Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.436
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Genet ; 51: 265-285, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-28853925

RESUMEN

Sexual reproduction crucially depends on the production of sperm in males and oocytes in females. Both types of gamete arise from the same precursor, the germ cells. We review the events that characterize the development of germ cells during fetal life as they commit to, and prepare for, oogenesis or spermatogenesis. In females, fetal germ cells enter meiosis, whereas in males they delay meiosis and instead lose pluripotency, activate an irreversible program of prospermatogonial differentiation, and temporarily cease dividing. Both pathways involve sex-specific molecular signals from the somatic cells of the developing gonads and a suite of intrinsic receptors, signal transducers, transcription factors, RNA stability factors, and epigenetic modulators that act in complex, interconnected positive and negative regulatory networks. Understanding these networks is important in the contexts of the etiology, diagnosis, and treatment of infertility and gonadal cancers, and in efforts to augment human and animal fertility using stem cell approaches.


Asunto(s)
Infertilidad Femenina/genética , Infertilidad Masculina/genética , Oogénesis/genética , Procesos de Determinación del Sexo , Diferenciación Sexual/genética , Espermatogénesis/genética , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Infertilidad Femenina/metabolismo , Infertilidad Femenina/patología , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Masculino , Meiosis , Oocitos/citología , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Óvulo/citología , Óvulo/crecimiento & desarrollo , Óvulo/metabolismo , Transducción de Señal , Espermatozoides/citología , Espermatozoides/crecimiento & desarrollo , Espermatozoides/metabolismo
2.
FASEB J ; 38(9): e23622, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38703029

RESUMEN

Endometriosis (EMs)-related infertility commonly has decreased endometrial receptivity and normal decidualization is the basis for establishing and maintaining endometrial receptivity. However, the potential molecular regulatory mechanisms of impaired endometrial decidualization in patients with EMs have not been fully clarified. We confirmed the existence of reduced endometrial receptivity in patients with EMs by scanning electron microscopy and quantitative real-time PCR. Here we identified an lncRNA, named BMPR1B-AS1, which is significantly downregulated in eutopic endometrium in EMs patients and plays an essential role in decidual formation. Furthermore, RNA pull-down, mass spectrometry, RNA immunoprecipitation, and rescue analyses revealed that BMPR1B-AS1 positively regulates decidual formation through interaction with the RNA-binding protein insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2). Downregulation of IGF2BP2 led to a decreased stability of BMPR1B-AS1 and inhibition of activation of the SMAD1/5/9 pathway, an inhibitory effect which diminished decidualization in human endometrial stromal cells (hESCs) decidualization. In conclusion, our identified a novel regulatory mechanism in which the IGF2BP2-BMPR1B-AS1-SMAD1/5/9 axis plays a key role in the regulation of decidualization, providing insights into the potential link between abnormal decidualization and infertility in patients with EMs, which will be of clinical significance for the management and treatment of infertility in patients with EMs.


Asunto(s)
Endometriosis , ARN Largo no Codificante , Proteínas de Unión al ARN , Adulto , Femenino , Humanos , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Decidua/metabolismo , Decidua/patología , Endometriosis/metabolismo , Endometriosis/genética , Endometriosis/patología , Endometrio/metabolismo , Endometrio/patología , Infertilidad Femenina/metabolismo , Infertilidad Femenina/genética , Infertilidad Femenina/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Transducción de Señal , Células del Estroma/metabolismo , Proteínas Smad , Adulto Joven
3.
Mol Cell ; 67(6): 1059-1067.e4, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28867294

RESUMEN

YTHDF2 binds and destabilizes N6-methyladenosine (m6A)-modified mRNA. The extent to which this branch of m6A RNA-regulatory pathway functions in vivo and contributes to mammalian development remains unknown. Here we find that YTHDF2 deficiency is partially permissive in mice and results in female-specific infertility. Using conditional mutagenesis, we demonstrate that YTHDF2 is autonomously required within the germline to produce MII oocytes that are competent to sustain early zygotic development. Oocyte maturation is associated with a wave of maternal RNA degradation, and the resulting relative changes to the MII transcriptome are integral to oocyte quality. The loss of YTHDF2 results in the failure to regulate transcript dosage of a cohort of genes during oocyte maturation, with enrichment observed for the YTHDF2-binding consensus and evidence of m6A in these upregulated genes. In summary, the m6A-reader YTHDF2 is an intrinsic determinant of mammalian oocyte competence and early zygotic development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Meiosis , Oocitos/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Transcripción Genética , Transcriptoma , Cigoto/metabolismo , Animales , Sitios de Unión , Femenino , Fertilidad , Genotipo , Infertilidad Femenina/genética , Infertilidad Femenina/metabolismo , Infertilidad Femenina/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Oocitos/patología , Fenotipo , Unión Proteica , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Cigoto/patología
4.
Mol Cell ; 66(3): 411-419.e4, 2017 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-28457744

RESUMEN

Most piRNAs in the Drosophila female germline are transcribed from heterochromatic regions called dual-strand piRNA clusters. Histone 3 lysine 9 trimethylation (H3K9me3) is required for licensing piRNA production by these clusters. However, it is unclear when and how they acquire this permissive heterochromatic state. Here, we show that transient Piwi depletion in Drosophila embryos results in H3K9me3 decrease at piRNA clusters in ovaries. This is accompanied by impaired biogenesis of ovarian piRNAs, accumulation of transposable element transcripts, and female sterility. Conversely, Piwi depletion at later developmental stages does not disturb piRNA cluster licensing. These results indicate that the identity of piRNA clusters is epigenetically acquired in a Piwi-dependent manner during embryonic development, which is reminiscent of the widespread genome reprogramming occurring during early mammalian zygotic development.


Asunto(s)
Proteínas Argonautas/metabolismo , Metilación de ADN , Elementos Transponibles de ADN , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Represión Epigenética , Heterocromatina/metabolismo , Ovario/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Factores de Edad , Animales , Proteínas Argonautas/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Femenino , Fertilidad , Regulación del Desarrollo de la Expresión Génica , Heterocromatina/genética , Histonas/metabolismo , Infertilidad Femenina/genética , Infertilidad Femenina/metabolismo , Infertilidad Femenina/fisiopatología , Metilación , Morfogénesis , Ovario/embriología , Unión Proteica , ARN Interferente Pequeño/genética
5.
J Cell Mol Med ; 28(12): e18487, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39031722

RESUMEN

Premature ovarian insufficiency (POI) is one of the important causes of female infertility. Yet the aetiology for POI is still elusive. FBXW7 (F-box with 7 tandem WD) is one of the important components of the Skp1-Cullin1-F-box (SCF) E3 ubiquitin ligase. FBXW7 can regulate cell growth, survival and pluripotency through mediating ubiquitylation and degradation of target proteins via triggering the ubiquitin-proteasome system, and is associated with tumorigenesis, haematopoiesis and testis development. However, evidence establishing the function of FBXW7 in ovary is still lacking. Here, we showed that FBXW7 protein level was significantly decreased in the ovaries of the cisplatin-induced POI mouse model. We further showed that mice with oocyte-specific deletion of Fbxw7 demonstrated POI, characterized with folliculogenic defects, early depletion of follicle reserve, disordered hormonal secretion, ovarian dysfunction and female infertility. Impaired oocyte-GCs communication, manifested as down-regulation of connexin 37, may contribute to follicular development failure in the Fbxw7-mutant mice. Furthermore, single-cell RNA sequencing and in situ hybridization results indicated an accumulation of Clu and Ccl2 transcripts, which may alter follicle microenvironment deleterious to oocyte development and accelerate POI. Our results establish the important role of Fbxw7 in folliculogenesis and ovarian function, and might provide valuable information for understanding POI and female infertility.


Asunto(s)
Proteína 7 que Contiene Repeticiones F-Box-WD , Oocitos , Folículo Ovárico , Insuficiencia Ovárica Primaria , Animales , Femenino , Insuficiencia Ovárica Primaria/genética , Insuficiencia Ovárica Primaria/metabolismo , Insuficiencia Ovárica Primaria/patología , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Oocitos/metabolismo , Ratones , Folículo Ovárico/metabolismo , Folículo Ovárico/crecimiento & desarrollo , Folículo Ovárico/patología , Modelos Animales de Enfermedad , Eliminación de Gen , Ratones Noqueados , Infertilidad Femenina/genética , Infertilidad Femenina/metabolismo , Infertilidad Femenina/patología , Cisplatino/efectos adversos
6.
Development ; 148(9)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33914868

RESUMEN

In mammalian ovaries, immature oocytes are reserved in primordial follicles until their activation for potential ovulation. Precise control of primordial follicle activation (PFA) is essential for reproduction, but how this is achieved is unclear. Here, we show that canonical wingless-type MMTV integration site family (WNT) signaling is pivotal for pre-granulosa cell (pre-GC) activation during PFA. We identified several WNT ligands expressed in pre-GCs that act in an autocrine manner. Inhibition of WNT secretion from pre-GCs/GCs by conditional knockout (cKO) of the wntless (Wls) gene led to female infertility. In Wls cKO mice, GC layer thickness was greatly reduced in growing follicles, which resulted in impaired oocyte growth with both an abnormal, sustained nuclear localization of forkhead box O3 (FOXO3) and reduced phosphorylation of ribosomal protein S6 (RPS6). Constitutive stabilization of ß-catenin (CTNNB1) in pre-GCs/GCs induced morphological changes of pre-GCs from a squamous into a cuboidal form, though it did not influence oocyte activation. Our results reveal that canonical WNT signaling plays a permissive role in the transition of pre-GCs to GCs, which is an essential step to support oocyte growth.


Asunto(s)
Fertilidad , Células de la Granulosa/metabolismo , Infertilidad Femenina/metabolismo , Ovario/metabolismo , Vía de Señalización Wnt , Animales , Femenino , Ratones , Ratones Noqueados , Oocitos/metabolismo , Oogénesis , Folículo Ovárico/metabolismo , Ovulación , Transcriptoma , Proteínas WT1/genética , beta Catenina/genética
7.
Development ; 148(2)2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33318146

RESUMEN

Alternative splicing (AS) contributes to gene diversification, but the AS program during germline development remains largely undefined. Here, we interrupted pre-mRNA splicing events controlled by epithelial splicing regulatory protein 1 (ESRP1) and found that it induced female infertility in mice. Esrp1 deletion perturbed spindle organization, chromosome alignment and metaphase-to-anaphase transformation in oocytes. The first polar body extrusion was blocked during oocyte meiosis owing to abnormal activation of spindle assembly checkpoint and insufficiency of anaphase-promoting complex/cyclosome in Esrp1-knockout oocytes. Esrp1-knockout hampered follicular development and ovulation; eventually, premature ovarian failure occurred in six-month-old Esrp1-knockout mouse. Using single-cell RNA-seq analysis, 528 aberrant AS events of maternal mRNA transcripts were revealed and were preferentially associated with microtubule cytoskeletal organization. Notably, we found that loss of ESRP1 disturbed a comprehensive set of gene-splicing sites - including those within Trb53bp1, Rac1, Bora, Kif2c, Kif23, Ndel1, Kif3a, Cenpa and Lsm14b - that potentially caused abnormal spindle organization. Collectively, our findings provide the first report elucidating the ESRP1-mediated AS program of maternal mRNA transcripts, which may contribute to oocyte meiosis and female fertility in mice.


Asunto(s)
Infertilidad Femenina/metabolismo , Oocitos/metabolismo , Proteínas de Unión al ARN/metabolismo , Empalme Alternativo/genética , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Animales , Puntos de Control del Ciclo Celular , Núcleo Celular/metabolismo , Cromosomas de los Mamíferos/metabolismo , Femenino , Mutación de Línea Germinal/genética , Infertilidad Femenina/complicaciones , Cinetocoros/metabolismo , Puntos de Control de la Fase M del Ciclo Celular , Masculino , Meiosis , Metafase , Ratones Endogámicos C57BL , Ratones Noqueados , Microtúbulos/metabolismo , Modelos Biológicos , Insuficiencia Ovárica Primaria/complicaciones , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Huso Acromático/metabolismo
8.
Biol Reprod ; 110(3): 490-500, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38084072

RESUMEN

Heart and neural crest derivatives expressed transcript 2 (HAND2) is a critical mediator of progesterone action in endometrial stromal cells. Silencing of Hand2 expression in mouse uterus leads to an unopposed FGFR-mediated action that causes female mice infertility. To investigate the involvement of HAND2-FGFR signaling in pathogenesis of adenomyosis, immunohistochemistry, in situ hybridization, and quantitative real-time PCR were employed to assess gene expression in the normal endometrium, the paired eutopic endometrium and ectopic lesions obtained from women with adenomyosis. DNA methylation in the regions of HAND2 promoter and the first exon was also monitored in these samples. Our results revealed that HAND2 expression were dramatically reduced, but FGF9 expression and FGFR-ERK1/2-mediated MAPK signaling pathway were enhanced in the eutopic endometrium and ectopic lesions of patients with adenomyosis compared to the normal controls. Interestingly, expression of HAND2-AS1, a long noncoding RNA that resides adjacent to HAND2 in genome, was also reduced in adenomyosis. DNA methylation analysis revealed that the bidirectional promoter between HAND2 and HAND2-AS1, and the first exon of HAND2 gene was heavily methylated in the eutopic endometrium and the ectopic lesions of adenomyosis. To investigate the regulation of gene expression by HAND2-AS1, HAND2-AS1 expression was silenced in human endometrial stromal cells. In contrast to the downregulation of HAND2 in response to HAND2-AS1 silencing, FGF9 expression was augmented significantly. Endometrial stromal cells lacking HAND2-AS1 exhibited enhanced proliferation and migration potentials. Collectively, our studies revealed a new molecular mechanism by which HAND2-AS1 is involved in the pathogenesis of adenomyosis via modulating HAND2-FGFR-mediated signaling.


Asunto(s)
Adenomiosis , Infertilidad Femenina , ARN Largo no Codificante , Animales , Femenino , Humanos , Ratones , Adenomiosis/genética , Adenomiosis/metabolismo , Endometrio/metabolismo , Infertilidad Femenina/metabolismo , Progesterona/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo
9.
Mol Hum Reprod ; 30(9)2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39178021

RESUMEN

The subcortical maternal complex (SCMC), which is vital in oocyte maturation and embryogenesis, consists of core proteins (NLRP5, TLE6, OOEP), non-core proteins (PADI6, KHDC3L, NLRP2, NLRP7), and other unknown proteins that are encoded by maternal effect genes. Some variants of SCMC genes have been linked to female infertility characterized by embryonic development arrest. However, so far, the candidate non-core SCMC components associated with embryonic development need further exploration and the pathogenic variants that have been identified are still limited. In this study, we discovered two novel variants [p.(Ala131Val) and p.(Met326Val)] of NLRP2 in patients with primary infertility displaying embryonic development arrest from large families. In vitro studies using 293T cells and mouse oocytes, respectively, showed that these variants significantly decreased protein expression and caused the phenotype of embryonic development arrest. Additionally, we combined the 'DevOmics' database with the whole exome sequence data of our cohort and screened out a new candidate non-core SCMC gene ZFP36L2. Its variants [p.(Ala241Pro) and p.(Pro291dup)] were found to be responsible for embryonic development arrest. Co-immunoprecipitation experiments in 293T cells, used to demonstrate the interaction between proteins, verified that ZFP36L2 is one of the human SCMC components, and microinjection of ZFP36L2 complementary RNA variants into mouse oocytes affected embryonic development. Furthermore, the ZFP36L2 variants were associated with disrupted stability of its target mRNAs, which resulted in aberrant H3K4me3 and H3K9me3 levels. These disruptions decreased oocyte quality and further developmental potential. Overall, this is the first report of ZFP36L2 as a non-core component of the human SCMC and we found four novel pathogenic variants in the NLRP2 and ZFP36L2 genes in 4 of 161 patients that caused human embryonic development arrest. These findings contribute to the genetic diagnosis of female infertility and provide new insights into the physiological function of SCMC in female reproduction.


Asunto(s)
Desarrollo Embrionario , Infertilidad Femenina , Humanos , Femenino , Animales , Infertilidad Femenina/genética , Infertilidad Femenina/metabolismo , Desarrollo Embrionario/genética , Ratones , Oocitos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Adulto , Células HEK293 , Tristetraprolina/genética , Tristetraprolina/metabolismo
10.
Hum Reprod ; 39(2): 275-281, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38099857

RESUMEN

Infertility is a complex condition affecting millions of couples worldwide. The current definition of infertility, based on clinical criteria, fails to account for the molecular and cellular changes that may occur during the development of infertility. Recent advancements in sequencing technology and single-cell analysis offer new opportunities to gain a deeper understanding of these changes. The endometrium has a potential role in infertility and has been extensively studied to identify gene expression profiles associated with (impaired) endometrial receptivity. However, limited overlap among studies hampers the identification of relevant downstream pathways that could play a role in the development of endometrial-related infertility. To address these challenges, we propose sequencing the endometrial transcriptome of healthy and infertile women at the single-cell level to consistently identify molecular signatures. Establishing consensus on physiological patterns in endometrial samples can aid in identifying deviations in infertile patients. A similar strategy has been used with great success in cancer research. However, large collaborative initiatives, international uniform protocols of sample collection and processing are crucial to ensure reliability and reproducibility. Overall, the proposed approach holds promise for an objective and accurate classification of endometrial-based infertility and has the potential to improve diagnosis and treatment outcomes.


Asunto(s)
Infertilidad Femenina , Femenino , Humanos , Infertilidad Femenina/diagnóstico , Infertilidad Femenina/genética , Infertilidad Femenina/metabolismo , Reproducibilidad de los Resultados , Endometrio/metabolismo , Transcriptoma , Resultado del Tratamiento , Implantación del Embrión/fisiología
11.
Reprod Biol Endocrinol ; 22(1): 90, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085925

RESUMEN

BACKGROUND: Reduced endometrium thickness and receptivity are two important reasons for recurrent implantation failure (RIF). In order to elucidate differences between these two types of endometrial defects in terms of molecular signatures, cellular interactions, and structural changes, we systematically investigated the single-cell transcriptomic atlas across three distinct groups: RIF patients with thin endometrium (≤ 6 mm, TE-RIF), RIF patients with normal endometrium thickness (≥ 8 mm, NE-RIF), and fertile individuals (Control). METHODS: The late proliferative and mid-secretory phases of the endometrium were collected from three individuals in the TE-RIF group, two in the NE-RIF group, and three in the control group. The study employed a combination of advanced techniques. Single-cell RNA sequencing (scRNA-seq) was utilized to capture comprehensive transcriptomic profiles at the single-cell level, providing insights into gene expression patterns within specific cell types. Scanning and transmission electron microscopy were employed to visualize ultrastructural details of the endometrial tissue, while hematoxylin and eosin staining facilitated the examination of tissue morphology and cellular composition. Immunohistochemistry techniques were also applied to detect and localize specific protein markers relevant to endometrial receptivity and function. RESULTS: Through comparative analysis of differentially expressed genes among these groups and KEGG pathway analysis, the TE-RIF group exhibited notable dysregulations in the TNF and MAPK signaling pathways, which are pivotal in stromal cell growth and endometrial receptivity. Conversely, in the NE-RIF group, disturbances in energy metabolism emerged as a primary contributor to reduced endometrial receptivity. Additionally, using CellPhoneDB for intercellular communication analysis revealed aberrant interactions between epithelial and stromal cells, impacting endometrial receptivity specifically in the TE-RIF group. CONCLUSION: Overall, our findings provide valuable insights into the heterogeneous molecular pathways and cellular interactions associated with RIF in different endometrial conditions. These insights may pave the way for targeted therapeutic interventions aimed at improving endometrial receptivity and enhancing reproductive outcomes in patients undergoing ART. Further research is warranted to validate these findings and translate them into clinical applications for personalized fertility treatments. TRIAL REGISTRATION: Not applicable.


Asunto(s)
Implantación del Embrión , Endometrio , Análisis de la Célula Individual , Transcriptoma , Humanos , Femenino , Endometrio/metabolismo , Endometrio/patología , Implantación del Embrión/genética , Implantación del Embrión/fisiología , Adulto , Análisis de la Célula Individual/métodos , Perfilación de la Expresión Génica/métodos , Infertilidad Femenina/genética , Infertilidad Femenina/metabolismo , Infertilidad Femenina/patología , Embarazo
12.
FASEB J ; 37(7): e22960, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37335566

RESUMEN

Anovulation is the main feature of infertile women with polycystic ovary syndrome (PCOS), and there is very limited understanding of the role of plasma exosomes and miRNAs in it. To identify the effect of PCOS patients' plasma exosomes and exosomal miRNAs, we isolated plasma exosomes of PCOS patients and normal women and injected into 8-week-old ICR female mice via tail vein. The changes in estrus cycle, serum hormone levels, and ovarian morphology were observed. KGN cells were cultured and transfected with mimics and inhibitors of differentially expressed exosomal miRNAs (miR-18a-3p, miR-20b-5p, miR-106a-5p, miR-126-3p, and miR-146a-5p) and then tested for steroid hormone synthesis, proliferation, and apoptosis. The results showed that female ICR mice injected with plasma exosomes from PCOS patients presented ovarian oligo-cyclicity. Hormone synthesis and proliferation of granulosa cells were affected by differentially expressed PCOS plasma-derived exosomal miRNAs, of which miR-126-3p having the most evident effect. MiR-126-3p affected the proliferation of granulosa cells by inhibiting PDGFRß and its downstream PI3K-AKT pathway. Our results demonstrated plasma exosomes and contained miRNAs in PCOS patients affect the estrus cycle of mice, hormone secretion, and proliferation of granulosa cells. This study provides a novel understanding about the function of plasma exosomes and exosomal miRNAs in PCOS.


Asunto(s)
Exosomas , Infertilidad Femenina , MicroARNs , Síndrome del Ovario Poliquístico , Animales , Femenino , Humanos , Ratones , Exosomas/genética , Exosomas/metabolismo , Células de la Granulosa/metabolismo , Hormonas/metabolismo , Infertilidad Femenina/metabolismo , Ratones Endogámicos ICR , MicroARNs/genética , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/metabolismo
13.
Cell Commun Signal ; 22(1): 235, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643161

RESUMEN

BACKGROUND: Antral follicles consist of an oocyte cumulus complex surrounding by somatic cells, including mural granulosa cells as the inner layer and theca cells as the outsider layer. The communications between oocytes and granulosa cells have been extensively explored in in vitro studies, however, the role of oocyte-derived factor GDF9 on in vivo antral follicle development remains elusive due to lack of an appropriate animal model. Clinically, the phenotype of GDF9 variants needs to be determined. METHODS: Whole-exome sequencing (WES) was performed on two unrelated infertile women characterized by an early rise of estradiol level and defect in follicle enlargement. Besides, WES data on 1,039 women undergoing ART treatment were collected. A Gdf9Q308X/S415T mouse model was generated based on the variant found in one of the patients. RESULTS: Two probands with bi-allelic GDF9 variants (GDF9His209GlnfsTer6/S428T, GDF9Q321X/S428T) and eight GDF9S428T heterozygotes with normal ovarian response were identified. In vitro experiments confirmed that these variants caused reduction of GDF9 secretion, and/or alleviation in BMP15 binding. Gdf9Q308X/S415T mouse model was constructed, which recapitulated the phenotypes in probands with abnormal estrogen secretion and defected follicle enlargement. Further experiments in mouse model showed an earlier expression of STAR in small antral follicles and decreased proliferative capacity in large antral follicles. In addition, RNA sequencing of granulosa cells revealed the transcriptomic profiles related to defective follicle enlargement in the Gdf9Q308X/S415T group. One of the downregulated genes, P4HA2 (a collagen related gene), was found to be stimulated by GDF9 protein, which partly explained the phenotype of defective follicle enlargement. CONCLUSIONS: GDF9 bi-allelic variants contributed to the defect in antral follicle development. Oocyte itself participated in the regulation of follicle development through GDF9 paracrine effect, highlighting the essential role of oocyte-derived factors on ovarian response.


Asunto(s)
Infertilidad Femenina , Ratones , Animales , Femenino , Humanos , Infertilidad Femenina/metabolismo , Folículo Ovárico/metabolismo , Oocitos/química , Oocitos/metabolismo , Células de la Granulosa/metabolismo , Estrógenos/metabolismo , Factor 9 de Diferenciación de Crecimiento/genética , Factor 9 de Diferenciación de Crecimiento/análisis , Factor 9 de Diferenciación de Crecimiento/metabolismo
14.
Reprod Biomed Online ; 48(6): 103762, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38537523

RESUMEN

Metabolomics offers new methods to identify biomarkers for oocyte and embryo quality, and for a better understanding of the physiopathology of infertility. This review investigated the latest findings regarding metabolome-derived biomarkers in follicular fluid of women with the most common types of infertility, and the potential impact on reproductive medicine outcomes. PubMed was searched for publications on metabolomics and human follicular fluid, and key biomarkers, kinetics and relationships with infertility diseases were identified. A reduced concentration of glucose and increased concentrations of lactate and pyruvate were found in follicular fluid of patients with endometriosis and diminished ovarian reserve, and the opposite was found in patients with polycystic ovary syndrome. These signatures may lead to the hypothesis of changed metabolite concentrations in patients with endometriosis and diminished ovarian reserve, and a metabolic pathway alteration with decreased aerobic glycolysis in patients with polycystic ovary syndrome. However, the pattern found in patients with endometriosis and low responders may also be expected in follicular fluid of fertile women. Larger studies are needed to confirm the results. An international database may help to highlight follicular fluid biomarkers in order to improve the selection of cryopreserved oocytes, and to enrich culture medium to restore normal metabolism and improve reproductive treatment outcomes.


Asunto(s)
Líquido Folicular , Infertilidad Femenina , Humanos , Líquido Folicular/metabolismo , Líquido Folicular/química , Femenino , Infertilidad Femenina/metabolismo , Endometriosis/metabolismo , Biomarcadores/metabolismo , Metaboloma , Metabolómica , Síndrome del Ovario Poliquístico/metabolismo
15.
Reprod Biomed Online ; 49(2): 103912, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38810314

RESUMEN

RESEARCH QUESTION: What are the metabolic characteristics of follicular fluid in patients with ovarian endometriosis undergoing IVF? DESIGN: This was an exploratory cohort study on endometriosis. In total, 19 infertile patients with ovarian endometriosis diagnosed by laparoscopy, and 23 controls matched in terms of age and body mass index (women with infertility due to male or tubal factors) were enrolled in this study. All patients underwent IVF treatment with a gonadotrophin-releasing hormone antagonist protocol, and follicular fluid was collected at oocyte retrieval. The metabolomics of follicular fluid samples was analysed using an ultra-high-performance liquid chromatography Orbitrap Exploris mass spectrometer (UHPLC-OE-MS). The best combination of biomarkers was selected by performing stepwise logistic regression analysis with backward elimination. RESULTS: Fifteen metabolites were identified as biomarkers associated with endometriosis. A final model containing 8-hydroxy-2-deoxyguanosine, biotin, n-acetyl-L-methionine and n-methylnicotinamide was constructed. Receiver operating characteristic analysis confirmed the value of these parameters in diagnosing endometriosis, with sensitivity of 94.7% and specificity of 95.7%. Enrichment analysis via the Kyoto Encyclopedia of Genes and Genome showed that 15 metabolites were enriched in eight metabolic pathways. CONCLUSION: Metabolomics based on UHPLC-OE-MS effectively characterized the metabolomics analysis of follicular fluid in patients with ovarian endometriosis. These findings may provide a new basis for better understanding of how diseases progress, and for the discovery of new biomarkers.


Asunto(s)
Endometriosis , Fertilización In Vitro , Líquido Folicular , Metaboloma , Humanos , Femenino , Líquido Folicular/metabolismo , Líquido Folicular/química , Endometriosis/metabolismo , Proyectos Piloto , Adulto , Metabolómica , Biomarcadores/metabolismo , Biomarcadores/análisis , Infertilidad Femenina/metabolismo , Cromatografía Líquida de Alta Presión , Enfermedades del Ovario/metabolismo , Estudios de Casos y Controles
16.
Acta Obstet Gynecol Scand ; 103(7): 1348-1365, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38520066

RESUMEN

INTRODUCTION: Implantation failure after transferring morphologically "good-quality" embryos in in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) may be explained by impaired endometrial receptivity. Analyzing the endometrial transcriptome analysis may reveal the underlying processes and could help in guiding prognosis and using targeted interventions for infertility. This exploratory study investigated whether the endometrial transcriptome profile was associated with short-term or long-term implantation outcomes (ie success or failure). MATERIAL AND METHODS: Mid-luteal phase endometrial biopsies of 107 infertile women with one full failed IVF/ICSI cycle, obtained within an endometrial scratching trial, were subjected to RNA-sequencing and differentially expressed genes analysis with covariate adjustment (age, body mass index, luteinizing hormone [LH]-day). Endometrial transcriptomes were compared between implantation failure and success groups in the short term (after the second fresh IVF/ICSI cycle) and long term (including all fresh and frozen cycles within 12 months). The short-term analysis included 85/107 women (33 ongoing pregnancy vs 52 no pregnancy), excluding 22/107 women. The long-term analysis included 46/107 women (23 'fertile' group, ie infertile women with a live birth after ≤3 embryos transferred vs 23 recurrent implantation failure group, ie no live birth after ≥3 good quality embryos transferred), excluding 61/107 women not fitting these categories. As both analyses drew from the same pool of 107 samples, there was some sample overlap. Additionally, cell type enrichment scores and endometrial receptivity were analyzed, and an endometrial development pseudo-timeline was constructed to estimate transcriptomic deviations from the optimum receptivity day (LH + 7), denoted as ΔWOI (window of implantation). RESULTS: There were no significantly differentially expressed genes between implantation failure and success groups in either the short-term or long-term analyses. Principal component analysis initially showed two clusters in the long-term analysis, unrelated to clinical phenotype and no longer distinct following covariate adjustment. Cell type enrichment scores did not differ significantly between groups in both analyses. However, endometrial receptivity analysis demonstrated a potentially significant displacement of the WOI in the non-pregnant group compared with the ongoing pregnant group in the short-term analysis. CONCLUSIONS: No distinct endometrial transcriptome profile was associated with either implantation failure or success in infertile women. However, there may be differences in the extent to which the WOI is displaced.


Asunto(s)
Implantación del Embrión , Endometrio , Infertilidad Femenina , Transcriptoma , Humanos , Femenino , Infertilidad Femenina/genética , Infertilidad Femenina/terapia , Infertilidad Femenina/metabolismo , Endometrio/metabolismo , Adulto , Embarazo , Inyecciones de Esperma Intracitoplasmáticas , Transferencia de Embrión , Fertilización In Vitro
17.
Bioessays ; 44(10): e2200007, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35900055

RESUMEN

Reproductive diseases are a long-standing problem and have become more common in the world. Currently, 15% of the world's population suffers from infertility, and half of them are women. Maturation of oocytes, successful fertilization, and high-quality embryos are prerequisites for pregnancy. With the development of assisted reproductive technology and advanced genetic assays, we have found that infertility in many young female patients is caused by mutations in various developmental regulators. These pathogenic factors may result in impediment of oocyte maturation, failure of fertilization or early embryonic development arrest. In this review, we categorize these clinically-identified, mutated genetic factors by their molecular characteristics: nuclear factors (PALT2, TRIP13, WEE2, TBPL2, REC114, MEI1 and CDC20), cytoplasmic factors (TLE6, PADI6, NLRP2/5, FBXO43, MOS and BTG4), a factor unique to primates (TUBB8), cell membrane factor (PANX1), and zona pellucida factors (ZP1-3). We compared discrepancies observed in phenotypes between human and mouse models to provide clues for clinical diagnosis and treatment of related reproductive diseases.


Asunto(s)
Proteínas F-Box , Infertilidad Femenina , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Reguladoras de la Apoptosis , Proteínas de Ciclo Celular , Conexinas/genética , Conexinas/metabolismo , Desarrollo Embrionario/genética , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Femenino , Fertilización/genética , Humanos , Infertilidad Femenina/genética , Infertilidad Femenina/metabolismo , Masculino , Ratones , Mutación , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Oocitos/metabolismo , Embarazo , Proteínas Similares a la Proteína de Unión a TATA-Box/genética , Proteínas Similares a la Proteína de Unión a TATA-Box/metabolismo , Tubulina (Proteína)
18.
Lipids Health Dis ; 23(1): 186, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872138

RESUMEN

BACKGROUND: Evidence on the association between visceral lipid accumulation and infertility remains limited and controversial. Therefore, the current investigation is the first investigation to unveil this correlation by utilizing novel indicators of visceral lipid accumulation. METHODS: The present study utilized the NHANES 2013-2020 dataset. Researchers utilized multiple logistic regression, smoothed curve fitting, and subgroup analysis to investigate the associations of waist circumference (WC), metabolic score for visceral fat (METS-VF), lipid accumulation product (LAP), visceral adiposity index (VAI) with infertility. Additionally, the eXtreme Gradient Boosting (XGBoost) algorithm model was utilized to evaluate the relative importance of the factors. RESULTS: After adjusting for potential factors that could influence the results, researchers discovered that all these four indicators of visceral lipid accumulation exhibited strong positive correlations with the probability of infertility. The subgroup analysis demonstrated that the correlations remained consistent in the majority of subgroups (P for interaction > 0.05). The results of XGBoost algorithm model indicate that METS-VF is the most meaningful factor in infertility. The ROC curve research revealed that while METS-VF had the greatest AUC values, there was no variation in the AUC value of different markers of visceral fat accumulation (P > 0.05). CONCLUSIONS: The present investigation discovered that increased WC, METS-VF, LAP, and VAI were associated with a heightened prevalence of infertility.


Asunto(s)
Grasa Intraabdominal , Circunferencia de la Cintura , Humanos , Femenino , Grasa Intraabdominal/metabolismo , Adulto , Estudios Transversales , Estados Unidos/epidemiología , Persona de Mediana Edad , Infertilidad Femenina/metabolismo , Curva ROC , Infertilidad/metabolismo , Metabolismo de los Lípidos , Síndrome Metabólico/metabolismo , Encuestas Nutricionales , Adiposidad
19.
J Assist Reprod Genet ; 41(4): 1087-1096, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38321265

RESUMEN

PURPOSE: Decreased ovarian reserve function is mainly characterized by female endocrine disorders and fertility decline. Follicular fluid (FF) exosomal microRNAs (miRNAs) have been shown to regulate the function of granulosa cells (GCs). The present study explored differentially expressed miRNAs (DEmiRNAs) in patients with diminished ovarian reserve (DOR). METHODS: FF was collected from 12 DOR patients and 12 healthy controls. DEmiRNAs between the two groups were identified and analyzed using high-throughput sequencing technology and validated by real-time quantitative PCR (RT-qPCR). RESULTS: A total of 592 DEmiRNAs were identified using high-throughput miRNA sequencing, of which 213 were significantly upregulated and 379 were significantly downregulated. The sequencing results were further validated by RT-qPCR. These DEmiRNA target genes were mainly involved in the cancer pathway, phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, regulation of actin cytoskeleton signaling pathway, and biological processes related to protein binding, nucleoplasm, cytoplasm, and cell membrane. CONCLUSION: FF exosomal miRNAs are significantly differentially expressed in DOR patients versus non-DOR patients, underscoring their crucial role in regulating the pathogenesis of DOR.


Asunto(s)
Exosomas , Líquido Folicular , MicroARNs , Reserva Ovárica , Humanos , Femenino , Líquido Folicular/metabolismo , MicroARNs/genética , Exosomas/genética , Exosomas/metabolismo , Reserva Ovárica/genética , Adulto , Células de la Granulosa/metabolismo , Células de la Granulosa/patología , Infertilidad Femenina/genética , Infertilidad Femenina/metabolismo , Infertilidad Femenina/patología , Transducción de Señal/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Regulación de la Expresión Génica/genética , Perfilación de la Expresión Génica
20.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38999965

RESUMEN

Female infertility constitutes a growing health problem in developing countries and could be associated with several possible causes including reproductive disorders, congenital malformations, infections and hormonal dysfunction. Nonetheless, a series of additional factors can also negatively impact female fertility and are represented by chronic exposure to environmental pollutants, stress, unhealthy lifestyle choices such as cigarette smoking and, among others, obesity. Excess weight is associated with several chronic diseases, and growing evidence demonstrates that it can compromise reproductive physiology due to its influence on endometrial gene expression and receptivity. Thus, the current review of the literature mainly focused on how obesity can impair uterine receptivity, mostly from a molecular point of view throughout the window of implantation (WOI) period at an endometrial level. It was also highlighted that an obesity-related increase in adipose tissue may lead to a modulation in the expression of multiple pathways, which could cause a hostile endometrial environment with a consequent negative impact on the uterine receptivity and the establishment of pregnancy. Thanks to the use of the endometrial receptivity assay (ERA), a specific microarray that studies the expression of a series of genes, it is now possible to evaluate the endometrial status of patients with infertility problems in a more detailed manner. Moreover, female fertility and endometrial receptivity could be affected by endometriosis, a chronic benign gynecological disease, whose cause-and-effect relationship to obesity is still uncertain. Therefore, further investigations would be required to better elucidate these mechanisms that govern embryo implantation and could be potentially useful for the generation of new strategies to overcome implantation failure and improve the pregnancy rates in obese women.


Asunto(s)
Endometrio , Infertilidad Femenina , Obesidad , Humanos , Femenino , Obesidad/metabolismo , Obesidad/genética , Infertilidad Femenina/metabolismo , Infertilidad Femenina/etiología , Infertilidad Femenina/genética , Endometrio/metabolismo , Embarazo , Implantación del Embrión , Endometriosis/metabolismo , Endometriosis/genética , Endometriosis/patología , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA