Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 629(8011): 458-466, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658765

RESUMEN

Heteroplasmy occurs when wild-type and mutant mitochondrial DNA (mtDNA) molecules co-exist in single cells1. Heteroplasmy levels change dynamically in development, disease and ageing2,3, but it is unclear whether these shifts are caused by selection or drift, and whether they occur at the level of cells or intracellularly. Here we investigate heteroplasmy dynamics in dividing cells by combining precise mtDNA base editing (DdCBE)4 with a new method, SCI-LITE (single-cell combinatorial indexing leveraged to interrogate targeted expression), which tracks single-cell heteroplasmy with ultra-high throughput. We engineered cells to have synonymous or nonsynonymous complex I mtDNA mutations and found that cell populations in standard culture conditions purge nonsynonymous mtDNA variants, whereas synonymous variants are maintained. This suggests that selection dominates over simple drift in shaping population heteroplasmy. We simultaneously tracked single-cell mtDNA heteroplasmy and ancestry, and found that, although the population heteroplasmy shifts, the heteroplasmy of individual cell lineages remains stable, arguing that selection acts at the level of cell fitness in dividing cells. Using these insights, we show that we can force cells to accumulate high levels of truncating complex I mtDNA heteroplasmy by placing them in environments where loss of biochemical complex I activity has been reported to benefit cell fitness. We conclude that in dividing cells, a given nonsynonymous mtDNA heteroplasmy can be harmful, neutral or even beneficial to cell fitness, but that the 'sign' of the effect is wholly dependent on the environment.


Asunto(s)
División Celular , Linaje de la Célula , ADN Mitocondrial , Aptitud Genética , Heteroplasmia , Selección Genética , Análisis de la Célula Individual , Animales , Femenino , Humanos , Ratones , División Celular/genética , Línea Celular , Linaje de la Célula/genética , ADN Mitocondrial/genética , Edición Génica , Heteroplasmia/genética , Mitocondrias/genética , Mutación , Análisis de la Célula Individual/métodos
2.
Nature ; 620(7975): 839-848, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37587338

RESUMEN

Mitochondrial DNA (mtDNA) is a maternally inherited, high-copy-number genome required for oxidative phosphorylation1. Heteroplasmy refers to the presence of a mixture of mtDNA alleles in an individual and has been associated with disease and ageing. Mechanisms underlying common variation in human heteroplasmy, and the influence of the nuclear genome on this variation, remain insufficiently explored. Here we quantify mtDNA copy number (mtCN) and heteroplasmy using blood-derived whole-genome sequences from 274,832 individuals and perform genome-wide association studies to identify associated nuclear loci. Following blood cell composition correction, we find that mtCN declines linearly with age and is associated with variants at 92 nuclear loci. We observe that nearly everyone harbours heteroplasmic mtDNA variants obeying two principles: (1) heteroplasmic single nucleotide variants tend to arise somatically and accumulate sharply after the age of 70 years, whereas (2) heteroplasmic indels are maternally inherited as mixtures with relative levels associated with 42 nuclear loci involved in mtDNA replication, maintenance and novel pathways. These loci may act by conferring a replicative advantage to certain mtDNA alleles. As an illustrative example, we identify a length variant carried by more than 50% of humans at position chrM:302 within a G-quadruplex previously proposed to mediate mtDNA transcription/replication switching2,3. We find that this variant exerts cis-acting genetic control over mtDNA abundance and is itself associated in-trans with nuclear loci encoding machinery for this regulatory switch. Our study suggests that common variation in the nuclear genome can shape variation in mtCN and heteroplasmy dynamics across the human population.


Asunto(s)
Núcleo Celular , Variaciones en el Número de Copia de ADN , ADN Mitocondrial , Heteroplasmia , Mitocondrias , Anciano , Humanos , Variaciones en el Número de Copia de ADN/genética , ADN Mitocondrial/genética , Estudio de Asociación del Genoma Completo , Heteroplasmia/genética , Mitocondrias/genética , Núcleo Celular/genética , Alelos , Polimorfismo de Nucleótido Simple , Mutación INDEL , G-Cuádruplex
3.
Nucleic Acids Res ; 51(8): e48, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36999592

RESUMEN

The ontogeny and dynamics of mtDNA heteroplasmy remain unclear due to limitations of current mtDNA sequencing methods. We developed individual Mitochondrial Genome sequencing (iMiGseq) of full-length mtDNA for ultra-sensitive variant detection, complete haplotyping, and unbiased evaluation of heteroplasmy levels, all at the individual mtDNA molecule level. iMiGseq uncovered unappreciated levels of heteroplasmic variants in single cells well below the conventional NGS detection limit and provided accurate quantitation of heteroplasmy level. iMiGseq resolved the complete haplotype of individual mtDNA in single oocytes and revealed genetic linkage of de novo mutations. iMiGseq detected sequential acquisition of detrimental mutations, including large deletions, in defective mtDNA in NARP/Leigh syndrome patient-derived induced pluripotent stem cells. iMiGseq identified unintended heteroplasmy shifts in mitoTALEN editing, while showing no appreciable level of unintended mutations in DdCBE-mediated mtDNA base editing. Therefore, iMiGseq could not only help elucidate the mitochondrial etiology of diseases, but also evaluate the safety of various mtDNA editing strategies.


Asunto(s)
ADN Mitocondrial , Genoma Mitocondrial , ADN Mitocondrial/genética , Heteroplasmia/genética , Genoma Mitocondrial/genética , Mitocondrias/genética , Mutación
4.
BMC Biol ; 22(1): 162, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075589

RESUMEN

BACKGROUND: Mitochondrial (mt) heteroplasmy can cause adverse biological consequences when deleterious mtDNA mutations accumulate disrupting "normal" mt-driven processes and cellular functions. To investigate the heteroplasmy of such mtDNA changes, we developed a moderate throughput mt isolation procedure to quantify the mt single-nucleotide variant (SNV) landscape in individual mouse neurons and astrocytes. In this study, we amplified mt-genomes from 1645 single mitochondria isolated from mouse single astrocytes and neurons to (1) determine the distribution and proportion of mt-SNVs as well as mutation pattern in specific target regions across the mt-genome, (2) assess differences in mtDNA SNVs between neurons and astrocytes, and (3) study co-segregation of variants in the mouse mtDNA. RESULTS: (1) The data show that specific sites of the mt-genome are permissive to SNV presentation while others appear to be under stringent purifying selection. Nested hierarchical analysis at the levels of mitochondrion, cell, and mouse reveals distinct patterns of inter- and intra-cellular variation for mt-SNVs at different sites. (2) Further, differences in the SNV incidence were observed between mouse neurons and astrocytes for two mt-SNV 9027:G > A and 9419:C > T showing variation in the mutational propensity between these cell types. Purifying selection was observed in neurons as shown by the Ka/Ks statistic, suggesting that neurons are under stronger evolutionary constraint as compared to astrocytes. (3) Intriguingly, these data show strong linkage between the SNV sites at nucleotide positions 9027 and 9461. CONCLUSIONS: This study suggests that segregation as well as clonal expansion of mt-SNVs is specific to individual genomic loci, which is important foundational data in understanding of heteroplasmy and disease thresholds for mutation of pathogenic variants.


Asunto(s)
Astrocitos , Mutación , Neuronas , Animales , Astrocitos/metabolismo , Ratones , Neuronas/metabolismo , Heteroplasmia/genética , ADN Mitocondrial/genética , Mitocondrias/genética , Análisis de Secuencia de ADN/métodos
5.
BMC Genomics ; 25(1): 596, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872121

RESUMEN

Molluscan mitochondrial genomes are unusual because they show wide variation in size, radical genome rearrangements and frequently show high variation (> 10%) within species. As progress in understanding this variation has been limited, we used whole genome sequencing of a six-generation matriline of the terrestrial snail Cepaea nemoralis, as well as whole genome sequences from wild-collected C. nemoralis, the sister species C. hortensis, and multiple other snail species to explore the origins of mitochondrial DNA (mtDNA) variation. The main finding is that a high rate of SNP heteroplasmy in somatic tissue was negatively correlated with mtDNA copy number in both Cepaea species. In individuals with under ten mtDNA copies per nuclear genome, more than 10% of all positions were heteroplasmic, with evidence for transmission of this heteroplasmy through the germline. Further analyses showed evidence for purifying selection acting on non-synonymous mutations, even at low frequency of the rare allele, especially in cytochrome oxidase subunit 1 and cytochrome b. The mtDNA of some individuals of Cepaea nemoralis contained a length heteroplasmy, including up to 12 direct repeat copies of tRNA-Val, with 24 copies in another snail, Candidula rugosiuscula, and repeats of tRNA-Thr in C. hortensis. These repeats likely arise due to error prone replication but are not correlated with mitochondrial copy number in C. nemoralis. Overall, the findings provide key insights into mechanisms of replication, mutation and evolution in molluscan mtDNA, and so will inform wider studies on the biology and evolution of mtDNA across animal phyla.


Asunto(s)
Variaciones en el Número de Copia de ADN , ADN Mitocondrial , Genoma Mitocondrial , Heteroplasmia , Mutación , Selección Genética , Caracoles , Animales , Caracoles/genética , ADN Mitocondrial/genética , Heteroplasmia/genética , Polimorfismo de Nucleótido Simple
6.
Int J Obes (Lond) ; 48(8): 1140-1147, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38802661

RESUMEN

BACKGROUND: Mitochondrial heteroplasmy reflects genetic diversity within individuals due to the presence of varying mitochondrial DNA (mtDNA) sequences, possibly affecting mitochondrial function and energy production in cells. Rapid growth during early childhood is a critical development with long-term implications for health and well-being. In this study, we investigated if cord blood mtDNA heteroplasmy is associated with rapid growth at 6 and 12 months and overweight in childhood at 4-6 years. METHODS: This study included 200 mother-child pairs of the ENVIRONAGE birth cohort. Whole mitochondrial genome sequencing was performed to determine mtDNA heteroplasmy levels (in variant allele frequency; VAF) in cord blood. Rapid growth was defined for each child as the difference between WHO-SD scores of predicted weight at either 6 or 12 months and birth weight. Logistic regression models were used to determine the association of mitochondrial heteroplasmy with rapid growth and childhood overweight. Determinants of relevant cord blood mitochondrial heteroplasmies were identified using multiple linear regression models. RESULTS: One % increase in VAF of cord blood MT-D-Loop16362T > C heteroplasmy was associated with rapid growth at 6 months (OR = 1.03; 95% CI: 1.01-1.05; p = 0.001) and 12 months (OR = 1.02; 95% CI: 1.00-1.03; p = 0.02). Furthermore, this variant was associated with childhood overweight at 4-6 years (OR = 1.01; 95% CI 1.00-1.02; p = 0.05). Additionally, rapid growth at 6 months (OR = 3.00; 95% CI: 1.49-6.14; p = 0.002) and 12 months (OR = 4.05; 95% CI: 2.06-8.49; p < 0.001) was also associated with childhood overweight at 4-6 years. Furthermore, we identified maternal age, pre-pregnancy BMI, maternal education, parity, and gestational age as determinants of cord blood MT-D-Loop16362T > C heteroplasmy. CONCLUSIONS: Our findings, based on mitochondrial DNA genotyping, offer insights into the molecular machinery leading to rapid growth in early life, potentially explaining a working mechanism of the development toward childhood overweight.


Asunto(s)
ADN Mitocondrial , Heteroplasmia , Humanos , Femenino , ADN Mitocondrial/genética , Masculino , Recién Nacido , Lactante , Preescolar , Heteroplasmia/genética , Sangre Fetal/química , Obesidad Infantil/genética , Niño , Mitocondrias/genética , Sobrepeso/genética , Adulto
7.
J Inherit Metab Dis ; 47(4): 757-765, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38499449

RESUMEN

T cells have been shown to maintain a lower percentage (heteroplasmy) of the pathogenic m.3243A>G variant (MT-TL1, associated with maternally inherited diabetes and deafness [MIDD] and mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes [MELAS]). The mechanism(s) underlying this purifying selection, however, remain unknown. Here we report that purified patient memory CD4+ T cells have lower bulk m.3243A>G heteroplasmy compared to naïve CD4+ T cells. In vitro activation of naïve CD4+ m.3243A>G patient T cells results in lower bulk m.3243A>G heteroplasmy after proliferation. Finally, m.3243A>G patient T cell receptor repertoire sequencing reveals relative oligoclonality compared to controls. These data support a role for T cell activation in peripheral, purifying selection against high m.3243A>G heteroplasmy T cells at the level of the cell, in a likely cell-autonomous fashion.


Asunto(s)
Activación de Linfocitos , Síndrome MELAS , Humanos , Síndrome MELAS/genética , Linfocitos T CD4-Positivos/inmunología , Heteroplasmia/genética , ARN de Transferencia de Leucina/genética , Masculino , Femenino , ADN Mitocondrial/genética , Adulto
8.
Cell Mol Neurobiol ; 42(1): 99-107, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34117968

RESUMEN

Mitochondrial DNA (mtDNA) heteroplasmy is the dynamically determined co-expression of wild type (WT) inherited polymorphisms and collective time-dependent somatic mutations within individual mtDNA genomes. The temporal expression and distribution of cell-specific and tissue-specific mtDNA heteroplasmy in healthy individuals may be functionally associated with intracellular mitochondrial signaling pathways and nuclear DNA gene expression. The maintenance of endogenously regulated tissue-specific copy numbers of heteroplasmic mtDNA may represent a sensitive biomarker of homeostasis of mitochondrial dynamics, metabolic integrity, and immune competence. Myeloid cells, monocytes, macrophages, and antigen-presenting dendritic cells undergo programmed changes in mitochondrial metabolism according to innate and adaptive immunological processes. In the central nervous system (CNS), the polarization of activated microglial cells is dependent on strategically programmed changes in mitochondrial function. Therefore, variations in heteroplasmic mtDNA copy numbers may have functional consequences in metabolically competent mitochondria in innate and adaptive immune processes involving the CNS. Recently, altered mitochondrial function has been demonstrated in the progression of coronavirus disease 2019 (COVID-19) due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Accordingly, our review is organized to present convergent lines of empirical evidence that potentially link expression of mtDNA heteroplasmy by functionally interactive CNS cell types to the extent and severity of acute and chronic post-COVID-19 neurological disorders.


Asunto(s)
COVID-19/genética , COVID-19/inmunología , ADN Mitocondrial/genética , Heteroplasmia/genética , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/inmunología , Animales , COVID-19/complicaciones , COVID-19/metabolismo , Humanos , Inmunidad , Mitocondrias/metabolismo , Enfermedades del Sistema Nervioso/complicaciones , Enfermedades del Sistema Nervioso/metabolismo
9.
Mol Biol Rep ; 49(2): 943-950, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34727288

RESUMEN

BACKGROUND: The mitogenomic heteroplasmy is the presence of multiple haplotypes in the mitochondria, which could cause genetic diseases and is also associated with many critical biological functions. The topmouth culter (Culter alburnus Basilewsky, 1855) is one of the most important freshwater fish in the family of Cyprinidae in China. At present, there are no reports on the topmouth culter's mtDNA heteroplasmy and the existence of which is not known. METHODS AND RESULTS: This study aimed to analyze the mitogenomic heteroplasmy in the topmouth culter by the next-generation sequencing of the fins' total DNA. The results confirmed the existence of the heteroplasmy and indicated the presence of the extensive heteroplasmy in the topmouth culter's mitogenome. There were 38 heteroplasmic variations in the protein-coding genes from the three specimens, with 33 non-synonymous substitutions accounting for 86.84% and five synonymous substitutions accounting for 13.16%. Among them, the ND6 had the most heteroplasmic variations but only one synonymous substitution. After removing the putative nuclear mitochondrial DNA fragments, the ratio of primary haplotype in the three specimens was 43.89%, 74.72%, and 32.76%, respectively. The three specimens contained 21, 7, and 21 haplotypes of the mitogenomes, respectively. Due to the extensive heteroplasmy, we reconstructed the phylogenetic tree of the topmouth culter using the RY-coding method, which improved the performance of the phylogenetic tree to some extent. CONCLUSIONS: This study reported the mitogenomic heteroplasmy in the topmouth culter and enhanced the knowledge regarding the mitogenomic heteroplasmy in phylogenetic studies. As the topmouth culter is a commercial species, the mitogenomic heteroplasmy is crucial for the fisheries management of the topmouth culter.


Asunto(s)
Cyprinidae/genética , ADN Mitocondrial/genética , Heteroplasmia/genética , Animales , China , Cipriniformes/genética , Proteínas de Peces/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mitógenos/genética , Filogenia
10.
J Med Genet ; 58(1): 48-55, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32439810

RESUMEN

BACKGROUND: The mitochondrial DNA (mDNA) 3243A>G variant is the most common pathogenic variant of the mDNA. To interpret results of clinical trials in mitochondrial disease, it is important to have a clear understanding of the natural course of disease. To obtain more insight into the disease burden and the progression of disease in carriers of the mDNA 3243 A>G variant, we followed a cohort of 151 carriers from 61 families prospectively for up to 6 years. METHODS: The disease severity was scored using the Newcastle Mitochondrial Disease Adult Scale (NMDAS), including SF-36 quality of life (QoL) scores. Heteroplasmy levels were measured in urinary epithelial cells (UEC), leucocytes and saliva. The progression of the disease was studied using linear mixed model analysis. RESULTS: One hundred twenty-four carriers (out of 151) were symptomatic. Four clinical groups were identified: 1) classical mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes syndrome (n=7), 2) maternally inherited diabetes deafness syndrome (n=60), 3) 'other' (n=57) and 4) dormant carriers (n=27). A yearly increase of NMDAS score of 0.47 point was measured in the total group. Heteroplasmy levels in both leucocytes and UEC were only weakly correlated with disease severity. Physical QoL declined with age. The most important determinants of QoL decline were hearing loss, speech problems, exercise intolerance, gait instability, psychiatric problems and gastrointestinal involvement. CONCLUSION: The mDNA 3243 A>G variant causes a slowly progressive disease, with a yearly increase of NMDAS score of ~0.5 point overall with the clinical phenotype being the only determinant of disease progression.


Asunto(s)
ADN Mitocondrial/genética , Sordera/genética , Complicaciones de la Diabetes/genética , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Adolescente , Adulto , Anciano , Sordera/complicaciones , Sordera/epidemiología , Sordera/patología , Complicaciones de la Diabetes/epidemiología , Complicaciones de la Diabetes/patología , Femenino , Estudios de Seguimiento , Heteroplasmia/genética , Heterocigoto , Humanos , Masculino , Herencia Materna/genética , Persona de Mediana Edad , Mitocondrias/patología , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/epidemiología , Enfermedades Mitocondriales/patología , Mutación Puntual/genética , Calidad de Vida , Adulto Joven
11.
Reprod Domest Anim ; 56(2): 199-207, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33190359

RESUMEN

Taking into account the latest Red List of the International Union for Conservation of Nature in which 25% of all mammals are threatened with extinction, somatic cell nuclear transfer (SCNT) could be a beneficial tool and holds a lot of potential for aiding the conservation of endangered, exotic or even extinct animal species if somatic cells of such animals are available. In the case of shortage and sparse amount of wild animal oocytes, interspecies somatic cell nuclear transfer (iSCNT), where the recipient ooplasm and donor nucleus are derived from different species, is the alternative SCNT technique. The successful application of iSCNT, resulting in the production of live offspring, was confirmed in several combination of closely related species. When nucleus donor cells and recipient oocytes have been used in many other combinations, very often with a very distant taxonomical relation iSCNT resulted only in the very early stages of cloned embryo development. Problems encountered during iSCNT related to mitochondrial DNA (mtDNA)/genomic DNA incompatibility, mtDNA heteroplasmy, embryonic genome activation of the donor nucleus by the recipient oocyte and availability of suitable foster mothers for iSCNT embryos. Implementing assisted reproductive technologies, including iSCNT, to conservation programmes also raises concerns that the production of genetically identical populations might cause problems with inbreeding. The article aims at presenting achievements, limitations and perspectives of iSCNT in maintaining animal biodiversity.


Asunto(s)
Clonación de Organismos/veterinaria , Especies en Peligro de Extinción , Técnicas de Transferencia Nuclear/veterinaria , Animales , Núcleo Celular , Clonación de Organismos/métodos , ADN Intergénico , ADN Mitocondrial/genética , Desarrollo Embrionario/genética , Heteroplasmia/genética , Oocitos
12.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33477827

RESUMEN

Massive parallel sequencing technologies are promising a highly sensitive detection of low-level mutations, especially in mitochondrial DNA (mtDNA) studies. However, processes from DNA extraction and library construction to bioinformatic analysis include several varying tasks. Further, there is no validated recommendation for the comprehensive procedure. In this study, we examined potential pitfalls on the sequencing results based on two-person mtDNA mixtures. Therefore, we compared three DNA polymerases, six different variant callers in five mixtures between 50% and 0.5% variant allele frequencies generated with two different amplification protocols. In total, 48 samples were sequenced on Illumina MiSeq. Low-level variant calling at the 1% variant level and below was performed by comparing trimming and PCR duplicate removal as well as six different variant callers. The results indicate that sensitivity, specificity, and precision highly depend on the investigated polymerase but also vary based on the analysis tools. Our data highlight the advantage of prior standardization and validation of the individual laboratory setup with a DNA mixture model. Finally, we provide an artificial heteroplasmy benchmark dataset that can help improve somatic variant callers or pipelines, which may be of great interest for research related to cancer and aging.


Asunto(s)
Envejecimiento/genética , ADN Mitocondrial/genética , ADN Polimerasa Dirigida por ADN/genética , Heteroplasmia/genética , Benchmarking , Predisposición Genética a la Enfermedad , Variación Genética/genética , Genoma Mitocondrial/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mitocondrias/genética , Mutación/genética , Análisis de Secuencia de ADN
13.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34298989

RESUMEN

Cancer is a serious health problem with a high mortality rate worldwide. Given the relevance of mitochondria in numerous physiological and pathological mechanisms, such as adenosine triphosphate (ATP) synthesis, apoptosis, metabolism, cancer progression and drug resistance, mitochondrial genome (mtDNA) analysis has become of great interest in the study of human diseases, including cancer. To date, a high number of variants and mutations have been identified in different types of tumors, which coexist with normal alleles, a phenomenon named heteroplasmy. This mechanism is considered an intermediate state between the fixation or elimination of the acquired mutations. It is suggested that mutations, which confer adaptive advantages to tumor growth and invasion, are enriched in malignant cells. Notably, many recent studies have reported a heteroplasmy-shifting phenomenon as a potential shaper in tumor progression and treatment response, and we suggest that each cancer type also has a unique mitochondrial heteroplasmy-shifting profile. So far, a plethora of data evidencing correlations among heteroplasmy and cancer-related phenotypes are available, but still, not authentic demonstrations, and whether the heteroplasmy or the variation in mtDNA copy number (mtCNV) in cancer are cause or consequence remained unknown. Further studies are needed to support these findings and decipher their clinical implications and impact in the field of drug discovery aimed at treating human cancer.


Asunto(s)
Heteroplasmia/genética , Mitocondrias/genética , Neoplasias/sangre , Neoplasias/genética , Alelos , Biomarcadores/sangre , Enzimas de Restricción del ADN/uso terapéutico , Progresión de la Enfermedad , Epigénesis Genética , Terapia Genética/métodos , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Neoplasias/metabolismo , Neoplasias/patología , Microambiente Tumoral/genética
14.
J Intern Med ; 287(6): 685-697, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32176378

RESUMEN

Mutations in the mitochondrial genome are the cause of many debilitating neuromuscular disorders. Currently, there is no cure or treatment for these diseases, and symptom management is the only relief doctors can provide. Although supplements and vitamins are commonly used in treatment, they provide little benefit to the patient and are only palliative. This is why gene therapy is a promising research topic to potentially treat and, in theory, even cure diseases caused by mutations in the mitochondrial DNA (mtDNA). Mammalian cells contain approximately a thousand copies of mtDNA, which can lead to a phenomenon called heteroplasmy, where both wild-type and mutant mtDNA molecules co-exist within the cell. Disease only manifests once the per cent of mutant mtDNA reaches a high threshold (usually >80%), which causes mitochondrial dysfunction and reduced ATP production. This is a useful feature to take advantage of for gene therapy applications, as not every mutant copy of mtDNA needs to be eliminated, but only enough to shift the heteroplasmic ratio below the disease threshold. Several DNA-editing enzymes have been used to shift heteroplasmy in cell culture and mice. This review provides an overview of these enzymes and discusses roadblocks of applying these to gene therapy in humans.


Asunto(s)
Enzimas Reparadoras del ADN/genética , ADN Mitocondrial/genética , Terapia Genética , Heteroplasmia/genética , Animales , Reparación del ADN/genética , Enzimas Reparadoras del ADN/uso terapéutico , Terapia Genética/métodos , Humanos , Enfermedades Mitocondriales
15.
Mol Genet Metab ; 131(1-2): 38-52, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32624334

RESUMEN

Maternally inherited mitochondrial respiratory disorders are rare, progressive, and multi-systemic diseases that remain intractable, with no effective therapeutic interventions. Patients share a defective oxidative phosphorylation pathway responsible for mitochondrial ATP synthesis, in most cases due to pathogenic mitochondrial variants transmitted from mother to child or to a rare de novo mutation or large-scale deletion of the mitochondrial genome. The clinical diagnosis of these mitochondrial diseases is difficult due to exceptionally high clinical variability, while their genetic diagnosis has improved with the advent of next-generation sequencing. The mechanisms regulating the penetrance of the mitochondrial variants remain unresolved with the patient's nuclear background, epigenomic regulation, heteroplasmy, mitochondrial haplogroups, and environmental factors thought to act as rheostats. The lack of animal models mimicking the phenotypic manifestations of these disorders has hampered efforts toward curative therapies. Patient-derived cellular paradigms provide alternative models for elucidating the pathogenic mechanisms and screening pharmacological small molecules to enhance mitochondrial function. Recent progress has been made in designing promising approaches to curtail the negative impact of dysfunctional mitochondria and alleviate clinical symptoms: 1) boosting mitochondrial biogenesis; 2) shifting heteroplasmy; 3) reprogramming metabolism; and 4) administering hypoxia-based treatment. Here, we discuss their varying efficacies and limitations and provide an outlook on their therapeutic potential and clinical application.


Asunto(s)
Reprogramación Celular/genética , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/genética , Biogénesis de Organelos , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Reprogramación Celular/efectos de los fármacos , Heteroplasmia/efectos de los fármacos , Heteroplasmia/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Herencia Materna/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Fosforilación Oxidativa/efectos de los fármacos
16.
J Hered ; 111(6): 531-538, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-32886780

RESUMEN

Plant mitochondria and plastids display an array of inheritance patterns and varying levels of heteroplasmy, where individuals harbor more than 1 version of a mitochondrial or plastid genome. Organelle inheritance in plants has the potential to be quite complex and can vary with plant growth, development, and reproduction. Few studies have sought to investigate these complicated patterns of within-individual variation and inheritance using experimental crosses in plants. We carried out crosses in carrot, Daucus carota L. (Apiaceae), which has previously been shown to exhibit organellar heteroplasmy. We used mitochondrial and plastid markers to begin to disentangle the patterns of organellar inheritance and the fate of heteroplasmic variation, with special focus on cases where the mother displayed heteroplasmy. We also investigated heteroplasmy across the plant, assaying leaf samples at different development stages and ages. Mitochondrial and plastid paternal leakage was rare and offspring received remarkably similar heteroplasmic mixtures to their heteroplasmic mothers, indicating that heteroplasmy is maintained over the course of maternal inheritance. When offspring did differ from their mother, they were likely to exhibit a loss of the genetic variation that was present in their mother. Finally, we found that mitochondrial variation did not vary significantly over plant development, indicating that substantial vegetative sorting did not occur. Our study is one of the first to quantitatively investigate inheritance patterns and heteroplasmy in plants using controlled crosses, and we look forward to future studies making use of whole genome information to study the complex evolutionary dynamics of plant organellar genomes.


Asunto(s)
Daucus carota/genética , Genoma Mitocondrial/genética , Genoma de Planta/genética , Genoma de Plastidios/genética , Heteroplasmia/genética , Herencia Multifactorial/genética , Cruzamientos Genéticos , Evolución Molecular , Patrón de Herencia/genética , Herencia Materna , Mitocondrias/genética , Orgánulos/genética , Filogenia , Plastidios/genética
17.
J Assist Reprod Genet ; 37(9): 2181-2188, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32700162

RESUMEN

PURPOSE: To explore the relationship between mitochondrial DNA quantity and heteroplasmy and early embryonic loss. METHODS: A total of 150 villous samples from patients with spontaneous abortion (SA, n = 75) or induced abortion (IA, n = 75) were collected. qPCR and next-generation sequencing (NGS) were used to test mitochondrial DNA quantity and heteroplasmy. Missense mutations with a CADD score > 15 and heteroplasmy ≥ 70% were defined as potentially pathogenic mutations. RESULTS: With respect to mitochondrial DNA copy numbers, there was no significant difference between the SA and IA groups (median (IQR), 566 (397-791) vs. 614 (457-739); P = 0.768) or between the euploid and aneuploid groups (median (IQR), 516 (345-730) vs. 599 (423-839); P = 0.107). mtDNA copy numbers were not associated with spontaneous abortion using logistic regression analysis (P = 0.196, 95% CI 1.000-1.001). In addition, more patients harbored possibly pathogenic mtDNA mutations in their chorionic villi in the SA group (70.7%, 53/75) compared with the IA group (54.7%, 41/75; P < 0.05). However, there was no statistical difference between the euploid (80%, 24/30) and aneuploid groups (64.4%, 29/45; p = 0.147). CONCLUSION: Early embryonic loss and the formation of aneuploidy were not related to mtDNA copy number. Patients with spontaneous abortion were more likely to have possibly pathogenic mutations in their mtDNA, and this may assist in purifying pathogenic mtDNA. However, whether the accumulation of these potentially morbific mtDNA mutations caused early embryonic loss requires further investigation.


Asunto(s)
Aborto Espontáneo/genética , ADN Mitocondrial/genética , Heteroplasmia/genética , Mitocondrias/genética , Aborto Inducido/efectos adversos , Aborto Espontáneo/patología , Adulto , Variaciones en el Número de Copia de ADN/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Modelos Logísticos , Masculino , Mitocondrias/patología , Mutación/genética , Embarazo
18.
Int J Mol Sci ; 21(16)2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32806635

RESUMEN

Autism spectrum disorders (ASDs) constitute a set of heterogeneous neurodevelopmental conditions, characterized by a wide genetic variability that has led to hypothesize a polygenic origin. The metabolic profiles of patients with ASD suggest a possible implication of mitochondrial pathways. Although different physiological and biochemical studies reported deficits in mitochondrial oxidative phosphorylation in subjects with ASD, the role of mitochondrial DNA variations has remained relatively unexplored. In this review, we report and discuss very recent evidence to demonstrate the key role of mitochondrial disorders in the development of ASD.


Asunto(s)
Trastorno del Espectro Autista/patología , Mitocondrias/patología , Modelos Biológicos , Trastorno del Espectro Autista/genética , Preescolar , ADN Mitocondrial/genética , Genes Mitocondriales , Heteroplasmia/genética , Humanos , Mitocondrias/genética
19.
Genes (Basel) ; 15(5)2024 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-38790246

RESUMEN

Mitochondrial DNA (mtDNA) exhibits distinct characteristics distinguishing it from the nuclear genome, necessitating specific analytical methods in genetic studies. This comprehensive review explores the complex role of mtDNA in a variety of genetic studies, including genome-wide, epigenome-wide, and phenome-wide association studies, with a focus on its implications for human traits and diseases. Here, we discuss the structure and gene-encoding properties of mtDNA, along with the influence of environmental factors and epigenetic modifications on its function and variability. Particularly significant are the challenges posed by mtDNA's high mutation rate, heteroplasmy, and copy number variations, and their impact on disease susceptibility and population genetic analyses. The review also highlights recent advances in methodological approaches that enhance our understanding of mtDNA associations, advocating for refined genetic research techniques that accommodate its complexities. By providing a comprehensive overview of the intricacies of mtDNA, this paper underscores the need for an integrated approach to genetic studies that considers the unique properties of mitochondrial genetics. Our findings aim to inform future research and encourage the development of innovative methodologies to better interpret the broad implications of mtDNA in human health and disease.


Asunto(s)
ADN Mitocondrial , Humanos , ADN Mitocondrial/genética , Variaciones en el Número de Copia de ADN , Epigénesis Genética , Estudio de Asociación del Genoma Completo/métodos , Heteroplasmia/genética , Mitocondrias/genética , Predisposición Genética a la Enfermedad
20.
Nat Genet ; 56(8): 1665-1677, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39039280

RESUMEN

Somatic cells accumulate genomic alterations with age; however, our understanding of mitochondrial DNA (mtDNA) mosaicism remains limited. Here we investigated the genomes of 2,096 clones derived from three cell types across 31 donors, identifying 6,451 mtDNA variants with heteroplasmy levels of ≳0.3%. While the majority of these variants were unique to individual clones, suggesting stochastic acquisition with age, 409 variants (6%) were shared across multiple embryonic lineages, indicating their origin from heteroplasmy in fertilized eggs. The mutational spectrum exhibited replication-strand bias, implicating mtDNA replication as a major mutational process. We evaluated the mtDNA mutation rate (5.0 × 10-8 per base pair) and a turnover frequency of 10-20 per year, which are fundamental components shaping the landscape of mtDNA mosaicism over a lifetime. The expansion of mtDNA-truncating mutations toward homoplasmy was substantially suppressed. Our findings provide comprehensive insights into the origins, dynamics and functional consequences of mtDNA mosaicism in human somatic cells.


Asunto(s)
ADN Mitocondrial , Mosaicismo , Mutación , Humanos , ADN Mitocondrial/genética , Heteroplasmia/genética , Tasa de Mutación , Mitocondrias/genética , Genoma Mitocondrial , Replicación del ADN/genética , Femenino , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA