Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.902
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 182(3): 770-785.e16, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32634377

RESUMEN

Heterotrimeric G-proteins (Gαßγ) are the main transducers of signals from GPCRs, mediating the action of countless natural stimuli and therapeutic agents. However, there are currently no robust approaches to directly measure the activity of endogenous G-proteins in cells. Here, we describe a suite of optical biosensors that detect endogenous active G-proteins with sub-second resolution in live cells. Using a modular design principle, we developed genetically encoded, unimolecular biosensors for endogenous Gα-GTP and free Gßγ: the two active species of heterotrimeric G-proteins. This design was leveraged to generate biosensors with specificity for different heterotrimeric G-proteins or for other G-proteins, such as Rho GTPases. Versatility was further validated by implementing the biosensors in multiple contexts, from characterizing cancer-associated G-protein mutants to neurotransmitter signaling in primary neurons. Overall, the versatile biosensor design introduced here enables studying the activity of endogenous G-proteins in live cells with high fidelity, temporal resolution, and convenience.


Asunto(s)
Transferencia de Energía por Resonancia de Bioluminiscencia/instrumentación , Transferencia de Energía por Resonancia de Bioluminiscencia/métodos , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Guanosina Trifosfato/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Secuencias de Aminoácidos , Animales , Células Cultivadas , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Guanosina Trifosfato/química , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Mutación , Neoplasias/genética , Neoplasias/metabolismo , Neuronas/química , Neuronas/metabolismo , Neuronas/fisiología , Transducción de Señal , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo
2.
Nat Rev Mol Cell Biol ; 22(12): 777-795, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34408299

RESUMEN

Microtubule dynamics and their control are essential for the normal function and division of all eukaryotic cells. This plethora of functions is, in large part, supported by dynamic microtubule tips, which can bind to various intracellular targets, generate mechanical forces and couple with actin microfilaments. Here, we review progress in the understanding of microtubule assembly and dynamics, focusing on new information about the structure of microtubule tips. First, we discuss evidence for the widely accepted GTP cap model of microtubule dynamics. Next, we address microtubule dynamic instability in the context of structural information about assembly intermediates at microtubule tips. Three currently discussed models of microtubule assembly and dynamics are reviewed. These are considered in the context of established facts and recent data, which suggest that some long-held views must be re-evaluated. Finally, we review structural observations about the tips of microtubules in cells and describe their implications for understanding the mechanisms of microtubule regulation by associated proteins, by mechanical forces and by microtubule-targeting drugs, prominently including cancer chemotherapeutics.


Asunto(s)
Microtúbulos/fisiología , Citoesqueleto de Actina/metabolismo , Animales , Fenómenos Biomecánicos , Guanosina Trifosfato/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/química , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Modelos Biológicos , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacología
3.
Cell ; 173(5): 1254-1264.e11, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29628140

RESUMEN

The single most frequent cancer-causing mutation across all heterotrimeric G proteins is R201C in Gαs. The current model explaining the gain-of-function activity of the R201 mutations is through the loss of GTPase activity and resulting inability to switch off to the GDP state. Here, we find that the R201C mutation can bypass the need for GTP binding by directly activating GDP-bound Gαs through stabilization of an intramolecular hydrogen bond network. Having found that a gain-of-function mutation can convert GDP into an activator, we postulated that a reciprocal mutation might disrupt the normal role of GTP. Indeed, we found R228C, a loss-of-function mutation in Gαs that causes pseudohypoparathyroidism type 1a (PHP-Ia), compromised the adenylyl cyclase-activating activity of Gαs bound to a non-hydrolyzable GTP analog. These findings show that disease-causing mutations in Gαs can subvert the canonical roles of GDP and GTP, providing new insights into the regulation mechanism of G proteins.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Adenilil Ciclasas/química , Adenilil Ciclasas/metabolismo , Cristalografía por Rayos X , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Humanos , Enlace de Hidrógeno , Mutagénesis Sitio-Dirigida , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
4.
Mol Cell ; 84(15): 2807-2821, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39025071

RESUMEN

RAS proteins are conserved guanosine triphosphate (GTP) hydrolases (GTPases) that act as molecular binary switches and play vital roles in numerous cellular processes. Upon GTP binding, RAS GTPases adopt an active conformation and interact with specific proteins termed RAS effectors that contain a conserved ubiquitin-like domain, thereby facilitating downstream signaling. Over 50 effector proteins have been identified in the human proteome, and many have been studied as potential mediators of RAS-dependent signaling pathways. Biochemical and structural analyses have provided mechanistic insights into these effectors, and studies using model organisms have complemented our understanding of their role in physiology and disease. Yet, many critical aspects regarding the dynamics and biological function of RAS-effector complexes remain to be elucidated. In this review, we discuss the mechanisms and functions of known RAS effector proteins, provide structural perspectives on RAS-effector interactions, evaluate their significance in RAS-mediated signaling, and explore their potential as therapeutic targets.


Asunto(s)
Transducción de Señal , Proteínas ras , Humanos , Proteínas ras/metabolismo , Proteínas ras/química , Animales , Unión Proteica , Modelos Moleculares , Relación Estructura-Actividad , Conformación Proteica , Guanosina Trifosfato/metabolismo
5.
Cell ; 167(3): 739-749.e11, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27720449

RESUMEN

G protein-coupled receptor (GPCR) signaling, mediated by hetero-trimeric G proteins, can be differentially controlled by agonists. At a molecular level, this is thought to occur principally via stabilization of distinct receptor conformations by individual ligands. These distinct conformations control subsequent recruitment of transducer and effector proteins. Here, we report that ligand efficacy at the calcitonin GPCR (CTR) is also correlated with ligand-dependent alterations to G protein conformation. We observe ligand-dependent differences in the sensitivity of the G protein ternary complex to disruption by GTP, due to conformational differences in the receptor-bound G protein hetero-trimer. This results in divergent agonist-dependent receptor-residency times for the hetero-trimeric G protein and different accumulation rates for downstream second messengers. This study demonstrates that factors influencing efficacy extend beyond receptor conformation(s) and expands understanding of the molecular basis for how G proteins control/influence efficacy. This has important implications for the mechanisms that underlie ligand-mediated biased agonism. VIDEO ABSTRACT.


Asunto(s)
Proteínas de Unión al GTP/química , Guanosina Trifosfato/farmacología , Receptores de Calcitonina/agonistas , Receptores de Calcitonina/química , Adenosina Difosfato/biosíntesis , Animales , Células COS , Chlorocebus aethiops , Proteínas de Unión al GTP/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Ligandos , Conformación Proteica , Multimerización de Proteína , Receptores de Calcitonina/metabolismo
6.
Mol Cell ; 83(14): 2540-2558.e12, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37390816

RESUMEN

G-protein-coupled receptors (GPCRs) mediate neuromodulation through the activation of heterotrimeric G proteins (Gαßγ). Classical models depict that G protein activation leads to a one-to-one formation of Gα-GTP and Gßγ species. Each of these species propagates signaling by independently acting on effectors, but the mechanisms by which response fidelity is ensured by coordinating Gα and Gßγ responses remain unknown. Here, we reveal a paradigm of G protein regulation whereby the neuronal protein GINIP (Gα inhibitory interacting protein) biases inhibitory GPCR responses to favor Gßγ over Gα signaling. Tight binding of GINIP to Gαi-GTP precludes its association with effectors (adenylyl cyclase) and, simultaneously, with regulator-of-G-protein-signaling (RGS) proteins that accelerate deactivation. As a consequence, Gαi-GTP signaling is dampened, whereas Gßγ signaling is enhanced. We show that this mechanism is essential to prevent the imbalances of neurotransmission that underlie increased seizure susceptibility in mice. Our findings reveal an additional layer of regulation within a quintessential mechanism of signal transduction that sets the tone of neurotransmission.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP , Proteínas de Unión al GTP Heterotriméricas , Ratones , Animales , Subunidades de Proteína/metabolismo , Transducción de Señal/fisiología , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Guanosina Trifosfato , Subunidades beta de la Proteína de Unión al GTP/genética
7.
Mol Cell ; 83(17): 3108-3122.e13, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37597513

RESUMEN

General protein folding is mediated by chaperones that utilize ATP hydrolysis to regulate client binding and release. Zinc-finger protein 1 (Zpr1) is an essential ATP-independent chaperone dedicated to the biogenesis of eukaryotic translation elongation factor 1A (eEF1A), a highly abundant GTP-binding protein. How Zpr1-mediated folding is regulated to ensure rapid Zpr1 recycling remains an unanswered question. Here, we use yeast genetics and microscopy analysis, biochemical reconstitution, and structural modeling to reveal that folding of eEF1A by Zpr1 requires GTP hydrolysis. Furthermore, we identify the highly conserved altered inheritance of mitochondria 29 (Aim29) protein as a Zpr1 co-chaperone that recognizes eEF1A in the GTP-bound, pre-hydrolysis conformation. This interaction dampens Zpr1⋅eEF1A GTPase activity and facilitates client exit from the folding cycle. Our work reveals that a bespoke ATP-independent chaperone system has mechanistic similarity to ATPase chaperones but unexpectedly relies on client GTP hydrolysis to regulate the chaperone-client interaction.


Asunto(s)
Proteínas Portadoras , GTP Fosfohidrolasas , Chaperonas Moleculares , Factores de Elongación de Péptidos , Proteínas de Saccharomyces cerevisiae , Humanos , Adenosina Trifosfato , GTP Fosfohidrolasas/genética , Guanosina Trifosfato , Chaperonas Moleculares/genética , Factores de Elongación de Péptidos/metabolismo , Saccharomyces cerevisiae , Proteínas Portadoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Pliegue de Proteína
8.
Nature ; 629(8014): 1182-1191, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38480881

RESUMEN

G-protein-coupled receptors (GPCRs) activate heterotrimeric G proteins by stimulating guanine nucleotide exchange in the Gα subunit1. To visualize this mechanism, we developed a time-resolved cryo-EM approach that examines the progression of ensembles of pre-steady-state intermediates of a GPCR-G-protein complex. By monitoring the transitions of the stimulatory Gs protein in complex with the ß2-adrenergic receptor at short sequential time points after GTP addition, we identified the conformational trajectory underlying G-protein activation and functional dissociation from the receptor. Twenty structures generated from sequential overlapping particle subsets along this trajectory, compared to control structures, provide a high-resolution description of the order of main events driving G-protein activation in response to GTP binding. Structural changes propagate from the nucleotide-binding pocket and extend through the GTPase domain, enacting alterations to Gα switch regions and the α5 helix that weaken the G-protein-receptor interface. Molecular dynamics simulations with late structures in the cryo-EM trajectory support that enhanced ordering of GTP on closure of the α-helical domain against the nucleotide-bound Ras-homology domain correlates with α5 helix destabilization and eventual dissociation of the G protein from the GPCR. These findings also highlight the potential of time-resolved cryo-EM as a tool for mechanistic dissection of GPCR signalling events.


Asunto(s)
Microscopía por Crioelectrón , Subunidades alfa de la Proteína de Unión al GTP Gs , Receptores Adrenérgicos beta 2 , Humanos , Sitios de Unión , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Subunidades alfa de la Proteína de Unión al GTP Gs/efectos de los fármacos , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/ultraestructura , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/farmacología , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/ultraestructura , Factores de Tiempo , Activación Enzimática/efectos de los fármacos , Dominios Proteicos , Estructura Secundaria de Proteína , Transducción de Señal/efectos de los fármacos
9.
Nature ; 627(8002): 212-220, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38355801

RESUMEN

Circular RNAs (circRNAs), which are increasingly being implicated in a variety of functions in normal and cancerous cells1-5, are formed by back-splicing of precursor mRNAs in the nucleus6-10. circRNAs are predominantly localized in the cytoplasm, indicating that they must be exported from the nucleus. Here we identify a pathway that is specific for the nuclear export of circular RNA. This pathway requires Ran-GTP, exportin-2 and IGF2BP1. Enhancing the nuclear Ran-GTP gradient by depletion or chemical inhibition of the major protein exporter CRM1 selectively increases the nuclear export of circRNAs, while reducing the nuclear Ran-GTP gradient selectively blocks circRNA export. Depletion or knockout of exportin-2 specifically inhibits nuclear export of circRNA. Analysis of nuclear circRNA-binding proteins reveals that interaction between IGF2BP1 and circRNA is enhanced by Ran-GTP. The formation of circRNA export complexes in the nucleus is promoted by Ran-GTP through its interactions with exportin-2, circRNA and IGF2BP1. Our findings demonstrate that adaptors such as IGF2BP1 that bind directly to circular RNAs recruit Ran-GTP and exportin-2 to export circRNAs in a mechanism that is analogous to protein export, rather than mRNA export.


Asunto(s)
Transporte Activo de Núcleo Celular , Núcleo Celular , Transporte de ARN , ARN Circular , Transporte Activo de Núcleo Celular/fisiología , Núcleo Celular/metabolismo , Guanosina Trifosfato/metabolismo , Carioferinas/antagonistas & inhibidores , Carioferinas/deficiencia , Carioferinas/genética , Carioferinas/metabolismo , Proteínas Nucleares/metabolismo , Proteína de Unión al GTP ran/metabolismo , ARN Circular/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteína Exportina 1/metabolismo , Transporte de Proteínas
10.
Nature ; 629(8013): 919-926, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38589574

RESUMEN

RAS oncogenes (collectively NRAS, HRAS and especially KRAS) are among the most frequently mutated genes in cancer, with common driver mutations occurring at codons 12, 13 and 611. Small molecule inhibitors of the KRAS(G12C) oncoprotein have demonstrated clinical efficacy in patients with multiple cancer types and have led to regulatory approvals for the treatment of non-small cell lung cancer2,3. Nevertheless, KRASG12C mutations account for only around 15% of KRAS-mutated cancers4,5, and there are no approved KRAS inhibitors for the majority of patients with tumours containing other common KRAS mutations. Here we describe RMC-7977, a reversible, tri-complex RAS inhibitor with broad-spectrum activity for the active state of both mutant and wild-type KRAS, NRAS and HRAS variants (a RAS(ON) multi-selective inhibitor). Preclinically, RMC-7977 demonstrated potent activity against RAS-addicted tumours carrying various RAS genotypes, particularly against cancer models with KRAS codon 12 mutations (KRASG12X). Treatment with RMC-7977 led to tumour regression and was well tolerated in diverse RAS-addicted preclinical cancer models. Additionally, RMC-7977 inhibited the growth of KRASG12C cancer models that are resistant to KRAS(G12C) inhibitors owing to restoration of RAS pathway signalling. Thus, RAS(ON) multi-selective inhibitors can target multiple oncogenic and wild-type RAS isoforms and have the potential to treat a wide range of RAS-addicted cancers with high unmet clinical need. A related RAS(ON) multi-selective inhibitor, RMC-6236, is currently under clinical evaluation in patients with KRAS-mutant solid tumours (ClinicalTrials.gov identifier: NCT05379985).


Asunto(s)
Antineoplásicos , Mutación , Neoplasias , Proteína Oncogénica p21(ras) , Proteínas Proto-Oncogénicas p21(ras) , Animales , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Guanosina Trifosfato/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Proteína Oncogénica p21(ras)/antagonistas & inhibidores , Proteína Oncogénica p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Nature ; 629(8013): 927-936, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38588697

RESUMEN

Broad-spectrum RAS inhibition has the potential to benefit roughly a quarter of human patients with cancer whose tumours are driven by RAS mutations1,2. RMC-7977 is a highly selective inhibitor of the active GTP-bound forms of KRAS, HRAS and NRAS, with affinity for both mutant and wild-type variants3. More than 90% of cases of human pancreatic ductal adenocarcinoma (PDAC) are driven by activating mutations in KRAS4. Here we assessed the therapeutic potential of RMC-7977 in a comprehensive range of PDAC models. We observed broad and pronounced anti-tumour activity across models following direct RAS inhibition at exposures that were well-tolerated in vivo. Pharmacological analyses revealed divergent responses to RMC-7977 in tumour versus normal tissues. Treated tumours exhibited waves of apoptosis along with sustained proliferative arrest, whereas normal tissues underwent only transient decreases in proliferation, with no evidence of apoptosis. In the autochthonous KPC mouse model, RMC-7977 treatment resulted in a profound extension of survival followed by on-treatment relapse. Analysis of relapsed tumours identified Myc copy number gain as a prevalent candidate resistance mechanism, which could be overcome by combinatorial TEAD inhibition in vitro. Together, these data establish a strong preclinical rationale for the use of broad-spectrum RAS-GTP inhibition in the setting of PDAC and identify a promising candidate combination therapeutic regimen to overcome monotherapy resistance.


Asunto(s)
Antineoplásicos , Carcinoma Ductal Pancreático , Guanosina Trifosfato , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas p21(ras) , Animales , Femenino , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Variaciones en el Número de Copia de ADN , Resistencia a Antineoplásicos/efectos de los fármacos , Genes myc , Guanosina Trifosfato/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto , Mutación
12.
Mol Cell ; 82(5): 950-968.e14, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35202574

RESUMEN

A unifying feature of the RAS superfamily is a conserved GTPase cycle by which these proteins transition between active and inactive states. We demonstrate that autophosphorylation of some GTPases is an intrinsic regulatory mechanism that reduces nucleotide hydrolysis and enhances nucleotide exchange, altering the on/off switch that forms the basis for their signaling functions. Using X-ray crystallography, nuclear magnetic resonance spectroscopy, binding assays, and molecular dynamics on autophosphorylated mutants of H-RAS and K-RAS, we show that phosphoryl transfer from GTP requires dynamic movement of the switch II region and that autophosphorylation promotes nucleotide exchange by opening the active site and extracting the stabilizing Mg2+. Finally, we demonstrate that autophosphorylated K-RAS exhibits altered effector interactions, including a reduced affinity for RAF proteins in mammalian cells. Thus, autophosphorylation leads to altered active site dynamics and effector interaction properties, creating a pool of GTPases that are functionally distinct from their non-phosphorylated counterparts.


Asunto(s)
GTP Fosfohidrolasas , Transducción de Señal , Animales , Cristalografía por Rayos X , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Guanosina Trifosfato/metabolismo , Mamíferos/metabolismo , Nucleótidos , Proteínas
13.
Mol Cell ; 82(13): 2443-2457.e7, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35613620

RESUMEN

RAF protein kinases are effectors of the GTP-bound form of small guanosine triphosphatase RAS and function by phosphorylating MEK. We showed here that the expression of ARAF activated RAS in a kinase-independent manner. Binding of ARAF to RAS displaced the GTPase-activating protein NF1 and antagonized NF1-mediated inhibition of RAS. This reduced ERK-dependent inhibition of RAS and increased RAS-GTP. By this mechanism, ARAF regulated the duration and consequences of RTK-induced RAS activation and supported the RAS output of RTK-dependent tumor cells. In human lung cancers with EGFR mutation, amplification of ARAF was associated with acquired resistance to EGFR inhibitors, which was overcome by combining EGFR inhibitors with an inhibitor of the protein tyrosine phosphatase SHP2 to enhance inhibition of nucleotide exchange and RAS activation.


Asunto(s)
Neurofibromina 1 , Proteínas Proto-Oncogénicas A-raf , Proteínas Activadoras de ras GTPasa , Receptores ErbB/genética , Receptores ErbB/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Neurofibromina 1/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas A-raf/metabolismo , Transducción de Señal , Proteínas Activadoras de ras GTPasa/metabolismo
14.
Annu Rev Biochem ; 83: 779-812, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24499181

RESUMEN

In eukaryotes, the translation initiation codon is generally identified by the scanning mechanism, wherein every triplet in the messenger RNA leader is inspected for complementarity to the anticodon of methionyl initiator transfer RNA (Met-tRNAi). Binding of Met-tRNAi to the small (40S) ribosomal subunit, in a ternary complex (TC) with eIF2-GTP, is stimulated by eukaryotic initiation factor 1 (eIF1), eIF1A, eIF3, and eIF5, and the resulting preinitiation complex (PIC) joins the 5' end of mRNA preactivated by eIF4F and poly(A)-binding protein. RNA helicases remove secondary structures that impede ribosome attachment and subsequent scanning. Hydrolysis of eIF2-bound GTP is stimulated by eIF5 in the scanning PIC, but completion of the reaction is impeded at non-AUG triplets. Although eIF1 and eIF1A promote scanning, eIF1 and possibly the C-terminal tail of eIF1A must be displaced from the P decoding site to permit base-pairing between Met-tRNAi and the AUG codon, as well as to allow subsequent phosphate release from eIF2-GDP. A second GTPase, eIF5B, catalyzes the joining of the 60S subunit to produce an 80S initiation complex that is competent for elongation.


Asunto(s)
Factor 1 Eucariótico de Iniciación/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , Factor 5 Eucariótico de Iniciación/metabolismo , ARN de Transferencia de Metionina/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Animales , Emparejamiento Base , Sitios de Unión , Codón Iniciador , Guanosina Trifosfato/química , Humanos , Hidrólisis , Metionina/química , Unión Proteica , ARN Helicasas/química , Ribosomas/química , Tetrahymena
15.
Cell ; 157(5): 1008-10, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24855939

RESUMEN

In this issue, Alushin et al. report high-resolution structures of three states of the microtubule lattice: GTP-bound, which is stable to depolymerization; unstable GDP-bound; and stable Taxol and GDP-bound. By comparing these structures at near-atomic resolution, they are able to propose a detailed model for how GTP hydrolysis destabilizes the microtubule and thus powers dynamic instability and chromosome movement. Destabilization of cytoskeleton filaments by nucleotide hydrolysis is an important general principle in cell dynamics, and this work represents a major step forward on a problem with a long history.


Asunto(s)
Guanosina Trifosfato/metabolismo , Microtúbulos/química , Tubulina (Proteína)/química , Animales , Humanos
16.
Cell ; 157(5): 1117-29, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24855948

RESUMEN

Dynamic instability, the stochastic switching between growth and shrinkage, is essential for microtubule function. This behavior is driven by GTP hydrolysis in the microtubule lattice and is inhibited by anticancer agents like Taxol. We provide insight into the mechanism of dynamic instability, based on high-resolution cryo-EM structures (4.7-5.6 Å) of dynamic microtubules and microtubules stabilized by GMPCPP or Taxol. We infer that hydrolysis leads to a compaction around the E-site nucleotide at longitudinal interfaces, as well as movement of the α-tubulin intermediate domain and H7 helix. Displacement of the C-terminal helices in both α- and ß-tubulin subunits suggests an effect on interactions with binding partners that contact this region. Taxol inhibits most of these conformational changes, allosterically inducing a GMPCPP-like state. Lateral interactions are similar in all conditions we examined, suggesting that microtubule lattice stability is primarily modulated at longitudinal interfaces.


Asunto(s)
Guanosina Trifosfato/metabolismo , Microtúbulos/química , Tubulina (Proteína)/química , Animales , Microscopía por Crioelectrón , Cristalografía por Rayos X , Guanosina Trifosfato/análogos & derivados , Humanos , Hidrólisis , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Modelos Moleculares , Paclitaxel/metabolismo , Conformación Proteica , Tubulina (Proteína)/metabolismo
17.
Nature ; 614(7946): 160-167, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36697828

RESUMEN

The dynamic ribosome-translocon complex, which resides at the endoplasmic reticulum (ER) membrane, produces a major fraction of the human proteome1,2. It governs the synthesis, translocation, membrane insertion, N-glycosylation, folding and disulfide-bond formation of nascent proteins. Although individual components of this machinery have been studied at high resolution in isolation3-7, insights into their interplay in the native membrane remain limited. Here we use cryo-electron tomography, extensive classification and molecular modelling to capture snapshots of mRNA translation and protein maturation at the ER membrane at molecular resolution. We identify a highly abundant classical pre-translocation intermediate with eukaryotic elongation factor 1a (eEF1a) in an extended conformation, suggesting that eEF1a may remain associated with the ribosome after GTP hydrolysis during proofreading. At the ER membrane, distinct polysomes bind to different ER translocons specialized in the synthesis of proteins with signal peptides or multipass transmembrane proteins with the translocon-associated protein complex (TRAP) present in both. The near-complete atomic model of the most abundant ER translocon variant comprising the protein-conducting channel SEC61, TRAP and the oligosaccharyltransferase complex A (OSTA) reveals specific interactions of TRAP with other translocon components. We observe stoichiometric and sub-stoichiometric cofactors associated with OSTA, which are likely to include protein isomerases. In sum, we visualize ER-bound polysomes with their coordinated downstream machinery.


Asunto(s)
Retículo Endoplásmico , Membranas Intracelulares , Biosíntesis de Proteínas , Humanos , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Señales de Clasificación de Proteína , Transporte de Proteínas , Ribosomas/metabolismo , Canales de Translocación SEC/metabolismo , Membranas Intracelulares/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor 1 de Elongación Peptídica/metabolismo , Guanosina Trifosfato/metabolismo , Complejos Multiproteicos/metabolismo
18.
Nature ; 614(7949): 781-787, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36725929

RESUMEN

The SARS-CoV-2 RNA-dependent RNA polymerase coordinates viral RNA synthesis as part of an assembly known as the replication-transcription complex (RTC)1. Accordingly, the RTC is a target for clinically approved antiviral nucleoside analogues, including remdesivir2. Faithful synthesis of viral RNAs by the RTC requires recognition of the correct nucleotide triphosphate (NTP) for incorporation into the nascent RNA. To be effective inhibitors, antiviral nucleoside analogues must compete with the natural NTPs for incorporation. How the SARS-CoV-2 RTC discriminates between the natural NTPs, and how antiviral nucleoside analogues compete, has not been discerned in detail. Here, we use cryogenic-electron microscopy to visualize the RTC bound to each of the natural NTPs in states poised for incorporation. Furthermore, we investigate the RTC with the active metabolite of remdesivir, remdesivir triphosphate (RDV-TP), highlighting the structural basis for the selective incorporation of RDV-TP over its natural counterpart adenosine triphosphate3,4. Our results explain the suite of interactions required for NTP recognition, informing the rational design of antivirals. Our analysis also yields insights into nucleotide recognition by the nsp12 NiRAN (nidovirus RdRp-associated nucleotidyltransferase), an enigmatic catalytic domain essential for viral propagation5. The NiRAN selectively binds guanosine triphosphate, strengthening proposals for the role of this domain in the formation of the 5' RNA cap6.


Asunto(s)
ARN Polimerasa Dependiente de ARN de Coronavirus , Microscopía por Crioelectrón , SARS-CoV-2 , Humanos , Antivirales/química , Antivirales/metabolismo , Antivirales/farmacología , ARN Polimerasa Dependiente de ARN de Coronavirus/química , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , ARN Polimerasa Dependiente de ARN de Coronavirus/ultraestructura , COVID-19/virología , Nucleósidos/metabolismo , Nucleósidos/farmacología , ARN Viral/biosíntesis , ARN Viral/química , ARN Viral/metabolismo , SARS-CoV-2/enzimología , Especificidad por Sustrato , Guanosina Trifosfato/metabolismo , Caperuzas de ARN
19.
Mol Cell ; 81(7): 1384-1396.e6, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33636126

RESUMEN

G proteins play a central role in signal transduction and pharmacology. Signaling is initiated by cell-surface receptors, which promote guanosine triphosphate (GTP) binding and dissociation of Gα from the Gßγ subunits. Structural studies have revealed the molecular basis of subunit association with receptors, RGS proteins, and downstream effectors. In contrast, the mechanism of subunit dissociation is poorly understood. We use cell signaling assays, molecular dynamics (MD) simulations, and biochemistry and structural analyses to identify a conserved network of amino acids that dictates subunit release. In the presence of the terminal phosphate of GTP, a glycine forms a polar network with an arginine and glutamate, putting torsional strain on the subunit binding interface. This "G-R-E motif" secures GTP and, through an allosteric link, discharges the Gßγ dimer. Replacement of network residues prevents subunit dissociation regardless of agonist or GTP binding. These findings reveal the molecular basis of the final committed step of G protein activation.


Asunto(s)
Guanosina Trifosfato , Proteínas de Unión al GTP Heterotriméricas , Simulación de Dinámica Molecular , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimología , Regulación Alostérica , Secuencias de Aminoácidos , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Células HEK293 , Proteínas de Unión al GTP Heterotriméricas/química , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Humanos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Mol Cell ; 81(22): 4622-4634.e8, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34551282

RESUMEN

AKT is a serine/threonine kinase that plays an important role in metabolism, cell growth, and cytoskeletal dynamics. AKT is activated by two kinases, PDK1 and mTORC2. Although the regulation of PDK1 is well understood, the mechanism that controls mTORC2 is unknown. Here, by investigating insulin receptor signaling in human cells and biochemical reconstitution, we found that insulin induces the activation of mTORC2 toward AKT by assembling a supercomplex with KRAS4B and RHOA GTPases, termed KARATE (KRAS4B-RHOA-mTORC2 Ensemble). Insulin-induced KARATE assembly is controlled via phosphorylation of GTP-bound KRAS4B at S181 and GDP-bound RHOA at S188 by protein kinase A. By developing a KARATE inhibitor, we demonstrate that KRAS4B-RHOA interaction drives KARATE formation. In adipocytes, KARATE controls insulin-dependent translocation of the glucose transporter GLUT4 to the plasma membrane for glucose uptake. Thus, our work reveals a fundamental mechanism that activates mTORC2 toward AKT in insulin-regulated glucose homeostasis.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/química , Glucosa/metabolismo , Insulina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/química , Proteína de Unión al GTP rhoA/química , Células 3T3-L1 , Adipocitos/citología , Animales , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Dictyostelium , Transportador de Glucosa de Tipo 4/metabolismo , Guanosina Difosfato/química , Guanosina Trifosfato/química , Células HEK293 , Humanos , Ratones , Fosforilación , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-akt/química , Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA