Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34.312
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nat Immunol ; 20(1): 86-96, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30538335

RESUMEN

Germinal center (GC) B cells feature repression of many gene enhancers to establish their characteristic transcriptome. Here we show that conditional deletion of Lsd1 in GCs significantly impaired GC formation, associated with failure to repress immune synapse genes linked to GC exit, which are also direct targets of the transcriptional repressor BCL6. We found that BCL6 directly binds LSD1 and recruits it primarily to intergenic and intronic enhancers. Conditional deletion of Lsd1 suppressed GC hyperplasia caused by constitutive expression of BCL6 and significantly delayed BCL6-driven lymphomagenesis. Administration of catalytic inhibitors of LSD1 had little effect on GC formation or GC-derived lymphoma cells. Using a CRISPR-Cas9 domain screen, we found instead that the LSD1 Tower domain was critical for dependence on LSD1 in GC-derived B cells. These results indicate an essential role for LSD1 in the humoral immune response, where it modulates enhancer function by forming repression complexes with BCL6.


Asunto(s)
Linfocitos B/fisiología , Centro Germinal/patología , Histona Demetilasas/metabolismo , Linfoma/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Animales , Sistemas CRISPR-Cas , Carcinogénesis , ADN Intergénico/genética , Centro Germinal/inmunología , Histona Demetilasas/genética , Hiperplasia , Sinapsis Inmunológicas/genética , Intrones/genética , Linfoma/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas c-bcl-6/genética
2.
Immunity ; 55(4): 623-638.e5, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35385697

RESUMEN

The epithelium is an integral component of mucosal barrier and host immunity. Following helminth infection, the intestinal epithelial cells secrete "alarmin" cytokines, such as interleukin-25 (IL-25) and IL-33, to initiate the type 2 immune responses for helminth expulsion and tolerance. However, it is unknown how helminth infection and the resulting cytokine milieu drive epithelial remodeling and orchestrate alarmin secretion. Here, we report that epithelial O-linked N-Acetylglucosamine (O-GlcNAc) protein modification was induced upon helminth infections. By modifying and activating the transcription factor STAT6, O-GlcNAc transferase promoted the transcription of lineage-defining Pou2f3 in tuft cell differentiation and IL-25 production. Meanwhile, STAT6 O-GlcNAcylation activated the expression of Gsdmc family genes. The membrane pore formed by GSDMC facilitated the unconventional secretion of IL-33. GSDMC-mediated IL-33 secretion was indispensable for effective anti-helminth immunity and contributed to induced intestinal inflammation. Protein O-GlcNAcylation can be harnessed for future treatment of type 2 inflammation-associated human diseases.


Asunto(s)
Alarminas , Mucosa Intestinal , Acilación , Alarminas/inmunología , Antihelmínticos/inmunología , Biomarcadores de Tumor , Citocinas , Proteínas de Unión al ADN , Helmintiasis/inmunología , Humanos , Hiperplasia , Inflamación , Interleucina-33 , Mucosa Intestinal/inmunología , Mebendazol , N-Acetilglucosaminiltransferasas/inmunología , Proteínas Citotóxicas Formadoras de Poros , Factor de Transcripción STAT6/inmunología
3.
Cell ; 167(1): 187-202.e17, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27662089

RESUMEN

Inflammasome complexes function as key innate immune effectors that trigger inflammation in response to pathogen- and danger-associated signals. Here, we report that germline mutations in the inflammasome sensor NLRP1 cause two overlapping skin disorders: multiple self-healing palmoplantar carcinoma (MSPC) and familial keratosis lichenoides chronica (FKLC). We find that NLRP1 is the most prominent inflammasome sensor in human skin, and all pathogenic NLRP1 mutations are gain-of-function alleles that predispose to inflammasome activation. Mechanistically, NLRP1 mutations lead to increased self-oligomerization by disrupting the PYD and LRR domains, which are essential in maintaining NLRP1 as an inactive monomer. Primary keratinocytes from patients experience spontaneous inflammasome activation and paracrine IL-1 signaling, which is sufficient to cause skin inflammation and epidermal hyperplasia. Our findings establish a group of non-fever inflammasome disorders, uncover an unexpected auto-inhibitory function for the pyrin domain, and provide the first genetic evidence linking NLRP1 to skin inflammatory syndromes and skin cancer predisposition.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Carcinoma/genética , Predisposición Genética a la Enfermedad , Inflamasomas/metabolismo , Queratosis/genética , Neoplasias Cutáneas/genética , Proteínas Adaptadoras Transductoras de Señales/química , Secuencia de Aminoácidos , Proteínas Reguladoras de la Apoptosis/química , Carcinoma/patología , Cromosomas Humanos Par 17/genética , Epidermis/patología , Mutación de Línea Germinal , Humanos , Hiperplasia/genética , Hiperplasia/patología , Inflamasomas/genética , Interleucina-1/metabolismo , Queratosis/patología , Proteínas NLR , Comunicación Paracrina , Linaje , Dominios Proteicos , Pirina/química , Transducción de Señal , Neoplasias Cutáneas/patología , Síndrome
4.
Development ; 151(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38078543

RESUMEN

The kinase PAR-4/LKB1 is a major regulator of intestinal homeostasis, which prevents polyposis in humans. Moreover, its ectopic activation is sufficient to induce polarization and formation of microvilli-like structures in intestinal cell lines. Here, we use Caenorhabditis elegans to examine the role of PAR-4 during intestinal development in vivo. We show that it is not required to establish enterocyte polarity and plays only a minor role in brush border formation. By contrast, par-4 mutants display severe deformations of the intestinal lumen as well as supernumerary intestinal cells, thereby revealing a previously unappreciated function of PAR-4 in preventing intestinal hyperplasia. The presence of supernumerary enterocytes in par-4 mutants is not due to excessive cell proliferation, but rather to the abnormal expression of the intestinal cell fate factors end-1 and elt-2 outside the E lineage. Notably, par-4 mutants also display reduced expression of end-1 and elt-2 inside the E lineage. Our work thereby unveils an essential and dual role of PAR-4, which both restricts intestinal specification to the E lineage and ensures its robust differentiation.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Humanos , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/metabolismo , Polaridad Celular , Endodermo/metabolismo , Hiperplasia/metabolismo , Intestinos , Embrión no Mamífero/metabolismo
5.
EMBO J ; 41(13): e109996, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35767364

RESUMEN

Helicobacter pylori is a pathogen that colonizes the stomach and causes chronic gastritis. Helicobacter pylori can colonize deep inside gastric glands, triggering increased R-spondin 3 (Rspo3) signaling. This causes an expansion of the "gland base module," which consists of self-renewing stem cells and antimicrobial secretory cells and results in gland hyperplasia. The contribution of Rspo3 receptors Lgr4 and Lgr5 is not well explored. Here, we identified that Lgr4 regulates Lgr5 expression and is required for H. pylori-induced hyperplasia and inflammation, while Lgr5 alone is not. Using conditional knockout mice, we reveal that R-spondin signaling via Lgr4 drives proliferation of stem cells and also induces NF-κB activity in the proliferative stem cells. Upon exposure to H. pylori, the Lgr4-driven NF-κB activation is responsible for the expansion of the gland base module and simultaneously enables chemokine expression in stem cells, resulting in gland hyperplasia and neutrophil recruitment. This demonstrates a connection between R-spondin-Lgr and NF-κB signaling that links epithelial stem cell behavior and inflammatory responses to gland-invading H. pylori.


Asunto(s)
Helicobacter pylori , Animales , Hiperplasia/metabolismo , Hiperplasia/patología , Inflamación/patología , Ratones , FN-kappa B/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Células Madre/metabolismo , Estómago
6.
Development ; 150(18)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37702007

RESUMEN

A fundamental goal of developmental biology is to understand how cell and tissue fates are specified. The imaginal discs of Drosophila are excellent model systems for addressing this paradigm as their fate can be redirected when discs regenerate after injury or when key selector genes are misregulated. Here, we show that when Polycomb expression is reduced, the wing selector gene vestigial is ectopically activated. This leads to the inappropriate formation of the Vestigial-Scalloped complex, which forces the eye to transform into a wing. We further demonstrate that disrupting this complex does not simply block wing formation or restore eye development. Instead, immunohistochemistry and high-throughput genomic analysis show that the eye-antennal disc unexpectedly undergoes hyperplastic growth with multiple domains being organized into other imaginal discs and tissues. These findings provide insight into the complex developmental landscape that tissues must navigate before adopting their final fate.


Asunto(s)
Proteínas de Drosophila , Discos Imaginales , Animales , Proteínas de Drosophila/genética , Drosophila , Genómica , Hiperplasia , Proteínas del Grupo Polycomb/genética
7.
Development ; 150(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37314174

RESUMEN

The human heart is poorly regenerative and cardiac tumors are extremely rare. Whether the adult zebrafish myocardium is responsive to oncogene overexpression and how this condition affects its intrinsic regenerative capacity remains unknown. Here, we have established a strategy of inducible and reversible expression of HRASG12V in zebrafish cardiomyocytes. This approach stimulated a hyperplastic cardiac enlargement within 16 days. The phenotype was suppressed by rapamycin-mediated inhibition of TOR signaling. As TOR signaling is also required for heart restoration after cryoinjury, we compared transcriptomes of hyperplastic and regenerating ventricles. Both conditions were associated with upregulation of cardiomyocyte dedifferentiation and proliferation factors, as well as with similar microenvironmental responses, such as deposition of nonfibrillar Collagen XII and recruitment of immune cells. Among the differentially expressed genes, many proteasome and cell-cycle regulators were upregulated only in oncogene-expressing hearts. Preconditioning of the heart with short-term oncogene expression accelerated cardiac regeneration after cryoinjury, revealing a beneficial synergism between both programs. Identification of the molecular bases underlying the interplay between detrimental hyperplasia and advantageous regeneration provides new insights into cardiac plasticity in adult zebrafish.


Asunto(s)
Oncogenes , Pez Cebra , Adulto , Humanos , Animales , Pez Cebra/genética , Hiperplasia , Oncogenes/genética , Miocitos Cardíacos , Ventrículos Cardíacos
8.
PLoS Pathog ; 20(7): e1012381, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39083533

RESUMEN

Recognizing that enteric tuft cells can signal the presence of nematode parasites, we investigated whether tuft cells are required for the expulsion of the cestode, Hymenolepis diminuta, from the non-permissive mouse host, and in concomitant anti-helminthic responses. BALB/c and C57BL/6 mice infected with H. diminuta expelled the worms by 11 days post-infection (dpi) and displayed DCLK1+ (doublecortin-like kinase 1) tuft cell hyperplasia in the small intestine (not the colon) at 11 dpi. This tuft cell hyperplasia was dependent on IL-4Rα signalling and adaptive immunity, but not the microbiota. Expulsion of H. diminuta was slowed until at least 14 dpi, but not negated, in tuft cell-deficient Pou2f3-/- mice and was accompanied by delayed goblet cell hyperplasia and slowed small bowel transit. Worm antigen and mitogen evoked production of IL-4 and IL-10 by splenocytes from wild-type and Pou2f3-/- mice was not appreciably different, suggesting similar systemic immune reactivity to infection with H. diminuta. Wild-type and Pou2f3-/- mice infected with H. diminuta displayed partial protection against subsequent infection with the nematode Heligmosomoides bakeri. We speculate that, with respect to H. diminuta, enteric tuft cells are important for local immune events driving the rapidity of H. diminuta expulsion but are not critical in initiating or sustaining systemic Th2 responses that provide concomitant immunity against secondary infection with H. bakeri.


Asunto(s)
Himenolepiasis , Hymenolepis diminuta , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Animales , Hymenolepis diminuta/inmunología , Ratones , Himenolepiasis/inmunología , Himenolepiasis/parasitología , Intestino Delgado/inmunología , Intestino Delgado/parasitología , Intestino Delgado/patología , Ratones Noqueados , Femenino , Hiperplasia/inmunología , Hiperplasia/parasitología , Células en Penacho
9.
J Biol Chem ; 300(8): 107499, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38944125

RESUMEN

Blood amino acid levels are maintained in a narrow physiological range. The pancreatic α cells have emerged as the primary aminoacidemia regulator through glucagon secretion to promote hepatic amino acid catabolism. Interruption of glucagon signaling disrupts the liver-α cells axis leading to hyperaminoacidemia, which triggers a compensatory rise in glucagon secretion and α cell hyperplasia. The mechanisms of hyperaminoacidemia-induced α cell hyperplasia remain incompletely understood. Using a mouse α cell line and in vivo studies in zebrafish and mice, we found that hyperaminoacidemia-induced α cell hyperplasia requires ErbB3 signaling. In addition to mechanistic target of rapamycin complex 1, another ErbB3 downstream effector signal transducer and activator of transcription 3 also plays a role in α cell hyperplasia. Mechanistically, ErbB3 may partner with ErbB2 to stimulate cyclin D2 and suppress p27 via mechanistic target of rapamycin complex 1 and signal transducer and activator of transcription 3. Our study identifies ErbB3 as a new regulator for hyperaminoacidemia-induced α cell proliferation and a critical component of the liver-α cells axis that regulates aminoacidemia.


Asunto(s)
Ciclina D2 , Células Secretoras de Glucagón , Hiperplasia , Diana Mecanicista del Complejo 1 de la Rapamicina , Receptor ErbB-3 , Pez Cebra , Animales , Células Secretoras de Glucagón/metabolismo , Células Secretoras de Glucagón/patología , Receptor ErbB-3/metabolismo , Receptor ErbB-3/genética , Hiperplasia/metabolismo , Hiperplasia/patología , Ratones , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ciclina D2/metabolismo , Ciclina D2/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Transducción de Señal , Proliferación Celular , Aminoácidos/metabolismo , Línea Celular , Humanos
10.
Gastroenterology ; 166(1): 117-131, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37802423

RESUMEN

BACKGROUNDS & AIMS: Precancerous metaplasia progression to dysplasia can increase the risk of gastric cancers. However, effective strategies to specifically target these precancerous lesions are currently lacking. To address this, we aimed to identify key signaling pathways that are upregulated during metaplasia progression and critical for stem cell survival and function in dysplasia. METHODS: To assess the response to chemotherapeutic drugs, we used metaplastic and dysplastic organoids derived from Mist1-Kras mice and 20 human precancerous organoid lines established from patients with gastric cancer. Phospho-antibody array analysis and single-cell RNA-sequencing were performed to identify target cell populations and signaling pathways affected by pyrvinium, a putative anticancer drug. Pyrvinium was administered to Mist1-Kras mice to evaluate drug effectiveness in vivo. RESULTS: Although pyrvinium treatment resulted in growth arrest in metaplastic organoids, it induced cell death in dysplastic organoids. Pyrvinium treatment significantly downregulated phosphorylation of ERK and signal transducer and activator of transcription 3 (STAT3) as well as STAT3-target genes. Single-cell RNA-sequencing data analyses revealed that pyrvinium specifically targeted CD133+/CD166+ stem cell populations, as well as proliferating cells in dysplastic organoids. Pyrvinium inhibited metaplasia progression and facilitated the restoration of normal oxyntic glands in Mist1-Kras mice. Furthermore, pyrvinium exhibited suppressive effects on the growth and survival of human organoids with dysplastic features, through simultaneous blocking of the MEK/ERK and STAT3 signaling pathways. CONCLUSIONS: Through its dual blockade of MEK/ERK and STAT3 signaling pathways, pyrvinium can effectively induce growth arrest in metaplasia and cell death in dysplasia. Therefore, our findings suggest that pyrvinium is a promising chemotherapeutic agent for reprogramming the precancerous milieu to prevent gastric cancer development.


Asunto(s)
Lesiones Precancerosas , Neoplasias Gástricas , Humanos , Ratones , Animales , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/prevención & control , Factor de Transcripción STAT3/metabolismo , Carcinogénesis/genética , Carcinogénesis/patología , Hiperplasia , Lesiones Precancerosas/patología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Metaplasia/patología , Células Madre/metabolismo , ARN
11.
Gastroenterology ; 166(2): 313-322.e3, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37863270

RESUMEN

BACKGROUND & AIMS: The study investigated the association between Helicobacter pylori treatment and the risk of gastric cancer after endoscopic resection of gastric dysplasia. METHODS: Patients who received endoscopic resection for gastric dysplasia between 2010 and 2020 from Korean nationwide insurance data were included. We verified the occurrence of new-onset gastric cancer and metachronous gastric neoplasm, which encompasses both cancer and dysplasia, >1 year after the index endoscopic resection. Newly diagnosed gastric cancer ≥3 years and ≥5 years was regarded as late-onset gastric cancer. A multivariable Cox regression model with H pylori treatment status as a time-dependent covariate was used to determine the risk of gastric cancer and metachronous gastric neoplasms. RESULTS: Gastric dysplasia in 69,722 patients was treated with endoscopy, and 49.5% were administered H pylori therapy. During the median 5.6 years of follow-up, gastric cancer developed in 2406 patients and metachronous gastric neoplasms developed in 3342 patients. Receiving H pylori therapy was closely related to lower gastric cancer risk (adjusted hazard ratio [aHR], 0.88; 95% confidence interval [CI], 0.80-0.96). H pylori treatment also significantly decreased metachronous gastric neoplasm development (aHR, 0.76; 95% CI, 0.70-0.82). Furthermore, H pylori therapy showed a prominent protective effect for late-onset gastric cancer development at ≥3 years (aHR, 0.84; 95% CI, 0.75-0.94) and ≥5 years (aHR, 0.80; 95% CI, 0.68-0.95). CONCLUSIONS: In this nationwide cohort, H pylori therapy after endoscopic resection of gastric dysplasia was associated with a reduced risk of gastric cancer and metachronous gastric neoplasm occurrence.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Primarias Secundarias , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/epidemiología , Neoplasias Gástricas/cirugía , Neoplasias Gástricas/complicaciones , Estudios de Cohortes , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/epidemiología , Incidencia , Endoscopía Gastrointestinal , Hiperplasia , Neoplasias Primarias Secundarias/epidemiología , Factores de Riesgo , Estudios Retrospectivos
12.
Am J Pathol ; 194(1): 30-51, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37827216

RESUMEN

Benign prostate hyperplasia (BPH) is caused by the nonmalignant enlargement of the transition zone of the prostate gland, leading to lower urinary tract symptoms. Although current medical treatments are unsatisfactory in many patients, the limited understanding of the mechanisms driving disease progression prevents the development of alternative therapeutic strategies. The probasin-prolactin (Pb-PRL) transgenic mouse recapitulates many histopathological features of human BPH. Herein, these alterations parallel urodynamic disturbance reminiscent of lower urinary tract symptoms. Single-cell RNA-sequencing analysis of Pb-PRL mouse prostates revealed that their epithelium mainly includes low-androgen signaling cell populations analogous to Club/Hillock cells enriched in the aged human prostate. These intermediate cells are predicted to result from the reprogramming of androgen-dependent luminal cells. Pb-PRL mouse prostates exhibited increased vulnerability to oxidative stress due to reduction of antioxidant enzyme expression. One-month treatment of Pb-PRL mice with anethole trithione (ATT), a specific inhibitor of mitochondrial ROS production, reduced prostate weight and voiding frequency. In human BPH-1 epithelial cells, ATT decreased mitochondrial metabolism, cell proliferation, and stemness features. ATT prevented the growth of organoids generated by sorted Pb-PRL basal and LSCmed cells, the two major BPH-associated, androgen-independent epithelial cell compartments. Taken together, these results support cell plasticity as a driver of BPH progression and therapeutic resistance to androgen signaling inhibition, and identify antioxidant therapy as a promising treatment of BPH.


Asunto(s)
Síntomas del Sistema Urinario Inferior , Hiperplasia Prostática , Masculino , Humanos , Ratones , Animales , Anciano , Andrógenos/farmacología , Andrógenos/metabolismo , Próstata/patología , Hiperplasia Prostática/metabolismo , Antioxidantes/farmacología , Plasticidad de la Célula , Hiperplasia/patología , Plomo/metabolismo , Plomo/uso terapéutico , Ratones Transgénicos , Prolactina/metabolismo , Prolactina/uso terapéutico , Células Epiteliales/metabolismo , Síntomas del Sistema Urinario Inferior/metabolismo , Síntomas del Sistema Urinario Inferior/patología
13.
Hepatology ; 79(4): 829-843, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37603610

RESUMEN

BACKGROUND AND AIMS: Cancer cells reprogram their metabolic pathways to support bioenergetic and biosynthetic needs and to maintain their redox balance. In several human tumors, the Keap1-Nrf2 system controls proliferation and metabolic reprogramming by regulating the pentose phosphate pathway (PPP). However, whether this metabolic reprogramming also occurs in normal proliferating cells is unclear. APPROACH AND RESULTS: To define the metabolic phenotype in normal proliferating hepatocytes, we induced cell proliferation in the liver by 3 distinct stimuli: liver regeneration by partial hepatectomy and hepatic hyperplasia induced by 2 direct mitogens: lead nitrate (LN) or triiodothyronine. Following LN treatment, well-established features of cancer metabolic reprogramming, including enhanced glycolysis, oxidative PPP, nucleic acid synthesis, NAD + /NADH synthesis, and altered amino acid content, as well as downregulated oxidative phosphorylation, occurred in normal proliferating hepatocytes displaying Nrf2 activation. Genetic deletion of Nrf2 blunted LN-induced PPP activation and suppressed hepatocyte proliferation. Moreover, Nrf2 activation and following metabolic reprogramming did not occur when hepatocyte proliferation was induced by partial hepatectomy or triiodothyronine. CONCLUSIONS: Many metabolic changes in cancer cells are shared by proliferating normal hepatocytes in response to a hostile environment. Nrf2 activation is essential for bridging metabolic changes with crucial components of cancer metabolic reprogramming, including the activation of oxidative PPP. Our study demonstrates that matured hepatocytes exposed to LN undergo cancer-like metabolic reprogramming and offers a rapid and useful in vivo model to study the molecular alterations underpinning the differences/similarities of metabolic changes in normal and neoplastic hepatocytes.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Neoplasias , Animales , Humanos , Ratas , Proliferación Celular , Hepatocitos/metabolismo , Hiperplasia , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Reprogramación Metabólica , Neoplasias/patología , Factor 2 Relacionado con NF-E2/metabolismo , Triyodotironina/genética , Triyodotironina/metabolismo
14.
Stem Cells ; 42(2): 146-157, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-37952119

RESUMEN

The expression of large conductance calcium-activated potassium channels (BK channels) in adipose tissue has been identified for years. BK channel deletion can improve metabolism in vivo, but the relative mechanisms remain unclear. Here, we examined the effects of BK channels on the differentiation of adipose-derived stem cells (ADSCs) and the related mechanisms. BKα and ß1 subunits were expressed on adipocytes. We found that both deletion of the KCNMA1 gene, encoding the pore forming α subunit of BK channels, and the BK channel inhibitor paxilline increased the expression of key genes in the peroxisome proliferator activated receptor (PPAR) pathway and promoted adipogenetic differentiation of ADSCs. We also observed that the MAPK-ERK pathway participates in BK channel deficiency-promoted adipogenic differentiation of ADSCs and that ERK inhibitors blocked the differentiation-promoting effect of BK channel deficiency. Hyperplasia of adipocytes is considered beneficial for metabolic health. These results indicate that BK channels play an important role in adipose hyperplasia by regulating the differentiation of ADSCs and may become an important target for studying the pathogenesis and treatment strategies of metabolic disorder-related diseases.


Asunto(s)
Canales de Potasio de Gran Conductancia Activados por el Calcio , Sistema de Señalización de MAP Quinasas , Humanos , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Hiperplasia , Diferenciación Celular , Adipocitos/metabolismo
15.
FASEB J ; 38(1): e23321, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38031974

RESUMEN

Bypass graft failure occurs in 20%-50% of coronary and lower extremity bypasses within the first-year due to intimal hyperplasia (IH). TSP-2 is a key regulatory protein that has been implicated in the development of IH following vessel injury. In this study, we developed a biodegradable CLICK-chemistry gelatin-based hydrogel to achieve sustained perivascular delivery of TSP-2 siRNA to rat carotid arteries following endothelial denudation injury. At 21 days, perivascular application of TSP-2 siRNA embedded hydrogels significantly downregulated TSP-2 gene expression, cellular proliferation, as well as other associated mediators of IH including MMP-9 and VEGF-R2, ultimately resulting in a significant decrease in IH. Our data illustrates the ability of perivascular CLICK-gelatin delivery of TSP-2 siRNA to mitigate IH following arterial injury.


Asunto(s)
Gelatina , Lesiones del Sistema Vascular , Ratas , Animales , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Hiperplasia , Trombospondinas/genética , Proliferación Celular
16.
Cell Mol Life Sci ; 81(1): 59, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38279051

RESUMEN

BACKGROUND: Vascular smooth muscle cell (VSMC) proliferation is the leading cause of vascular stenosis or restenosis. Therefore, investigating the molecular mechanisms and pivotal regulators of the proliferative VSMC phenotype is imperative for precisely preventing neointimal hyperplasia in vascular disease. METHODS: Wire-induced vascular injury and aortic culture models were used to detect the expression of staphylococcal nuclease domain-containing protein 1 (SND1). SMC-specific Snd1 knockout mice were used to assess the potential roles of SND1 after vascular injury. Primary VSMCs were cultured to evaluate SND1 function on VSMC phenotype switching, as well as to investigate the mechanism by which SND1 regulates the VSMC proliferative phenotype. RESULTS: Phenotype-switched proliferative VSMCs exhibited higher SND1 protein expression compared to the differentiated VSMCs. This result was replicated in primary VSMCs treated with platelet-derived growth factor (PDGF). In the injury model, specific knockout of Snd1 in mouse VSMCs reduced neointimal hyperplasia. We then revealed that ETS transcription factor ELK1 (ELK1) exhibited upregulation and activation in proliferative VSMCs, and acted as a novel transcription factor to induce the gene transcriptional activation of Snd1. Subsequently, the upregulated SND1 is associated with serum response factor (SRF) by competing with myocardin (MYOCD). As a co-activator of SRF, SND1 recruited the lysine acetyltransferase 2B (KAT2B) to the promoter regions leading to the histone acetylation, consequently promoted SRF to recognize the specific CArG motif, and enhanced the proliferation- and migration-related gene transcriptional activation. CONCLUSIONS: The present study identifies ELK1/SND1/SRF as a novel pathway in promoting the proliferative VSMC phenotype and neointimal hyperplasia in vascular injury, predisposing the vessels to pathological remodeling. This provides a potential therapeutic target for vascular stenosis.


Asunto(s)
Músculo Liso Vascular , Lesiones del Sistema Vascular , Ratones , Animales , Hiperplasia/metabolismo , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/patología , Proliferación Celular , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo , Constricción Patológica/metabolismo , Constricción Patológica/patología , Factores de Transcripción/metabolismo , Fenotipo , Neointima/genética , Neointima/metabolismo , Neointima/patología , Miocitos del Músculo Liso/metabolismo , Células Cultivadas , Movimiento Celular
17.
BMC Biol ; 22(1): 160, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075472

RESUMEN

BACKGROUND: Salmonid species have followed markedly divergent evolutionary trajectories in their interactions with sea lice. While sea lice parasitism poses significant economic, environmental, and animal welfare challenges for Atlantic salmon (Salmo salar) aquaculture, coho salmon (Oncorhynchus kisutch) exhibit near-complete resistance to sea lice, achieved through a potent epithelial hyperplasia response leading to rapid louse detachment. The molecular mechanisms underlying these divergent responses to sea lice are unknown. RESULTS: We characterized the cellular and molecular responses of Atlantic salmon and coho salmon to sea lice using single-nuclei RNA sequencing. Juvenile fish were exposed to copepodid sea lice (Lepeophtheirus salmonis), and lice-attached pelvic fin and skin samples were collected 12 h, 24 h, 36 h, 48 h, and 60 h after exposure, along with control samples. Comparative analysis of control and treatment samples revealed an immune and wound-healing response that was common to both species, but attenuated in Atlantic salmon, potentially reflecting greater sea louse immunomodulation. Our results revealed unique but complementary roles of three layers of keratinocytes in the epithelial hyperplasia response leading to rapid sea lice rejection in coho salmon. Our results suggest that basal keratinocytes direct the expansion and mobility of intermediate and, especially, superficial keratinocytes, which eventually encapsulate the parasite. CONCLUSIONS: Our results highlight the key role of keratinocytes in coho salmon's sea lice resistance and the diverged biological response of the two salmonid host species when interacting with this parasite. This study has identified key pathways and candidate genes that could be manipulated using various biotechnological solutions to improve Atlantic salmon sea lice resistance.


Asunto(s)
Copépodos , Enfermedades de los Peces , Hiperplasia , Queratinocitos , Oncorhynchus kisutch , Salmo salar , Animales , Copépodos/fisiología , Enfermedades de los Peces/parasitología , Salmo salar/parasitología , Hiperplasia/veterinaria , Queratinocitos/parasitología , Resistencia a la Enfermedad/genética , Interacciones Huésped-Parásitos
18.
J Allergy Clin Immunol ; 153(3): 705-717.e11, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38000697

RESUMEN

BACKGROUND: Neutrophil extracellular traps (NETs) are observed in chronic rhinosinusitis (CRS), although their role remains unclear. OBJECTIVES: This study aimed to investigate the influence of NETs on the CRS epithelium. METHODS: Forty-five sinonasal biopsy specimens were immunofluorescence-stained to identify NETs and p63+ basal stem cells. Investigators treated human nasal epithelial cells with NETs and studied them with immunofluorescence staining, Western blotting, and quantitative real-time PCR. NET inhibitors were administered to a murine neutrophilic nasal polyp model. RESULTS: NETs existed in tissues in patients with CRS with nasal polyps, especially in noneosinophilic nasal polyp tissues. p63+ basal cell expression had a positive correlation with the release of NETs. NETs induced the expansion of Ki-67+p63+ cells. We found that ΔNp63, an isoform of p63, was mainly expressed in the nasal epithelium and controlled by NETs. Treatment with deoxyribonuclease (DNase) I or Sivelestat (NET inhibitors) prevented the overexpression of ΔNp63+ epithelial stem cells and reduced polyp formation. CONCLUSIONS: These results reveal that NETs are implicated in CRS pathogenesis via basal cell hyperplasia. This study suggests a novel possibility of treating CRS by targeting NETs.


Asunto(s)
Trampas Extracelulares , Pólipos Nasales , Rinitis , Rinosinusitis , Sinusitis , Humanos , Animales , Ratones , Rinitis/patología , Pólipos Nasales/patología , Hiperplasia/patología , Sinusitis/patología , Mucosa Nasal/patología , Enfermedad Crónica
19.
Genes Dev ; 31(16): 1666-1678, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28924035

RESUMEN

Platelet-derived growth factor (PDGF) acts through two conserved receptor tyrosine kinases: PDGFRα and PDGFRß. Gain-of-function mutations in human PDGFRB have been linked recently to genetic diseases characterized by connective tissue wasting (Penttinen syndrome) or overgrowth (Kosaki overgrowth syndrome), but it is unclear whether PDGFRB mutations alone are responsible. Mice with constitutive PDGFRß signaling caused by a kinase domain mutation (D849V) develop lethal autoinflammation. Here we used a genetic approach to investigate the mechanism of autoinflammation in Pdgfrb+/D849V mice and test the hypothesis that signal transducer and activator of transcription 1 (STAT1) mediates this phenotype. We show that Pdgfrb+/D849V mice with Stat1 knockout (Stat1-/-Pdgfrb+/D849V ) are rescued from autoinflammation and have improved life span compared with Stat1+/-Pdgfrb+/D849V mice. Furthermore, PDGFRß-STAT1 signaling suppresses PDGFRß itself. Thus, Stat1-/-Pdgfrb+/D849V fibroblasts exhibit increased PDGFRß signaling, and mice develop progressive overgrowth, a distinct phenotype from the wasting seen in Stat1+/-Pdgfrb+/D849V mice. Deletion of interferon receptors (Ifnar1 or Ifngr1) does not rescue wasting in Pdgfrb+/D849V mice, indicating that interferons are not required for autoinflammation. These results provide functional evidence that elevated PDGFRß signaling causes tissue wasting or overgrowth reminiscent of human genetic syndromes and that the STAT1 pathway is a crucial modulator of this phenotypic spectrum.


Asunto(s)
Trastornos del Crecimiento/genética , Mutación , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Factor de Transcripción STAT1/genética , Tejido Adiposo/patología , Animales , Aorta/patología , Atrofia , Huesos/anomalías , Femenino , Fibroblastos/metabolismo , Fibrosis , Trastornos del Crecimiento/metabolismo , Trastornos del Crecimiento/patología , Hiperplasia , Inflamación/metabolismo , Interferones/fisiología , Masculino , Ratones , Ratones Noqueados , Músculo Liso Vascular/patología , Células 3T3 NIH , Fenotipo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor de Transcripción STAT1/metabolismo , Transducción de Señal , Piel/patología
20.
J Mol Cell Cardiol ; 188: 90-104, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38382296

RESUMEN

The role of erythropoietin (EPO) has extended beyond hematopoiesis to include cytoprotection, inotropy, and neurogenesis. Extra-renal EPO has been reported for multiple tissue/cell types, but the physiological relevance remains unknown. Although the EPO receptor is expressed by multiple cardiac cell types and human recombinant EPO increases contractility and confers cytoprotection against injury, whether the heart produces physiologically meaningful amounts of EPO in vivo is unclear. We show a distinct circadian rhythm of cardiac EPO mRNA expression in adult mice and increased mRNA expression during embryogenesis, suggesting physiological relevance to cardiac EPO production throughout life. We then generated constitutive, cardiomyocyte-specific EPO knockout mice driven by the Mlc2v promoter (EPOfl/fl:Mlc2v-cre+/-; EPOΔ/Δ-CM). During cardiogenesis, cardiac EPO mRNA expression and cellular proliferation were reduced in EPOΔ/Δ-CM hearts. However, in adult EPOΔ/Δ- CM mice, total heart weight was preserved through increased cardiomyocyte cross-sectional area, indicating the reduced cellular proliferation was compensated for by cellular hypertrophy. Echocardiography revealed no changes in cardiac dimensions, with modest reductions in ejection fraction, stroke volume, and tachycardia, whereas invasive hemodynamics showed increased cardiac contractility and lusitropy. Paradoxically, EPO mRNA expression in the heart was elevated in adult EPOΔ/Δ-CM, along with increased serum EPO protein content and hematocrit. Using RNA fluorescent in situ hybridization, we found that Epo RNA colocalized with endothelial cells in the hearts of adult EPOΔ/Δ-CM mice, identifying the endothelial cells as a cell responsible for the EPO hyper-expression. Collectively, these data identify the first physiological roles for cardiomyocyte-derived EPO. We have established cardiac EPO mRNA expression is a complex interplay of multiple cell types, where loss of embryonic cardiomyocyte EPO production results in hyper-expression from other cells within the adult heart.


Asunto(s)
Células Endoteliales , Eritropoyetina , Animales , Ratones , Hiperplasia , Hibridación Fluorescente in Situ , Miocitos Cardíacos , ARN , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA