Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34445189

RESUMEN

Tamoxifen is frequently used in murine knockout systems with CreER/LoxP. Besides possible neuroprotective effects, tamoxifen is described as having a negative impact on adult neurogenesis. The present study investigated the effect of a high-dose tamoxifen application on Theiler's murine encephalomyelitis virus (TMEV)-induced hippocampal damage. Two weeks after TMEV infection, 42% of the untreated TMEV-infected mice were affected by marked inflammation with neuronal loss, whereas 58% exhibited minor inflammation without neuronal loss. Irrespective of the presence of neuronal loss, untreated mice lacked TMEV antigen expression within the hippocampus at 14 days post-infection (dpi). Interestingly, tamoxifen application 0, 2 and 4, or 5, 7 and 9 dpi decelerated virus elimination and markedly increased neuronal loss to 94%, associated with increased reactive astrogliosis at 14 dpi. T cell infiltration, microgliosis and expression of water channels were similar within the inflammatory lesions, regardless of tamoxifen application. Applied at 0, 2 and 4 dpi, tamoxifen had a negative impact on the number of doublecortin (DCX)-positive cells within the dentate gyrus (DG) at 14 dpi, without a long-lasting effect on neuronal loss at 147 dpi. Thus, tamoxifen application during a TMEV infection is associated with transiently increased neuronal loss in the hippocampus, increased reactive astrogliosis and decreased neurogenesis in the DG.


Asunto(s)
Antagonistas de Estrógenos/efectos adversos , Hipocampo/efectos de los fármacos , Neuronas/efectos de los fármacos , Tamoxifeno/efectos adversos , Animales , Infecciones por Cardiovirus/complicaciones , Infecciones por Cardiovirus/patología , Infecciones por Cardiovirus/veterinaria , Muerte Celular/efectos de los fármacos , Proteína Doblecortina , Hipocampo/patología , Ratones Endogámicos C57BL , Neuronas/patología , Theilovirus/fisiología
2.
Int J Mol Sci ; 20(16)2019 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-31409036

RESUMEN

Astrocytes play a key role in demyelinating diseases, like multiple sclerosis (MS), although many of their functions remain unknown. The aim of this study was to investigate the impact of astrocyte depletion upon de- and remyelination, inflammation, axonal damage, and virus distribution in Theiler`s murine encephalomyelitis (TME). Groups of two to six glial fibrillary acidic protein (GFAP)-thymidine-kinase transgenic SJL mice and SJL wildtype mice were infected with TME virus (TMEV) or mock (vehicle only). Astrocyte depletion was induced by the intraperitoneal administration of ganciclovir during the early and late phase of TME. The animals were clinically investigated while using a scoring system and a rotarod performance test. Necropsies were performed at 46 and 77 days post infection. Cervical and thoracic spinal cord segments were investigated using hematoxylin and eosin (H&E), luxol fast blue-cresyl violet (LFB), immunohistochemistry targeting Amigo2, aquaporin 4, CD3, CD34, GFAP, ionized calcium-binding adapter molecule 1 (Iba1), myelin basic protein (MBP), non-phosphorylated neurofilaments (np-NF), periaxin, S100A10, TMEV, and immunoelectron microscopy. The astrocyte depleted mice showed a deterioration of clinical signs, a downregulation and disorganization of aquaporin 4 in perivascular astrocytes accompanied by vascular leakage. Furthermore, astrocyte depleted mice showed reduced inflammation and lower numbers of TMEV positive cells in the spinal cord. The present study indicates that astrocyte depletion in virus triggered CNS diseases contributes to a deterioration of clinical signs that are mediated by a dysfunction of perivascular astrocytes.


Asunto(s)
Astrocitos/patología , Enfermedades Desmielinizantes/patología , Inflamación/patología , Esclerosis Múltiple/patología , Animales , Astrocitos/virología , Infecciones por Cardiovirus/complicaciones , Infecciones por Cardiovirus/patología , Infecciones por Cardiovirus/virología , Enfermedades Desmielinizantes/complicaciones , Enfermedades Desmielinizantes/virología , Modelos Animales de Enfermedad , Femenino , Inflamación/complicaciones , Inflamación/virología , Ratones , Esclerosis Múltiple/etiología , Esclerosis Múltiple/virología , Theilovirus/aislamiento & purificación
3.
Glia ; 66(7): 1447-1463, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29484707

RESUMEN

The innate immune response is mediated by primary immune modulators such as cytokines and chemokines that together with immune cells and resident glia orchestrate CNS immunity and inflammation. Growing evidence supports that the endocannabinoid 2-arachidonoylglycerol (2-AG) exerts protective actions in CNS injury models. Here, we used the acute phase of Theiler's virus induced demyelination disease (TMEV-IDD) as a model of acute neuroinflammation to investigate whether 2-AG modifies the brain innate immune responses to TMEV and CNS leukocyte trafficking. 2-AG or the inhibition of its hydrolysis diminished the reactivity and number of microglia at the TMEV injection site reducing their morphological complexity and modulating them towards an anti-inflammatory state via CB2 receptors. Indeed, 2-AG dampened the infiltration of immune cells into the CNS and inhibited their egress from the spleen, resulting in long-term beneficial effects at the chronic phase of the disease. Intriguingly, it is not a generalized action over leukocytes since 2-AG increased the presence and suppressive potency of myeloid derived suppressor cells (MDSCs) in the brain resulting in higher apoptotic CD4+ T cells at the injection site. Together, these data suggest a robust modulatory effect in the peripheral and central immunity by 2-AG and highlight the interest of modulating endogenous cannabinoids to regulate CNS inflammatory conditions.


Asunto(s)
Ácidos Araquidónicos/metabolismo , Infecciones por Cardiovirus/inmunología , Endocannabinoides/metabolismo , Glicéridos/metabolismo , Inflamación/inmunología , Microglía/inmunología , Theilovirus , Animales , Ácidos Araquidónicos/administración & dosificación , Encéfalo/inmunología , Encéfalo/patología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , Infecciones por Cardiovirus/patología , Modelos Animales de Enfermedad , Endocannabinoides/administración & dosificación , Femenino , Glicéridos/administración & dosificación , Inmunidad Innata/inmunología , Inflamación/patología , Ratones , Microglía/patología , Monoacilglicerol Lipasas/antagonistas & inhibidores , Monoacilglicerol Lipasas/metabolismo , Receptor Cannabinoide CB2/antagonistas & inhibidores , Receptor Cannabinoide CB2/metabolismo
4.
Neurobiol Dis ; 110: 192-205, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29208406

RESUMEN

Viral encephalitis is a major risk factor for the development of seizures and epilepsy, but the underlying mechanisms are only poorly understood. Mouse models such as viral encephalitis induced by intracerebral infection with Theiler's virus in C57BL/6 (B6) mice allow advancing our understanding of the immunological and virological aspects of infection-induced seizures and their treatment. Previous studies using the Theiler's virus model in B6 mice have indicated that brain-infiltrating inflammatory macrophages and the cytokines released by these cells are key to the development of acute seizures and hippocampal damage in this model. However, approaches used to prevent or reduce macrophage infiltration were not specific, so contribution of other mechanisms could not be excluded. In the present study, we used a more selective and widely used approach for macrophage depletion, i.e., systemic administration of clodronate liposomes, to study the contribution of macrophage infiltration to development of seizures and hippocampal damage. By this approach, almost complete depletion of monocytic cells was achieved in spleen and blood of Theiler's virus infected B6 mice, which was associated with a 70% decrease in the number of brain infiltrating macrophages as assessed by flow cytometry. Significantly less clodronate liposome-treated mice exhibited seizures than liposome controls (P<0.01), but the development of hippocampal damage was not prevented or reduced. Clodronate liposome treatment did not reduce the increased Iba1 and Mac3 labeling in the hippocampus of infected mice, indicating that activated microglia may contribute to hippocampal damage. The unexpected mismatch between occurrence of seizures and hippocampal damage is thought-provoking and suggests that the mechanisms involved in degeneration of specific populations of hippocampal neurons in encephalitis-induced epilepsy are more complex than previously thought.


Asunto(s)
Encefalitis Viral/inmunología , Encefalitis Viral/patología , Hipocampo/patología , Macrófagos , Convulsiones/inmunología , Animales , Infecciones por Cardiovirus/complicaciones , Infecciones por Cardiovirus/inmunología , Infecciones por Cardiovirus/patología , Movimiento Celular/efectos de los fármacos , Ácido Clodrónico/administración & dosificación , Encefalitis Viral/complicaciones , Liposomas , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Theilovirus
5.
Rev Med Virol ; 27(1)2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27723176

RESUMEN

Saffold virus (SAFV) is an emerging human cardiovirus that has been shown to be ubiquitous. Initial studies of SAFV focused on respiratory and gastrointestinal infection; however, it has also recently been associated with diverse clinical symptoms including the endocrine, cardiovascular, and neurological systems. Given the systemic nature of SAFV, and its high prevalence, understanding its pathogenicity and clinical impact is of utmost importance. This comprehensive review highlights and discusses recent developments in epidemiology, human pathogenicity, animal, and molecular studies related to SAFV. It also provides detailed insights into the neuropathogenicity of SAFV. We argue that human studies have been confounded by coinfections and therefore require support from robust molecular and animal research. Thereby, we aim to provide foresight into further research to better understand this emerging virus.


Asunto(s)
Infecciones por Cardiovirus/epidemiología , Infecciones por Cardiovirus/virología , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/virología , Theilovirus/aislamiento & purificación , Animales , Infecciones por Cardiovirus/patología , Enfermedades Transmisibles Emergentes/patología , Modelos Animales de Enfermedad , Humanos , Prevalencia
6.
J Neuroinflammation ; 14(1): 238, 2017 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-29202854

RESUMEN

BACKGROUND: Viral encephalitis is a dangerous compromise between the need to robustly clear pathogen from the brain and the need to protect neurons from bystander injury. Theiler's murine encephalomyelitis virus (TMEV) infection of C57Bl/6 mice is a model of viral encephalitis in which the compromise results in hippocampal damage and permanent neurological sequelae. We previously identified brain-infiltrating inflammatory monocytes as the primary driver of this hippocampal pathology, but the mechanisms involved in recruiting these cells to the brain were unclear. METHODS: Chemokine expression levels in the hippocampus were assessed by microarray, ELISA, RT-PCR, and immunofluorescence. Monocyte infiltration during acute TMEV infection was measured by flow cytometry. CCL2 levels were manipulated by immunodepletion and by specific removal from neurons in mice generated by crossing a line expressing the Cre recombinase behind the synapsin promoter to animals with floxed CCL2. RESULTS: Inoculation of the brain with TMEV induced hippocampal production of the proinflammatory chemokine CCL2 that peaked at 6 h postinfection, whereas inoculation with UV-inactivated TMEV did not elicit this response. Immunofluorescence revealed that hippocampal neurons expressed high levels of CCL2 at this timepoint. Genetic deletion of CCR2 and systemic immunodepletion of CCL2 abrogated or blunted the infiltration of inflammatory monocytes into the brain during acute infection. Specific genetic deletion of CCL2 from neurons reduced serum and hippocampal CCL2 levels and inhibited inflammatory monocyte infiltration into the brain. CONCLUSIONS: We conclude that intracranial inoculation with infectious TMEV rapidly induces the expression of CCL2 in neurons, and this cellular source is necessary for CCR2-dependent infiltration of inflammatory monocytes into the brain during the most acute stage of encephalitis. These findings highlight a unique role for neuronal production of chemokines in the initiation of leukocytic infiltration into the infected central nervous system.


Asunto(s)
Quimiocina CCL2/biosíntesis , Encefalitis Viral/mortalidad , Hipocampo/patología , Monocitos/inmunología , Neuronas/metabolismo , Animales , Infecciones por Cardiovirus/inmunología , Infecciones por Cardiovirus/metabolismo , Infecciones por Cardiovirus/patología , Quimiotaxis de Leucocito/inmunología , Encefalitis Viral/inmunología , Encefalitis Viral/metabolismo , Encefalitis Viral/patología , Hipocampo/inmunología , Hipocampo/virología , Ratones , Ratones Endogámicos C57BL , Theilovirus
7.
J Gen Virol ; 97(6): 1350-1355, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26959376

RESUMEN

Saffold virus (SAFV) is a highly seroprevalent human Cardiovirus discovered recently. No clear association between SAFV infection and human disease has been established. Rare infection cases, however, correlated with neurological symptoms. To gain insight into the pathogenesis potential of the virus, we performed experimental mouse infection with SAFV strains of genotypes 2 and 3 (SAFV-2 and SAFV-3). After intraperitoneal infection, both strains exhibited a typical Cardiovirus tropism. Viral load was most prominent in the pancreas. Heart, spleen, brain and spinal cord were also infected. In IFN-receptor 1 deficient (IFNAR-KO) mice, SAFV-3 caused a severe encephalitis. The virus was detected by immunohistochemistry in many parts of the brain and spinal cord, both in neurons and astrocytes, but astrocyte infection was more extensive. In vitro, SAFV-3 also infected astrocytes better than neurons in mixed primary cultures. Astrocytes were, however, very efficiently protected by IFN-α/ß treatment.


Asunto(s)
Infecciones por Cardiovirus/patología , Infecciones por Cardiovirus/virología , Sistema Nervioso/patología , Sistema Nervioso/virología , Theilovirus/fisiología , Tropismo Viral , Estructuras Animales/virología , Animales , Modelos Animales de Enfermedad , Inmunohistoquímica , Ratones , Microscopía , Carga Viral
8.
J Neuroinflammation ; 13(1): 293, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27855706

RESUMEN

BACKGROUND: We investigated the role of human HLA class I molecules in persistent central nervous system (CNS) injury versus repair following virus infection of the CNS. METHODS: Human class I A11+ and B27+ transgenic human beta-2 microglobulin positive (Hß2m+) mice of the H-2 b background were generated on a combined class I-deficient (mouse beta-2 microglobulin deficient, ß2m0) and class II-deficient (mouse Aß0) phenotype. Intracranial infection with Theiler's murine encephalomyelitis virus (TMEV) in susceptible SJL mice results in acute encephalitis with prominent injury in the hippocampus, striatum, and cortex. RESULTS: Following infection with TMEV, a picornavirus, the Aß0.ß2m0 mice lacking active immune responses died within 18 to 21 days post-infection. These mice showed severe encephalomyelitis due to rapid replication of the viral genome. In contrast, transgenic Hß2m mice with insertion of a single human class I MHC gene in the absence of human or mouse class II survived the acute infection. Both A11+ and B27+ mice significantly controlled virus RNA expression by 45 days and did not develop late-onset spinal cord demyelination. By 45 days post-infection (DPI), B27+ transgenic mice showed almost complete repair of the virus-induced brain injury, but A11+ mice conversely showed persistent severe hippocampal and cortical injury. CONCLUSIONS: The findings support the hypothesis that the expression of a single human class I MHC molecule, independent of persistent virus infection, influences the extent of sub frequent chronic neuronal injury or repair in the absence of a class II MHC immune response.


Asunto(s)
Infecciones por Cardiovirus/patología , Sistema Nervioso Central/patología , Sistema Nervioso Central/virología , Antígenos de Histocompatibilidad Clase I/metabolismo , Theilovirus/fisiología , Análisis de Varianza , Animales , Anticuerpos/metabolismo , Modelos Animales de Enfermedad , Citometría de Flujo , Antígeno HLA-A11/metabolismo , Antígeno HLA-B27/metabolismo , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , ARN Mensajero , Proteínas Virales/genética , Proteínas Virales/inmunología , Proteínas Virales/metabolismo
9.
J Virol ; 89(3): 1867-78, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25428872

RESUMEN

UNLABELLED: Intracerebral infection with Theiler's murine encephalomyelitis virus (TMEV) induces immune-mediated demyelinating disease in susceptible SJL/J mice but not in resistant C57BL/6 mice. Previous studies have indicated that the major histocompatibility complex (MHC) genes play the most prominent role in the development of TMEV-induced demyelinating disease. In this study, we used C57BL/6.S (B6.S) congenic mice, which carry H-2(s) MHC genes instead of H-2(b) MHC genes in conjunction with the C57BL/6 (B6) background genes. Our data show that virus-infected B6.S mice are free from disease and have significantly lower viral loads than susceptible SJL mice, particularly in the spinal cord. A strong protective Th1-type T helper response with virtually no pathogenic Th17 response was detected in B6.S mice, in contrast to the reduced Th1- and robust Th17-type responses in SJL mice. Notably, lower levels of viral infectivity in B6.S antigen-presenting cells (APCs) correlated with the disease resistance and T-cell-type response. In vitro studies using APCs from B6.S and SJL mice show that TLR2, -3, -4, and -7, but not TLR9, signaling can replace viral infection and augment the effect of viral infection in the differentiation of the pathogenic Th17 cell type. Taken together, these results strongly suggest that the viral replication levels in APCs critically affect the induction of protective versus pathogenic Th cell types via the signaling of pattern recognition receptors for innate immune responses. Our current findings further imply that the levels of viral infectivity/replication and TLR-mediated signaling play critical roles in the pathogenesis of chronic viral diseases. IMPORTANCE: This study indicates that innate immune cytokines produced in antigen-presenting cells stimulating the T cell immune responses during early viral infection play a critical role in determining the susceptibility of mice to the development of demyelinating disease. The level of innate immune cytokines reflects the level of initial viral infection in the antigen-presenting cells, and the level determines the development of T cell types, which are either protective or pathogenic. The level of initial viral infection to the cells is controlled by a gene or genes that are not associated with the major histocompatibility antigen complex genes. This finding has an important implication in controlling not only chronic viral infections but also infection-induced autoimmune-like diseases, which are closely associated with the pathogenic type of T cell responses.


Asunto(s)
Células Presentadoras de Antígenos/virología , Infecciones por Cardiovirus/patología , Infecciones por Cardiovirus/virología , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/virología , Theilovirus/aislamiento & purificación , Carga Viral , Animales , Células Presentadoras de Antígenos/inmunología , Infecciones por Cardiovirus/inmunología , Enfermedades Desmielinizantes/inmunología , Femenino , Genes MHC Clase I , Ratones Endogámicos C57BL , Células TH1/inmunología , Células Th17/inmunología , Theilovirus/inmunología , Receptores Toll-Like/inmunología
10.
J Neurovirol ; 22(3): 316-26, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26567013

RESUMEN

In this study, we demonstrate the upregulation in the expression of caspases 1 and 11 by SJL/J mouse brain astrocytes infected with the BeAn strain of Theiler's murine encephalomyelitis virus (TMEV). The upregulation of both proteases hints at protection of astrocytic cells from apoptotic death. We therefore looked for the reason of the demonstrated absence of programmed cell death in BeAn-infected SJL/J astrocytes. Complementary RNA (cRNA) from mock- and TMEV-infected cells was hybridized to the whole murine genome U74v2 DNA microarray from Affymetrix. Those experiments demonstrated the upregulation of gene expression for caspases 1 and 11 in infected cells. We further confirmed and validated their messenger RNA (mRNA) increase by reverse transcriptase quantitative real-time PCR (qPCR). The presence of both enzymatically active caspases 1 and 11 was demonstrated in cell lysates using a colorimetric and fluorymetric assay, respectively. We also show that overexpressed caspase 11 activated caspase 1 after preincubation of cytosol in vitro following a time-dependent process. This induction was neutralized by an anti-caspase 11 polyclonal antibody. These results demonstrate the activation of the caspase 1 precursor by caspase 11 and suggest a new mechanism of protection of BeAn-infected astrocytes from apoptosis. The direct experimental evidence that the protection effect demonstrated in this article was mediated by caspase 1, is provided by the fact that its specific inhibitor Z-WEHD-FMK induced de novo apoptotic death.


Asunto(s)
Astrocitos/virología , Infecciones por Cardiovirus/virología , Caspasa 1/genética , Caspasas/genética , Interacciones Huésped-Patógeno , Theilovirus/genética , Clorometilcetonas de Aminoácidos/farmacología , Animales , Animales Recién Nacidos , Anticuerpos/farmacología , Apoptosis/efectos de los fármacos , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Infecciones por Cardiovirus/patología , Caspasa 1/metabolismo , Inhibidores de Caspasas/farmacología , Caspasas/metabolismo , Caspasas Iniciadoras , Regulación de la Expresión Génica , Ratones , Cultivo Primario de Células , ARN Complementario/genética , ARN Complementario/metabolismo , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/genética , ARN Mensajero/metabolismo , Theilovirus/efectos de los fármacos , Theilovirus/metabolismo
11.
Virol J ; 13(1): 191, 2016 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-27887630

RESUMEN

BACKGROUND: Saffold Virus (SAFV) is a human cardiovirus that is suspected of causing infection of the central nervous system (CNS) in children. While recent animal studies have started to elucidate the pathogenesis of SAFV, very little is known about the mechanisms behind it. METHOD: In this study, we attempted to elucidate some of the mechanisms of the pathogenesis of SAFV in the brain of a juvenile mouse model by using immunohistochemical methods. RESULTS: We first showed that SAFV is able to infect both neuronal and glial cells in the brain of 2 week-old AG129 mice. We then showed that SAFV is able to induce apoptosis in both neuronal and glial cells in the brain. Lastly, we showed that SAFV infection does not show any signs of gross demyelination in the brain. CONCLUSION: Overall, our results provide important insights into the mechanisms of SAFV in the brain.


Asunto(s)
Encéfalo/patología , Encéfalo/virología , Infecciones por Cardiovirus/patología , Infecciones por Cardiovirus/virología , Encefalitis Viral/patología , Encefalitis Viral/virología , Theilovirus/aislamiento & purificación , Animales , Apoptosis , Modelos Animales de Enfermedad , Inmunohistoquímica , Ratones , Neuroglía/virología , Neuronas/virología
12.
PLoS Pathog ; 9(6): e1003474, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23825954

RESUMEN

Theiler's virus is a neurotropic picornavirus responsible for chronic infections of the central nervous system. The establishment of a persistent infection and the subsequent demyelinating disease triggered by the virus depend on the expression of L*, a viral accessory protein encoded by an alternative open reading frame of the virus. We discovered that L* potently inhibits the interferon-inducible OAS/RNase L pathway. The antagonism of RNase L by L* was particularly prominent in macrophages where baseline oligoadenylate synthetase (OAS) and RNase L expression levels are elevated, but was detectable in fibroblasts after IFN pretreatment. L* mutations significantly affected Theiler's virus replication in primary macrophages derived from wild-type but not from RNase L-deficient mice. L* counteracted the OAS/RNase L pathway through direct interaction with the ankyrin domain of RNase L, resulting in the inhibition of this enzyme. Interestingly, RNase L inhibition was species-specific as Theiler's virus L* protein blocked murine RNase L but not human RNase L or RNase L of other mammals or birds. Direct RNase L inhibition by L* and species specificity were confirmed in an in vitro assay performed with purified proteins. These results demonstrate a novel viral mechanism to elude the antiviral OAS/RNase L pathway. By targeting the effector enzyme of this antiviral pathway, L* potently inhibits RNase L, underscoring the importance of this enzyme in innate immunity against Theiler's virus.


Asunto(s)
Infecciones por Cardiovirus/metabolismo , Endorribonucleasas/antagonistas & inhibidores , Evasión Inmune/fisiología , Inmunidad Innata , Theilovirus/metabolismo , Proteínas Virales/metabolismo , Animales , Infecciones por Cardiovirus/genética , Infecciones por Cardiovirus/inmunología , Infecciones por Cardiovirus/patología , Línea Celular , Cricetinae , Endorribonucleasas/genética , Endorribonucleasas/inmunología , Endorribonucleasas/metabolismo , Humanos , Ratones , Ratones Mutantes , Estructura Terciaria de Proteína , Especificidad de la Especie , Theilovirus/genética , Theilovirus/inmunología , Proteínas Virales/genética , Proteínas Virales/inmunología
13.
Neuropathol Appl Neurobiol ; 41(3): 347-70, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24606160

RESUMEN

AIMS: Insufficient oligodendroglial differentiation of oligodendroglial progenitor cells (OPCs) is suggested to be responsible for remyelination failure and astroglial scar formation in Theiler's murine encephalomyelitis (TME). The aim of the present study is to identify molecular key regulators of OPC differentiation in TME, and to dissect their mechanism of action in vitro. METHODS: TME virus (TMEV) infected SJL/J-mice were evaluated by rotarod analysis, histopathology, immunohistology and gene expression microarray analysis. The STAT3 pathway was activated using meteorin and inhibited using STAT3 inhibitor VII in the glial progenitor cell line BO-1 and in primary rat OPCs in vitro. RESULTS: As expected, immunohistology demonstrated progressively decreasing myelin basic protein-positive white matter in TME. In contrast, intralesional NG2-positive OPCs as well as GFAP-positive astrocytes were increased. Gene Set Enrichment Analysis revealed 26 Gene Ontology terms including 'JAK-STAT cascade' to be significantly positively correlated with the density of NG2-positive OPCs. Immunohistology revealed an increased amount of activated, phosphorylated STAT3-expressing astrocytes, OPCs, and microglia/macrophages within the lesions. Meteorin-induced activation of STAT3-signalling in BO-1 cells and primary rat OPCs resulted in an enhanced GFAP and reduced CNPase expression. In contrast, an oppositional result was observed in BO-1 cells treated with STAT3 inhibitor VII. CONCLUSIONS: The STAT3 pathway is a key regulator of OPC-differentiation, suggested to shift their differentiation from an oligodendroglial towards an astrocytic fate, thereby inducing astrogliosis and insufficient remyelination in TME.


Asunto(s)
Astrocitos/citología , Diferenciación Celular/fisiología , Esclerosis Múltiple/patología , Oligodendroglía/citología , Factor de Transcripción STAT3/metabolismo , Theilovirus , Animales , Astrocitos/metabolismo , Infecciones por Cardiovirus/patología , Línea Celular , Femenino , Inmunohistoquímica , Ratones , Esclerosis Múltiple/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Oligodendroglía/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Ratas
14.
Arch Virol ; 160(3): 805-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25430905

RESUMEN

Encephalomyocarditis virus (EMCV) infects animals of various species and causes a variety of clinical symptoms. In this study, an infectious full-length cDNA clone was constructed, and the characteristics of the rescued virus were investigated in vitro and in vivo. Our data demonstrated that the growth kinetics in vitro and plaque morphology of the rescued EMCV rNJ08 strain were similar to those of the parental strain. Although rNJ08 infected BALB/c mice, none of the mice died during the observation period of 14 days post-inoculation. The availability of the infectious cDNA clone provides a genetic platform for studying gene function and for the rational design of vaccines.


Asunto(s)
Infecciones por Cardiovirus/virología , ADN Complementario/genética , Virus de la Encefalomiocarditis/fisiología , Porcinos/virología , Animales , Infecciones por Cardiovirus/patología , China , Clonación Molecular , ADN Complementario/aislamiento & purificación , Modelos Animales de Enfermedad , Virus de la Encefalomiocarditis/genética , Virus de la Encefalomiocarditis/crecimiento & desarrollo , Virus de la Encefalomiocarditis/aislamiento & purificación , Ratones Endogámicos BALB C , Análisis de Supervivencia , Ensayo de Placa Viral
15.
J Zoo Wildl Med ; 46(2): 393-6, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26056902

RESUMEN

A fatal case of encephalomyocarditis virus (EMCV) involving an African elephant ( Loxodonta africana ) occurred in November 2013 at the Réserve Africaine de Sigean, France. An adult female was found dead without any preliminary symptoms. Gross pathologic changes consisted of petechiae and hemorrhages on mucosae and internal organs, abundant transudate in the abdominal and pericardial cavities, and myocarditis. Histopathologic examination showed extensive degeneration and necrosis of ventricular cardiomyocytes with concurrent lymphoplasmocytic and eosinophilic infiltrate. An EMCV was isolated from several organs and considered the causative agent of the myocarditis. The same strain of virus was also isolated in rodents captured on zoo premises and considered to be the reservoir of the virus. To the authors' knowledge, this is the first EMCV case in a captive African elephant in Europe.


Asunto(s)
Animales de Zoológico , Infecciones por Cardiovirus/veterinaria , Elefantes , Virus de la Encefalomiocarditis , Animales , Infecciones por Cardiovirus/patología , Resultado Fatal , Femenino , Francia/epidemiología
16.
J Virol ; 87(7): 4052-9, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23365440

RESUMEN

Theiler murine encephalomyelitis virus (TMEV) infection of a mouse's central nervous system is biphasic: first the virus infects motor neurons (acute phase), and this is followed by a chronic phase in which the virus infects glial cells (primarily microglia and macrophages [M]) of the spinal cord white matter, leading to inflammation and demyelination. As such, TMEV-induced demyelinating disease in mice provides a highly relevant experimental animal model for multiple sclerosis. Mathematical models have proven valuable in understanding the in vivo dynamics of persistent virus infections, such as HIV-1, hepatitis B virus, and hepatitis C virus infections. However, viral dynamic modeling has not been used for understanding TMEV infection. We constructed the first mathematical model of TMEV-host kinetics during acute and early chronic infections in mice and fit measured viral kinetic data with the model. The data fitting allowed us to estimate several unknown parameters, including the following: the rate of infection of neurons, 0.5 × 10(-8) to 5.6 × 10(-8) day(-1); the percent reduction of the infection rate due to the presence of virus-specific antibodies, which reaches 98.5 to 99.9% after day 15 postinfection (p.i.); the half-life of infected neurons, 0.1 to 1.2 days; and a cytokine-enhanced macrophage source rate of 25 to 350 M/day into the spinal cord starting at 10.9 to 12.9 days p.i. The model presented here is a first step toward building a comprehensive model for TMEV-induced demyelinating disease. Moreover, the model can serve as an important tool in understanding TMEV infectious mechanisms and may prove useful in evaluating antivirals and/or therapeutic modalities to prevent or inhibit demyelination.


Asunto(s)
Infecciones por Cardiovirus/patología , Modelos Animales de Enfermedad , Modelos Biológicos , Esclerosis Múltiple/patología , Theilovirus , Animales , Anticuerpos Antivirales/inmunología , Ratones , Esclerosis Múltiple/virología , Neuronas/fisiología , Neuronas/virología
17.
J Virol ; 87(3): 1849-60, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23236075

RESUMEN

Viral infections of the central nervous system (CNS) can trigger an antiviral immune response, which initiates an inflammatory cascade to control viral replication and dissemination. The extent of the proinflammatory response in the CNS and the timing of the release of proinflammatory cytokines can lead to neuronal excitability. Tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), two proinflammatory cytokines, have been linked to the development of acute seizures in Theiler's murine encephalomyelitis virus-induced encephalitis. It is unclear the extent to which the infiltrating macrophages versus resident CNS cells, such as microglia, contribute to acute seizures, as both cell types produce TNF-α and IL-6. In this study, we show that following infection a significantly higher number of microglia produced TNF-α than did infiltrating macrophages. In contrast, infiltrating macrophages produced significantly more IL-6. Mice treated with minocycline or wogonin, both of which limit infiltration of immune cells into the CNS and their activation, had significantly fewer macrophages infiltrating the brain, and significantly fewer mice had seizures. Therefore, our studies implicate infiltrating macrophages as an important source of IL-6 that contributes to the development of acute seizures.


Asunto(s)
Infecciones por Cardiovirus/complicaciones , Infecciones por Cardiovirus/patología , Interleucina-6/metabolismo , Macrófagos/inmunología , Macrófagos/virología , Convulsiones , Theilovirus/patogenicidad , Animales , Infecciones por Cardiovirus/inmunología , Ratones , Ratones Endogámicos C57BL , Microglía/inmunología , Theilovirus/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
18.
J Immunol ; 189(4): 1937-45, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22772449

RESUMEN

Blood-brain barrier (BBB) disruption is a common feature of numerous neurologic disorders. A fundamental question in these diseases is the extent inflammatory immune cells contribute to CNS vascular permeability. We have previously shown that CD8 T cells play a critical role in initiating BBB disruption in the peptide-induced fatal syndrome model developed by our laboratory. However, myelomonocytic cells such as neutrophils have also been implicated in promoting CNS vascular permeability and functional deficit in murine models of neuroinflammatory disease. For this reason, we evaluated neutrophil depletion in a murine model of CD8 T cell-initiated BBB disruption by employing traditionally used anti-granulocyte receptor-1 mAb RB6-8C5 and Ly-6G-specific mAb 1A8. We report that CNS-infiltrating antiviral CD8 T cells express high levels of granulocyte receptor-1 protein and are depleted by treatment with RB6-8C5. Mice treated with RB6-8C5, but not 1A8, display: 1) intact BBB tight junction proteins; 2) reduced CNS vascular permeability visible by gadolinium-enhanced T1-weighted magnetic resonance imaging; and 3) preservation of motor function. These studies demonstrate that traditional methods of neutrophil depletion with RB6-8C5 are broadly immune ablating. Our data also provide evidence that CD8 T cells initiate disruption of BBB tight junction proteins and CNS vascular permeability in the absence of neutrophil support.


Asunto(s)
Barrera Hematoencefálica/inmunología , Linfocitos T CD8-positivos/inmunología , Permeabilidad Capilar/inmunología , Encefalitis/inmunología , Animales , Barrera Hematoencefálica/patología , Infecciones por Cardiovirus/inmunología , Infecciones por Cardiovirus/patología , Modelos Animales de Enfermedad , Encefalitis/patología , Citometría de Flujo , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Neutrófilos/inmunología , Theilovirus
19.
J Biol Chem ; 287(52): 43651-64, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23109342

RESUMEN

Autophagy is a tightly regulated mechanism that mediates sequestration, degradation, and recycling of cellular proteins, organelles, and pathogens. Several proteins associated with autophagy regulate host responses to viral infections. Ribonuclease L (RNase L) is activated during viral infections and cleaves cellular and viral single-stranded RNAs, including rRNAs in ribosomes. Here we demonstrate that direct activation of RNase L coordinates the activation of c-Jun N-terminal kinase (JNK) and double-stranded RNA-dependent protein kinase (PKR) to induce autophagy with hallmarks as accumulation of autophagic vacuoles, p62(SQSTM1) degradation and conversion of Microtubule-associated Protein Light Chain 3-I (LC3-I) to LC3-II. Accordingly, treatment of cells with pharmacological inhibitors of JNK or PKR and mouse embryonic fibroblasts (MEFs) lacking JNK1/2 or PKR showed reduced autophagy levels. Furthermore, RNase L-induced JNK activity promoted Bcl-2 phosphorylation, disrupted the Beclin1-Bcl-2 complex and stimulated autophagy. Viral infection with Encephalomyocarditis virus (EMCV) or Sendai virus led to higher levels of autophagy in wild-type (WT) MEFs compared with RNase L knock out (KO) MEFs. Inhibition of RNase L-induced autophagy using Bafilomycin A1 or 3-methyladenine suppressed viral growth in initial stages; in later stages autophagy promoted viral replication dampening the antiviral effect. Induction of autophagy by activated RNase L is independent of the paracrine effects of interferon (IFN). Our findings suggest a novel role of RNase L in inducing autophagy affecting the outcomes of viral pathogenesis.


Asunto(s)
Autofagia , Endorribonucleasas/metabolismo , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , eIF-2 Quinasa/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Infecciones por Cardiovirus/genética , Infecciones por Cardiovirus/metabolismo , Infecciones por Cardiovirus/patología , Línea Celular Tumoral , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Virus de la Encefalomiocarditis/fisiología , Endorribonucleasas/genética , Fibroblastos/metabolismo , Fibroblastos/patología , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/genética , Proteína Quinasa 9 Activada por Mitógenos/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , Infecciones por Respirovirus/genética , Infecciones por Respirovirus/metabolismo , Infecciones por Respirovirus/patología , Virus Sendai/fisiología , Proteína Sequestosoma-1 , Replicación Viral/fisiología , eIF-2 Quinasa/genética
20.
J Virol ; 86(10): 5574-83, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22438537

RESUMEN

Viruses often elicit cell injury (cytopathic effect [CPE]), a major cause of viral diseases. CPE is usually considered to be a prerequisite for and/or consequence of efficient viral growth. Recently, we proposed that viral CPE may largely be due to host defensive and viral antidefensive activities. This study aimed to check the validity of this proposal by using as a model HeLa cells infected with mengovirus (MV). As we showed previously, infection of these cells with wild-type MV resulted in necrosis, whereas a mutant with incapacitated antidefensive ("security") viral leader (L) protein induced apoptosis. Here, we showed that several major morphological and biochemical signs of CPE (e.g., alterations in cellular and nuclear shape, plasma membrane, cytoskeleton, chromatin, and metabolic activity) in cells infected with L(-) mutants in the presence of an apoptosis inhibitor were strongly suppressed or delayed for long after completion of viral reproduction. These facts demonstrate that the efficient reproduction of a lytic virus may not directly require development of at least some pathological alterations normally accompanying infection. They also imply that L protein is involved in the control of many apparently unrelated functions. The results also suggest that the virus-activated program with competing necrotic and apoptotic branches is host encoded, with the choice between apoptosis and necrosis depending on a variety of intrinsic and extrinsic conditions. Implementation of this defensive suicidal program could be uncoupled from the viral reproduction. The possibility of such uncoupling has significant implications for the pathogenesis and treatment of viral diseases.


Asunto(s)
Infecciones por Cardiovirus/virología , Efecto Citopatogénico Viral , Regulación hacia Abajo , Interacciones Huésped-Patógeno , Mengovirus/fisiología , Replicación Viral , Infecciones por Cardiovirus/inmunología , Infecciones por Cardiovirus/patología , Células HeLa , Humanos , Mengovirus/genética , Mengovirus/inmunología , Proteínas Virales/genética , Proteínas Virales/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA