Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.936
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(8): 1874-1888.e14, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38518773

RESUMEN

Infections of the lung cause observable sickness thought to be secondary to inflammation. Signs of sickness are crucial to alert others via behavioral-immune responses to limit contact with contagious individuals. Gram-negative bacteria produce exopolysaccharide (EPS) that provides microbial protection; however, the impact of EPS on sickness remains uncertain. Using genome-engineered Pseudomonas aeruginosa (P. aeruginosa) strains, we compared EPS-producers versus non-producers and a virulent Escherichia coli (E. coli) lung infection model in male and female mice. EPS-negative P. aeruginosa and virulent E. coli infection caused severe sickness, behavioral alterations, inflammation, and hypothermia mediated by TLR4 detection of the exposed lipopolysaccharide (LPS) in lung TRPV1+ sensory neurons. However, inflammation did not account for sickness. Stimulation of lung nociceptors induced acute stress responses in the paraventricular hypothalamic nuclei by activating corticotropin-releasing hormone neurons responsible for sickness behavior and hypothermia. Thus, EPS-producing biofilm pathogens evade initiating a lung-brain sensory neuronal response that results in sickness.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Pulmón , Polisacáridos Bacterianos , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Animales , Femenino , Masculino , Ratones , Biopelículas , Escherichia coli/fisiología , Hipotermia/metabolismo , Hipotermia/patología , Inflamación/metabolismo , Inflamación/patología , Pulmón/microbiología , Pulmón/patología , Neumonía/microbiología , Neumonía/patología , Pseudomonas aeruginosa/fisiología , Células Receptoras Sensoriales , Polisacáridos Bacterianos/metabolismo , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Infecciones por Pseudomonas/metabolismo , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/patología , Nociceptores/metabolismo
2.
Cell ; 172(1-2): 121-134.e14, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29307490

RESUMEN

Chronic Pseudomonas aeruginosa infections evade antibiotic therapy and are associated with mortality in cystic fibrosis (CF) patients. We find that in vitro resistance evolution of P. aeruginosa toward clinically relevant antibiotics leads to phenotypic convergence toward distinct states. These states are associated with collateral sensitivity toward several antibiotic classes and encoded by mutations in antibiotic resistance genes, including transcriptional regulator nfxB. Longitudinal analysis of isolates from CF patients reveals similar and defined phenotypic states, which are associated with extinction of specific sub-lineages in patients. In-depth investigation of chronic P. aeruginosa populations in a CF patient during antibiotic therapy revealed dramatic genotypic and phenotypic convergence. Notably, fluoroquinolone-resistant subpopulations harboring nfxB mutations were eradicated by antibiotic therapy as predicted by our in vitro data. This study supports the hypothesis that antibiotic treatment of chronic infections can be optimized by targeting phenotypic states associated with specific mutations to improve treatment success in chronic infections.


Asunto(s)
Fibrosis Quística/microbiología , Farmacorresistencia Bacteriana , Evolución Molecular , Fenotipo , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , Fibrosis Quística/complicaciones , Proteínas de Unión al ADN/genética , Humanos , Masculino , Persona de Mediana Edad , Mutación , Infecciones por Pseudomonas/complicaciones , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/patogenicidad , Selección Genética , Factores de Transcripción/genética
3.
Nature ; 618(7964): 358-364, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225987

RESUMEN

The ability to switch between different lifestyles allows bacterial pathogens to thrive in diverse ecological niches1,2. However, a molecular understanding of their lifestyle changes within the human host is lacking. Here, by directly examining bacterial gene expression in human-derived samples, we discover a gene that orchestrates the transition between chronic and acute infection in the opportunistic pathogen Pseudomonas aeruginosa. The expression level of this gene, here named sicX, is the highest of the P. aeruginosa genes expressed in human chronic wound and cystic fibrosis infections, but it is expressed at extremely low levels during standard laboratory growth. We show that sicX encodes a small RNA that is strongly induced by low-oxygen conditions and post-transcriptionally regulates anaerobic ubiquinone biosynthesis. Deletion of sicX causes P. aeruginosa to switch from a chronic to an acute lifestyle in multiple mammalian models of infection. Notably, sicX is also a biomarker for this chronic-to-acute transition, as it is the most downregulated gene when a chronic infection is dispersed to cause acute septicaemia. This work solves a decades-old question regarding the molecular basis underlying the chronic-to-acute switch in P. aeruginosa and suggests oxygen as a primary environmental driver of acute lethality.


Asunto(s)
Enfermedad Aguda , Enfermedad Crónica , Genes Bacterianos , Oxígeno , Infecciones por Pseudomonas , Pseudomonas aeruginosa , ARN Bacteriano , Animales , Humanos , Oxígeno/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Infecciones por Pseudomonas/complicaciones , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/patología , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Fibrosis Quística/microbiología , Heridas y Lesiones/microbiología , Ubiquinona/biosíntesis , Anaerobiosis , Genes Bacterianos/genética , Sepsis/complicaciones , Sepsis/microbiología
4.
PLoS Biol ; 22(2): e3002205, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38300958

RESUMEN

Cells must access resources to survive, and the anatomy of multicellular structures influences this access. In diverse multicellular eukaryotes, resources are provided by internal conduits that allow substances to travel more readily through tissue than they would via diffusion. Microbes growing in multicellular structures, called biofilms, are also affected by differential access to resources and we hypothesized that this is influenced by the physical arrangement of the cells. In this study, we examined the microanatomy of biofilms formed by the pathogenic bacterium Pseudomonas aeruginosa and discovered that clonal cells form striations that are packed lengthwise across most of a mature biofilm's depth. We identified mutants, including those defective in pilus function and in O-antigen attachment, that show alterations to this lengthwise packing phenotype. Consistent with the notion that cellular arrangement affects access to resources within the biofilm, we found that while the wild type shows even distribution of tested substrates across depth, the mutants show accumulation of substrates at the biofilm boundaries. Furthermore, we found that altered cellular arrangement within biofilms affects the localization of metabolic activity, the survival of resident cells, and the susceptibility of subpopulations to antibiotic treatment. Our observations provide insight into cellular features that determine biofilm microanatomy, with consequences for physiological differentiation and drug sensitivity.


Asunto(s)
Antibacterianos , Infecciones por Pseudomonas , Humanos , Antibacterianos/farmacología , Pseudomonas aeruginosa/metabolismo , Biopelículas , Infecciones por Pseudomonas/microbiología , Fimbrias Bacterianas
5.
PLoS Biol ; 22(8): e3002781, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39178315

RESUMEN

Metabolism provides the foundation for all cellular functions. During persistent infections, in adapted pathogenic bacteria metabolism functions radically differently compared with more naïve strains. Whether this is simply a necessary accommodation to the persistence phenotype or if metabolism plays a direct role in achieving persistence in the host is still unclear. Here, we characterize a convergent shift in metabolic function(s) linked with the persistence phenotype during Pseudomonas aeruginosa colonization in the airways of people with cystic fibrosis. We show that clinically relevant mutations in the key metabolic enzyme, pyruvate dehydrogenase, lead to a host-specialized metabolism together with a lower virulence and immune response recruitment. These changes in infection phenotype are mediated by impaired type III secretion system activity and by secretion of the antioxidant metabolite, pyruvate, respectively. Our results show how metabolic adaptations directly impinge on persistence and pathogenicity in this organism.


Asunto(s)
Fibrosis Quística , Mutación , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Fibrosis Quística/microbiología , Pseudomonas aeruginosa/patogenicidad , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/aislamiento & purificación , Pseudomonas aeruginosa/metabolismo , Humanos , Infecciones por Pseudomonas/microbiología , Virulencia , Sistemas de Secreción Tipo III/metabolismo , Sistemas de Secreción Tipo III/genética , Ácido Pirúvico/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
6.
PLoS Biol ; 22(7): e3002692, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38954678

RESUMEN

The prevalence of antibiotic-resistant pathogens has become a major threat to public health, requiring swift initiatives for discovering new strategies to control bacterial infections. Hence, antibiotic stewardship and rapid diagnostics, but also the development, and prudent use, of novel effective antimicrobial agents are paramount. Ideally, these agents should be less likely to select for resistance in pathogens than currently available conventional antimicrobials. The usage of antimicrobial peptides (AMPs), key components of the innate immune response, and combination therapies, have been proposed as strategies to diminish the emergence of resistance. Herein, we investigated whether newly developed random antimicrobial peptide mixtures (RPMs) can significantly reduce the risk of resistance evolution in vitro to that of single sequence AMPs, using the ESKAPE pathogen Pseudomonas aeruginosa (P. aeruginosa) as a model gram-negative bacterium. Infections of this pathogen are difficult to treat due the inherent resistance to many drug classes, enhanced by the capacity to form biofilms. P. aeruginosa was experimentally evolved in the presence of AMPs or RPMs, subsequentially assessing the extent of resistance evolution and cross-resistance/collateral sensitivity between treatments. Furthermore, the fitness costs of resistance on bacterial growth were studied and whole-genome sequencing used to investigate which mutations could be candidates for causing resistant phenotypes. Lastly, changes in the pharmacodynamics of the evolved bacterial strains were examined. Our findings suggest that using RPMs bears a much lower risk of resistance evolution compared to AMPs and mostly prevents cross-resistance development to other treatments, while maintaining (or even improving) drug sensitivity. This strengthens the case for using random cocktails of AMPs in favour of single AMPs, against which resistance evolved in vitro, providing an alternative to classic antibiotics worth pursuing.


Asunto(s)
Antibacterianos , Péptidos Antimicrobianos , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efectos de los fármacos , Antibacterianos/farmacología , Péptidos Antimicrobianos/farmacología , Farmacorresistencia Bacteriana/genética , Biopelículas/efectos de los fármacos , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología
7.
Proc Natl Acad Sci U S A ; 121(33): e2406234121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39102545

RESUMEN

Laboratory models are central to microbiology research, advancing the understanding of bacterial physiology by mimicking natural environments, from soil to the human microbiome. When studying host-bacteria interactions, animal models enable investigators to examine bacterial dynamics associated with a host, and in the case of human infections, animal models are necessary to translate basic research into clinical treatments. Efforts toward improving animal infection models are typically based on reproducing host genotypes/phenotypes and disease manifestations, leaving a gap in how well the physiology of microbes reflects their behavior in a human host. Understanding bacterial physiology is vital because it dictates host response and bacterial interactions with antimicrobials. Thus, our goal was to develop an animal model that accurately recapitulates bacterial physiology in human infection. The system we chose to model was a chronic Pseudomonas aeruginosa respiratory infection in cystic fibrosis (CF). To accomplish this goal, we leveraged a framework that we recently developed to evaluate model accuracy by calculating the percentage of bacterial genes that are expressed similarly in a model to how they are expressed in their infection environment. We combined two complementary models of P. aeruginosa infection-an in vitro synthetic CF sputum model (SCFM2) and a mouse acute pneumonia model. This combined model captured the chronic physiology of P. aeruginosa in CF better than the standard mouse infection model, showing the power of a data-driven approach to refining animal models. In addition, the results of this work challenge the assumption that a chronic infection model requires long-term colonization.


Asunto(s)
Fibrosis Quística , Modelos Animales de Enfermedad , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Fibrosis Quística/microbiología , Fibrosis Quística/complicaciones , Pseudomonas aeruginosa/fisiología , Pseudomonas aeruginosa/patogenicidad , Animales , Infecciones por Pseudomonas/microbiología , Ratones , Humanos , Infecciones del Sistema Respiratorio/microbiología , Interacciones Huésped-Patógeno , Esputo/microbiología
8.
Brief Bioinform ; 25(5)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39133098

RESUMEN

Pseudomonas aeruginosa is a complex nosocomial infectious agent responsible for numerous illnesses, with its growing resistance variations complicating treatment development. Studies have emphasized the importance of virulence factors OprE and OprF in pathogenesis, highlighting their potential as vaccine candidates. In this study, B-cell, MHC-I, and MHC-II epitopes were identified, and molecular linkers were active to join these epitopes with an appropriate adjuvant to construct a vaccine. Computational tools were employed to forecast the tertiary framework, characteristics, and also to confirm the vaccine's composition. The potency was weighed through population coverage analysis and immune simulation. This project aims to create a multi-epitope vaccine to reduce P. aeruginosa-related illness and mortality using immunoinformatics resources. The ultimate complex has been determined to be stable, soluble, antigenic, and non-allergenic upon inspection of its physicochemical and immunological properties. Additionally, the protein exhibited acidic and hydrophilic characteristics. The Ramachandran plot, ProSA-web, ERRAT, and Verify3D were employed to ensure the final model's authenticity once the protein's three-dimensional structure had been established and refined. The vaccine model showed a significant binding score and stability when interacting with MHC receptors. Population coverage analysis indicated a global coverage rate of 83.40%, with the USA having the highest coverage rate, exceeding 90%. Moreover, the vaccine sequence underwent codon optimization before being cloned into the Escherichia coli plasmid vector pET-28a (+) at the EcoRI and EcoRV restriction sites. Our research has developed a vaccine against P. aeruginosa that has strong binding affinity and worldwide coverage, offering an acceptable way to mitigate nosocomial infections.


Asunto(s)
Biología Computacional , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Sepsis , Pseudomonas aeruginosa/inmunología , Pseudomonas aeruginosa/genética , Humanos , Infecciones por Pseudomonas/prevención & control , Infecciones por Pseudomonas/inmunología , Infecciones por Pseudomonas/microbiología , Sepsis/prevención & control , Sepsis/inmunología , Sepsis/microbiología , Biología Computacional/métodos , Epítopos/inmunología , Epítopos/química , Neumonía/prevención & control , Neumonía/inmunología , Neumonía/microbiología , Vacunas contra la Infección por Pseudomonas/inmunología , Vacunas Bacterianas/inmunología , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/genética
9.
PLoS Pathog ; 20(1): e1011946, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38198506

RESUMEN

Pseudomonas aeruginosa is a highly pathogenic bacterium known for its ability to sense and coordinate the production of virulence factors in response to host immune responses. However, the regulatory mechanisms underlying this process have remained largely elusive. In this study, we investigate the two-component system CprRS in P. aeruginosa and unveil the crucial role of the sensor protein CprS in sensing the human host defense peptide LL-37, thereby modulating bacterial virulence. We demonstrate that CprS acts as a phosphatase in the presence of LL-37, leading to the phosphorylation and activation of the response regulator CprR. The results prove that CprR directly recognizes a specific sequence within the promoter region of the HigBA toxin-antitoxin system, resulting in enhanced expression of the toxin HigB. Importantly, LL-37-induced HigB expression promotes the production of type III secretion system effectors, leading to reduced expression of proinflammatory cytokines and increased cytotoxicity towards macrophages. Moreover, mutations in cprS or cprR significantly impair bacterial survival in both macrophage and insect infection models. This study uncovers the regulatory mechanism of the CprRS system, enabling P. aeruginosa to detect and respond to human innate immune responses while maintaining a balanced virulence gene expression profile. Additionally, this study provides new evidence and insights into the complex regulatory system of T3SS in P. aeruginosa within the host environment, contributing to a better understanding of host-microbe communication and the development of novel strategies to combat bacterial infections.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/metabolismo , Infecciones por Pseudomonas/genética , Infecciones por Pseudomonas/microbiología , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Virulencia , Sistemas de Secreción Tipo III/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
10.
PLoS Pathog ; 20(6): e1012252, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38833496

RESUMEN

Microbial pathogenicity often depends on the route of infection. For instance, P. aeruginosa or S. marcescens cause acute systemic infections when low numbers of bacteria are injected into D. melanogaster flies whereas flies succumb much slower to the continuous ingestion of these pathogens, even though both manage to escape from the gut compartment and reach the hemocoel. Here, we have developed a latent P. aeruginosa infection model by feeding flies on the bacteria for a short period. The bacteria stably colonize internal tissues yet hardly cause any damage since latently-infected flies live almost as long as noninfected control flies. The apparently dormant bacteria display particular characteristics in terms of bacterial colony morphology, composition of the outer cell wall, and motility. The virulence of these bacteria can however be reactivated upon wounding the host. We show that melanization but not the cellular or the systemic humoral response is the predominant host defense that establishes latency and may coerce the bacteria to a dormant state. In addition, the lasting activation of the melanization responses in latently-infected flies provides a degree of protection to the host against a secondary fungal infection. Latent infection by an ingested pathogen protects against a variety of homologous or heterologous systemic secondary infectious challenges, a situation previously described for the endosymbiotic Wolbachia bacteria, a guard against viral infections.


Asunto(s)
Drosophila melanogaster , Inmunidad Innata , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Animales , Drosophila melanogaster/microbiología , Drosophila melanogaster/inmunología , Pseudomonas aeruginosa/patogenicidad , Pseudomonas aeruginosa/inmunología , Infecciones por Pseudomonas/inmunología , Infecciones por Pseudomonas/microbiología , Virulencia , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno/inmunología
11.
PLoS Pathog ; 20(8): e1012486, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39159286

RESUMEN

The opportunistic bacterial pathogen Pseudomonas aeruginosa causes a wide range of infections that are difficult to treat, largely because of the spread of antibiotic-resistant isolates. Antivirulence therapy, í.e. the use of drugs that inhibit the expression or activity of virulence factors, is currently considered an attractive strategy to reduce P. aeruginosa pathogenicity and complement antibiotic treatments. Because of the multifactorial nature of P. aeruginosa virulence and the broad arsenal of virulence factors this bacterium can produce, the regulatory networks that control the expression of multiple virulence traits have been extensively explored as potential targets for antivirulence drug development. The intracellular signaling molecule diadenosine tetraphosphate (Ap4A) has been reported to control stress resistance and virulence-related traits in some bacteria, but its role has not been investigated in P. aeruginosa so far. To fill this gap, we generated a mutant of the reference strain P. aeruginosa PAO1 that lacks the Ap4A-hydrolysing enzyme ApaH and, consequently, accumulates high intracellular levels of Ap4A. Phenotypic and transcriptomic analyses revealed that the lack of ApaH causes a drastic reduction in the expression of several virulence factors, including extracellular proteases, elastases, siderophores, and quorum sensing signal molecules. Accordingly, infection assays in plant and animal models demonstrated that ApaH-deficient cells are significantly impaired in infectivity and persistence in different hosts, including mice. Finally, deletion of apaH in P. aeruginosa clinical isolates demonstrated that the positive effect of ApaH on the production of virulence-related traits and on infectivity is conserved in P. aeruginosa. This study provides the first evidence that the Ap4A-hydrolysing enzyme ApaH is important for P. aeruginosa virulence, highlighting this protein as a novel potential target for antivirulence therapies against P. aeruginosa.


Asunto(s)
Fosfatos de Dinucleósidos , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Factores de Virulencia , Pseudomonas aeruginosa/patogenicidad , Pseudomonas aeruginosa/genética , Animales , Ratones , Virulencia , Infecciones por Pseudomonas/microbiología , Fosfatos de Dinucleósidos/metabolismo , Factores de Virulencia/metabolismo , Factores de Virulencia/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Ácido Anhídrido Hidrolasas/metabolismo , Ácido Anhídrido Hidrolasas/genética , Regulación Bacteriana de la Expresión Génica
12.
PLoS Pathog ; 20(5): e1011453, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38820569

RESUMEN

Mucosa-associated biofilms are associated with many human disease states, but the host mechanisms promoting biofilm remain unclear. In chronic respiratory diseases like cystic fibrosis (CF), Pseudomonas aeruginosa establishes chronic infection through biofilm formation. P. aeruginosa can be attracted to interspecies biofilms through potassium currents emanating from the biofilms. We hypothesized that P. aeruginosa could, similarly, sense and respond to the potassium efflux from human airway epithelial cells (AECs) to promote biofilm. Using respiratory epithelial co-culture biofilm imaging assays of P. aeruginosa grown in association with CF bronchial epithelial cells (CFBE41o-), we found that P. aeruginosa biofilm was increased by potassium efflux from AECs, as examined by potentiating large conductance potassium channel, BKCa (NS19504) potassium efflux. This phenotype is driven by increased bacterial attachment and increased coalescence of bacteria into aggregates. Conversely, biofilm formation was reduced when AECs were treated with a BKCa blocker (paxilline). Using an agar-based macroscopic chemotaxis assay, we determined that P. aeruginosa chemotaxes toward potassium and screened transposon mutants to discover that disruption of the high-sensitivity potassium transporter, KdpFABC, and the two-component potassium sensing system, KdpDE, reduces P. aeruginosa potassium chemotaxis. In respiratory epithelial co-culture biofilm imaging assays, a KdpFABCDE deficient P. aeruginosa strain demonstrated reduced biofilm growth in association with AECs while maintaining biofilm formation on abiotic surfaces. Furthermore, we determined that the Kdp operon is expressed in vivo in people with CF and the genes are conserved in CF isolates. Collectively, these data suggest that P. aeruginosa biofilm formation can be increased by attracting bacteria to the mucosal surface and enhancing coalescence into microcolonies through aberrant AEC potassium efflux sensed by the KdpFABCDE system. These findings suggest host electrochemical signaling can enhance biofilm, a novel host-pathogen interaction, and potassium flux could be a therapeutic target to prevent chronic infections in diseases with mucosa-associated biofilms, like CF.


Asunto(s)
Biopelículas , Fibrosis Quística , Células Epiteliales , Operón , Potasio , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Biopelículas/crecimiento & desarrollo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/fisiología , Humanos , Fibrosis Quística/microbiología , Fibrosis Quística/metabolismo , Células Epiteliales/microbiología , Células Epiteliales/metabolismo , Potasio/metabolismo , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/microbiología
13.
Immunity ; 47(1): 148-158.e5, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28709803

RESUMEN

Mucosal sites such as the intestine, oral cavity, nasopharynx, and vagina all have associated commensal flora. The surface of the eye is also a mucosal site, but proof of a living, resident ocular microbiome remains elusive. Here, we used a mouse model of ocular surface disease to reveal that commensals were present in the ocular mucosa and had functional immunological consequences. We isolated one such candidate commensal, Corynebacterium mastitidis, and showed that this organism elicited a commensal-specific interleukin-17 response from γδ T cells in the ocular mucosa that was central to local immunity. The commensal-specific response drove neutrophil recruitment and the release of antimicrobials into the tears and protected the eye from pathogenic Candida albicans or Pseudomonas aeruginosa infection. Our findings provide direct evidence that a resident commensal microbiome exists on the ocular surface and identify the cellular mechanisms underlying its effects on ocular immune homeostasis and host defense.


Asunto(s)
Candida albicans/inmunología , Candidiasis/inmunología , Córnea/inmunología , Infecciones por Corynebacterium/inmunología , Corynebacterium/inmunología , Infecciones del Ojo/inmunología , Inmunidad Mucosa , Interleucina-17/metabolismo , Microbiota/inmunología , Neutrófilos/inmunología , Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/inmunología , Linfocitos T/inmunología , Lágrimas/inmunología , Animales , Candidiasis/microbiología , Córnea/microbiología , Infecciones por Corynebacterium/microbiología , Modelos Animales de Enfermedad , Infecciones del Ojo/microbiología , Interacciones Huésped-Patógeno , Humanos , Interleucina-17/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infiltración Neutrófila , Neutrófilos/microbiología , Infecciones por Pseudomonas/microbiología , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo
14.
Immunity ; 47(6): 1169-1181.e7, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29246444

RESUMEN

The tumor suppressor PTEN controls cell proliferation by regulating phosphatidylinositol-3-kinase (PI3K) activity, but the participation of PTEN in host defense against bacterial infection is less well understood. Anti-inflammatory PI3K-Akt signaling is suppressed in patients with cystic fibrosis (CF), a disease characterized by hyper-inflammatory responses to airway infection. We found that Ptenl-/- mice, which lack the NH2-amino terminal splice variant of PTEN, were unable to eradicate Pseudomonas aeruginosa from the airways and could not generate sufficient anti-inflammatory PI3K activity, similar to what is observed in CF. PTEN and the CF transmembrane conductance regulator (CFTR) interacted directly and this interaction was necessary to position PTEN at the membrane. CF patients under corrector-potentiator therapy, which enhances CFTR transport to the membrane, have increased PTEN amounts. These findings suggest that improved CFTR trafficking could enhance P. aeruginosa clearance from the CF airway by activating PTEN-mediated anti-bacterial responses and might represent a therapeutic strategy.


Asunto(s)
Membrana Celular/inmunología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/inmunología , Fibrosis Quística/inmunología , Fosfohidrolasa PTEN/inmunología , Infecciones por Pseudomonas/inmunología , Aminofenoles/farmacología , Aminopiridinas/farmacología , Animales , Benzodioxoles/farmacología , Membrana Celular/efectos de los fármacos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/microbiología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Moleculares , Monocitos/efectos de los fármacos , Monocitos/inmunología , Monocitos/microbiología , Fosfohidrolasa PTEN/deficiencia , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/inmunología , Unión Proteica , Conformación Proteica , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/inmunología , Infecciones por Pseudomonas/genética , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/inmunología , Quinolonas/farmacología , Transducción de Señal
15.
Proc Natl Acad Sci U S A ; 120(19): e2221542120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126703

RESUMEN

Laboratory models are critical to basic and translational microbiology research. Models serve multiple purposes, from providing tractable systems to study cell biology to allowing the investigation of inaccessible clinical and environmental ecosystems. Although there is a recognized need for improved model systems, there is a gap in rational approaches to accomplish this goal. We recently developed a framework for assessing the accuracy of microbial models by quantifying how closely each gene is expressed in the natural environment and in various models. The accuracy of the model is defined as the percentage of genes that are similarly expressed in the natural environment and the model. Here, we leverage this framework to develop and validate two generalizable approaches for improving model accuracy, and as proof of concept, we apply these approaches to improve models of Pseudomonas aeruginosa infecting the cystic fibrosis (CF) lung. First, we identify two models, an in vitro synthetic CF sputum medium model (SCFM2) and an epithelial cell model, that accurately recapitulate different gene sets. By combining these models, we developed the epithelial cell-SCFM2 model which improves the accuracy of over 500 genes. Second, to improve the accuracy of specific genes, we mined publicly available transcriptome data, which identified zinc limitation as a cue present in the CF lung and absent in SCFM2. Induction of zinc limitation in SCFM2 resulted in accurate expression of 90% of P. aeruginosa genes. These approaches provide generalizable, quantitative frameworks for microbiological model improvement that can be applied to any system of interest.


Asunto(s)
Infecciones Bacterianas , Fibrosis Quística , Infecciones por Pseudomonas , Humanos , Ecosistema , Infecciones por Pseudomonas/microbiología , Transcriptoma , Células Epiteliales/microbiología , Medios de Cultivo/metabolismo , Fibrosis Quística/microbiología , Pseudomonas aeruginosa/genética , Esputo/microbiología
16.
Proc Natl Acad Sci U S A ; 120(47): e2312995120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37956290

RESUMEN

A model for antibiotic accumulation in bacterial biofilm microcolonies utilizing heterogenous porosity and attachment site profiles replicated the periphery sequestration reported in prior experimental studies on Pseudomonas aeruginosa PAO1 biofilm cell clusters. These P. aeruginosa cell clusters are in vitro models of the chronic P. aeruginosa infections in cystic fibrosis patients which display recalcitrance to antibiotic treatments, leading to exacerbated morbidity and mortality. This resistance has been partially attributed to periphery sequestration, where antibiotics fail to penetrate biofilm cell clusters. The physical phenomena driving this periphery sequestration have not been definitively established. This paper introduces mathematical models to account for two proposed physical phenomena driving periphery sequestration: biofilm matrix attachment and volume-exclusion due to variable biofilm porosity. An antibiotic accumulation model which incorporated these phenomena better fit observed periphery sequestration data compared to previous models.


Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Pseudomonas aeruginosa , Biopelículas , Matriz Extracelular de Sustancias Poliméricas , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/microbiología , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología
17.
PLoS Pathog ; 19(3): e1011221, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36996043

RESUMEN

Pseudomonas aeruginosa is a major, but opportunistic, respiratory pathogen, which rarely infects healthy individuals, mainly due to the barrier effect of the human airway epithelium (HAE). This review explores the interaction of P. aeruginosa with HAE and the progression of the infection. The basolateral part of the epithelium, which includes the basolateral membrane of the epithelial cells and the basement membrane, is inaccessible in normal tight epithelia with intact junctions. We highlight how P. aeruginosa exploits weaknesses in the HAE barrier to gain access to the basolateral part of the epithelium. This access is crucial to initiate respiratory infection and is mainly observed in the injured epithelium, in repairing or chronically remodeled epithelium, and during extrusion of senescent cells or cell multiplication during normal epithelium renewal. The subsequent adhesion of the bacteria and cytotoxic action of virulence factors, including the toxins delivered by the type 3 secretion system (T3SS), lead to retractions and cell death. Eventually, P. aeruginosa progressively reaches the basement membrane and propagates radially through the basal part of the epithelium to disseminate using twitching and flagellar motility.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Humanos , Epitelio/metabolismo , Sistema Respiratorio , Células Epiteliales/metabolismo , Bacterias , Infecciones por Pseudomonas/microbiología
18.
Trends Immunol ; 43(7): 497-499, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35654640

RESUMEN

Upon bacterial infection, mounting the appropriate immune response is paramount to effective pathogen clearance. In a recent study, Agaronyan et al. show how Pseudomonas aeruginosa can divert host immunity to boost type 2 responses and drive mucus production, which can then act as a nutrient source for bacteria.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Humanos , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/fisiología
19.
FASEB J ; 38(18): e70051, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39269436

RESUMEN

Pseudomonas aeruginosa is a frequent cause of antimicrobial-resistant hospital-acquired pneumonia, especially in critically ill patients. Inflammation triggered by P. aeruginosa infection is necessary for bacterial clearance but must be spatially and temporally regulated to prevent further tissue damage and bacterial dissemination. Emerging data have shed light on the pro-resolving actions of angiotensin-(1-7) [Ang-(1-7)] signaling through the G protein-coupled receptor Mas (MasR) during infections. Herein, we investigated the role of the Ang-(1-7)/Mas axis in pneumonia caused by P. aeruginosa by using genetic and pharmacological approach and found that Mas receptor-deficient animals developed a more severe form of pneumonia showing higher neutrophilic infiltration into the airways, bacterial load, cytokines, and chemokines production and more severe pulmonary damage. Conversely, treatment of pseudomonas-infected mice with Ang-(1-7) was able to decrease neutrophilic infiltration in airways and lungs, local and systemic levels of pro-inflammatory cytokines and chemokines, and increase the efferocytosis rates, mitigating lung damage/dysfunction caused by infection. Notably, the therapeutic association of Ang-(1-7) with antibiotics improved the survival rates of mice subjected to lethal inoculum of P. aeruginosa, extending the therapeutic window for imipenem. Mechanistically, Ang-(1-7) increased phagocytosis of bacteria by neutrophils and macrophages to accelerate pathogen clearance. Altogether, harnessing the Ang-(1-7) pathway during infection is a potential strategy for the development of host-directed therapies to promote mechanisms of resistance and resilience to pneumonia.


Asunto(s)
Angiotensina I , Antibacterianos , Ratones Endogámicos C57BL , Fragmentos de Péptidos , Proto-Oncogenes Mas , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Receptores Acoplados a Proteínas G , Animales , Angiotensina I/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Ratones , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/metabolismo , Infecciones por Pseudomonas/microbiología , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Neumonía Bacteriana/tratamiento farmacológico , Neumonía Bacteriana/microbiología , Neumonía Bacteriana/patología , Neumonía Bacteriana/metabolismo , Citocinas/metabolismo , Ratones Noqueados , Neumonía/tratamiento farmacológico , Neumonía/metabolismo , Neumonía/microbiología , Masculino , Pulmón/microbiología , Pulmón/metabolismo , Pulmón/patología , Transducción de Señal/efectos de los fármacos , Infiltración Neutrófila/efectos de los fármacos
20.
Am J Respir Crit Care Med ; 209(12): 1453-1462, 2024 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-38324627

RESUMEN

Rationale: Pseudomonas aeruginosa is the major bacterial pathogen colonizing the airways of adult patients with cystic fibrosis (CF) and causes chronic infections that persist despite antibiotic therapy. Intracellular bacteria may represent an unrecognized reservoir of bacteria that evade the immune system and antibiotic therapy. Although the ability of P. aeruginosa to invade and survive within epithelial cells has been described in vitro in different epithelial cell models, evidence of this intracellular lifestyle in human lung tissues is currently lacking. Objectives: To detect and characterize intracellular P. aeruginosa in CF airway epithelium from human lung explant tissues. Methods: We sampled lung explant tissues from patients with CF undergoing lung transplantation and non-CF lung donor control tissue. We analyzed lung tissue sections for the presence of intracellular P. aeruginosa using quantitative culture and microscopy, in parallel to histopathology and airway morphometry. Measurements and Main Results: P. aeruginosa was isolated from the lungs of seven patients with CF undergoing lung transplantation. Microscopic assessment revealed the presence of intracellular P. aeruginosa within airway epithelial cells in three of the seven patients analyzed at a varying but low frequency. We observed those events occurring in lung regions with high bacterial burden. Conclusions: This is the first study describing the presence of intracellular P. aeruginosa in CF lung tissues. Although intracellular P. aeruginosa in airway epithelial cells is likely relatively rare, our findings highlight the plausible occurrence of this intracellular bacterial reservoir in chronic CF infections.


Asunto(s)
Fibrosis Quística , Trasplante de Pulmón , Pulmón , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Mucosa Respiratoria , Humanos , Fibrosis Quística/microbiología , Fibrosis Quística/complicaciones , Femenino , Masculino , Adulto , Mucosa Respiratoria/microbiología , Mucosa Respiratoria/patología , Infecciones por Pseudomonas/microbiología , Pulmón/microbiología , Pulmón/patología , Adulto Joven , Células Epiteliales/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA