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fotosíntesis/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Expresión Génica , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Modelos Moleculares , Datos de Secuencia Molecular , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Dispersión del Ángulo Pequeño , Alineación de Secuencia , Difracción de Rayos X
16.
Immunol Invest ; 44(7): 627-42, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26436851

RESUMEN

Pheroid® technology was assessed as an alternative to Freund's adjuvant to raise antibodies in experimental animals. Chickens were immunized with two recombinantly expressed Plasmodium falciparum proteins, lactate dehydrogenase (PfLDH) and glyceraldehyde-3-phosphate dehydrogenase (PfGAPDH), alone or in combination with Freund's adjuvant or Pheroid®. Chicken egg yolk antibodies (IgY) were isolated and compared for specificity, sensitivity and yield. Freund's adjuvant and Pheroid® stimulated prolonged antibody responses in chickens against both antigens. Affinity purified antibodies had specificity for the recombinant and the native proteins on Western blots. Antibodies generated in the presence of Freund's adjuvant had high sensitivity for both antigens. Pheroid® generated antibodies that detected the lowest concentration of recombinant PfLDH. Freund's adjuvant and Pheroid® both improved chicken IgY yields, with Pheroid® showing a 2-fold increase relative to controls. Pheroid® was well-tolerated in chickens and has potential for development as a safe adjuvant for testing alternative stimulatory factors to improve adjuvant formulations.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Formación de Anticuerpos , Antígenos de Protozoos/inmunología , Adyuvante de Freund , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/inmunología , L-Lactato Deshidrogenasa/inmunología , Plasmodium falciparum/inmunología , Secuencia de Aminoácidos , Animales , Especificidad de Anticuerpos/inmunología , Pollos , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/química , Inmunización , Inmunoglobulinas/inmunología , L-Lactato Deshidrogenasa/química , Malaria Falciparum , Datos de Secuencia Molecular , Proteínas Recombinantes/inmunología , Alineación de Secuencia
17.
Proc Natl Acad Sci U S A ; 109(33): 13308-13, 2012 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-22847419

RESUMEN

Oxidative stress regulates telomere homeostasis and cellular aging by unclear mechanisms. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a key mediator of many oxidative stress responses, involving GAPDH nuclear translocation and induction of cell death. We report here that GAPDH interacts with the telomerase RNA component (TERC), inhibits telomerase activity, and induces telomere shortening and breast cancer cell senescence. The Rossmann fold containing NAD(+) binding region on GAPDH is responsible for the interaction with TERC, whereas a lysine residue in the GAPDH catalytic domain is required for inhibiting telomerase activity and disrupting telomere maintenance. Furthermore, the GAPDH substrate glyceraldehyde-3-phosphate (G3P) and the nitric oxide donor S-nitrosoglutathione (GSNO) both negatively regulate GAPDH inhibition of telomerase activity. Thus, we demonstrate that GAPDH is regulated to target the telomerase complex, resulting in an arrest of telomere maintenance and cancer cell proliferation.


Asunto(s)
Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Senescencia Celular , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , ARN/metabolismo , Telomerasa/metabolismo , Neoplasias de la Mama/genética , Línea Celular Tumoral , Senescencia Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Gliceraldehído 3-Fosfato/farmacología , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/química , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , NAD/farmacología , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , ARN/antagonistas & inhibidores , ARN/química , S-Nitrosoglutatión/farmacología , Relación Estructura-Actividad , Telomerasa/antagonistas & inhibidores , Telomerasa/química , Acortamiento del Telómero/efectos de los fármacos , Acortamiento del Telómero/genética
18.
Biopolymers ; 101(9): 975-84, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24912753

RESUMEN

The current study describes an approach to creation of catalytically active particles with increased stability from enzymes by N-homocysteinylation, a naturally presented protein modification. Enzymatic activities and properties of two globular tetrameric enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase (LDH) were studied before and after N-homocysteinylation. Modification of these proteins concerns the accessible lysine residues and introduces an average of 2-2,5 homocysteine residues per protein monomer. Formation of a range of aggregates was observed for both enzymes, which assemble via formation of intermolecular noncovalent bonds and by disulfide bonds. It was demonstrated that both studied enzymes retain their catalytic activities on modification and the subsequent formation of oligomeric forms. At low concentrations of homocysteine thiolactone, modification of GAPDH leads not only to prevention of spontaneous inactivation but also increases thermal stability of this enzyme on heating to 80°C. A moderate reduction of the activity of GAPDH observed in case of its crosslinking with 50-fold excess of homocysteine thiolactone per lysine is probably caused by hindered substrate diffusion. Spherical particles of 100 nm and larger diameters were observed by transmission electron microscopy and atomic force microscope techniques after modification of GAPDH with different homocysteine thiolactone concentrations. In case of LDH, branched fibril-like aggregates were observed under the same conditions. Interestingly, crosslinked samples of both proteins were found to have reversible thermal denaturation profiles, indicating that modification with homocysteine thiolactone stabilizes the spatial structure of these enzymes.


Asunto(s)
Reactivos de Enlaces Cruzados/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Homocisteína/análogos & derivados , L-Lactato Deshidrogenasa/metabolismo , Animales , Rastreo Diferencial de Calorimetría , Catálisis , Electroforesis en Gel de Poliacrilamida , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/química , Homocisteína/metabolismo , Hidrodinámica , L-Lactato Deshidrogenasa/química , Lisina/metabolismo , Microscopía Electrónica de Transmisión , Modelos Moleculares , NAD/metabolismo , Conejos
19.
Bioessays ; 34(7): 578-88, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22696112

RESUMEN

Moonlighting--the performance of more than one function by a single protein--is becoming recognized as a common phenomenon with important implications for systems biology and human health. The different functions of a moonlighting protein may use different regions of the protein structure, or alternative structures that occur due to post-translational modifications and/or differences in binding partners. Often the different functions of moonlighting proteins are used at different times or in different places. The existence of moonlighting functions complicates efforts to understand metabolic and regulatory networks, as well as physiological and pathological processes in organisms. Because moonlighting functions can play important roles in disease processes, an improved understanding of moonlighting proteins will provide new opportunities for pharmacological manipulations that specifically target a function involved in pathology while sparing physiologically important functions.


Asunto(s)
Evolución Molecular , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/química , Proteínas/química , Adaptación Biológica , Animales , Citoplasma/química , Citoplasma/genética , Activación Enzimática , Humanos , Mutación , Fenotipo , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas/genética , Relación Estructura-Actividad , Transcripción Genética
20.
Anal Biochem ; 433(2): 105-11, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23085117

RESUMEN

Western blots are used to specifically measure the relative quantities of proteins of interest in complex biological samples. Quantitative measurements can be subject to error due to process inconsistencies such as uneven protein transfer to the membrane. These non-sample-related variations need to be compensated for by an approach known as normalization. Two approaches to data normalization are commonly employed: housekeeping protein (HKP) normalization and total protein normalization (TPN). In this study, we evaluated the performance of Stain-Free technology as a novel TPN tool for Western blotting experiments in comparison with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a representative of the HKP normalization strategy. The target protein (TP) used for this study was MCM7, a DNA licensing replication factor, which was shown previously to be down-regulated by 20% in irradiated lymphoblastoid cell lines (LCLs). We studied the regulation of MCM7 with a multiplex Western blotting approach based on fluorescently labeled secondary antibodies and found that Stain-Free technology appears to be more reliable, more robust, and more sensitive to small effects of protein regulation when compared with HKP normalization with GAPDH. Stain-Free technology offers the additional advantages of providing checkpoints throughout the Western blotting process by allowing rapid visualization of gel separation and protein transfer.


Asunto(s)
Western Blotting/métodos , Proteínas de Ciclo Celular/química , Proteínas de Unión al ADN/química , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/química , Proteínas Nucleares/química , Western Blotting/normas , Proteínas de Ciclo Celular/análisis , Línea Celular Tumoral , Proteínas de Unión al ADN/análisis , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/análisis , Humanos , Componente 7 del Complejo de Mantenimiento de Minicromosoma , Proteínas Nucleares/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA