Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 312
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38713186

RESUMEN

Two novel actinobacteria, designated as LP05-1T and LP11T, were isolated from the lichen Pyxine cocoes (Sw.) Nyl. collected in Bangkok, Thailand. Genotypic and phenotypic analyses revealed that both strains represented members of the genus Streptomyces. The 16S rRNA gene of LP05-1T showed the highest similarity to the genome of Streptomyces gelaticus (98.41 %), while the 16S rRNA gene of LP11T was most similar to that of Streptomyces cinerochromogenes (98.93 %). The major menaquinones in LP05-1T were MK-9(H8), MK-9(H6), MK-9(H4) and MK-9(H2), and in LP11T, they were MK-9(H8) and MK-9(H6). Both strains exhibited the major fatty acids iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0, with LP05-1T also possessing iso-C17 : 0. The polar lipids of LP05-1T included phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside and an unidentified lipid, while those of LP11T consisted of phosphatidylethanolamine, lyso-phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, an unidentified aminolipid and an unidentified glycolipid. The digital DNA-DNA hybridisation (dDDH) and average nucleotide identity (ANI) values indicated that both strains are distinct from each other with values below 70 and 95 %, respectively. dDDH, ANI by blast (ANIb) and ANI by MUMmer (ANIm) values between LP05-1T and its closely related type strains were 26.07-26.80 %, 81.24-82.01 % and 86.82-86.96 %, respectively, while those for LP11T and its closely related type strains were 30.70-31.70 %, 84.09-85.31 % and 88.02-88.39 %, respectively. The results of the taxonomic investigation, including dDDH and ANI values, indicate that LP05-1T and LP11T are novel type strains of two novel species within the genus Streptomyces. The names proposed are Streptomyces pyxinae sp. nov. for strain LP05-1T (=TBRC 15494T, =NBRC 115434T) and Streptomyces pyxinicus sp. nov. for strain LP11T (=TBRC 15493T, =NBRC 115421T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Líquenes , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Streptomyces , Vitamina K 2 , Vitamina K 2/análogos & derivados , ARN Ribosómico 16S/genética , Líquenes/microbiología , Vitamina K 2/análisis , ADN Bacteriano/genética , Streptomyces/genética , Streptomyces/aislamiento & purificación , Streptomyces/clasificación , Ácidos Grasos/química , Tailandia , Hibridación de Ácido Nucleico , Fosfolípidos
2.
Microb Ecol ; 87(1): 87, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940862

RESUMEN

The primary purpose of the study, as part of the planned conservation work, was to uncover all aspects of autochthonous biofilm pertaining to the formation of numerous deterioration symptoms occurring on the limestone Rozanec Mithraeum monument in Slovenia. Using state-of-the-art sequencing technologies combining mycobiome data with observations made via numerous light and spectroscopic (FTIR and Raman) microscopy analyses pointed out to epilithic lichen Gyalecta jenensis and its photobiont, carotenoid-rich Trentepohlia aurea, as the origin of salmon-hued pigmented alterations of limestone surface. Furthermore, the development of the main deterioration symptom on the monument, i.e., biopitting, was instigated by the formation of typical endolithic thalli and ascomata of representative Verrucariaceae family (Verrucaria sp.) in conjunction with the oxalic acid-mediated dissolution of limestone. The domination of lichenized fungi, as the main deterioration agents, both on the relief and surrounding limestone, was additionally supported by the high relative abundance of lichenized and symbiotroph groups in FUNGuild analysis. Obtained results not only upgraded knowledge of this frequently occurring but often overlooked group of extremophilic stone heritage deteriogens but also provided a necessary groundwork for the development of efficient biocontrol formulation applicable in situ for the preservation of similarly affected limestone monuments.


Asunto(s)
Biopelículas , Carbonato de Calcio , Líquenes , Líquenes/microbiología , Líquenes/fisiología , Eslovenia , Ascomicetos/fisiología , Micobioma
3.
Mol Biol Rep ; 51(1): 549, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642168

RESUMEN

BACKGROUND: Lichen is a symbiotic association of algae and fungi, recognized as a self-sustaining ecosystem that constitutes an indeterminant number of bacteria, actinomycetes, fungi, and protozoa. We evaluated the endolichenic fungal assemblage given the dearth of knowledge on endolichenic fungi (ELFs), particularly from part of the Central Western Ghats, Karnataka, and conducted a phylogenetic analysis of xylariaceous fungi, the most diversified group of fungi using ITS and ITS+Tub2 gene set. RESULTS: Out of 17 lichen thalli collected from 5 ecoregions, 42 morphospecies recovered, belong to the class Sordariomycetes, Eurotiomycetes, Dothideomycetes, Leotiomycetes, Saccharomycetes. About 19 and 13 ELF genera have been reported from Parmotrema and Heterodermia thallus. Among the ecoregions EC2 showing highest species diversity (Parmotrema (1-D) = 0.9382, (H) = 2.865, Fisher-α = 8.429, Heterodermia (1-D) = 0.8038, H = 1.894, F-α = 4.57) followed the EC3 and EC1. Xylariales are the predominant colonizer reported from at least one thallus from four ecoregions. The morphotypes ELFX04, ELFX05, ELFX08 and ELFX13 show the highest BLAST similarity (> 99%) with Xylaria psidii, X. feejeensis, X. berteri and Hypoxylon fragiforme respectively. Species delimitation and phylogenetic position reveal the closest relation of Xylariaceous ELFs with plant endophytes. CONCLUSIONS: The observation highlights that the deciduous forest harness a high number of endolichenic fungi, a dominant portion of these fungi are non-sporulating and still exist as cryptic. Overall, 8 ELF species recognized based on phylogenetic analysis, including the two newly reported fungi ELFX03 and ELFX06 which are suspected to be new species based on the present evidence. The study proved, that the lichen being rich source to establish fungal diversity and finding new species. Successful amplification of most phylogenetic markers like RPB2, building of comprehensive taxonomic databases and application of multi-omics data are further needed to understand the complex nature of lichen-fungal symbiosis.


Asunto(s)
Líquenes , Parmeliaceae , Líquenes/microbiología , Filogenia , Ecosistema , India , Plantas/microbiología
4.
Curr Microbiol ; 81(5): 115, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483599

RESUMEN

The diversity of bacteria associated with alpine lichens was profiled. Lichen samples belonging to the Umbilicariaceae family, commonly known as rock tripe lichens, were gathered from two distinct alpine fellfields: one situated on Mt. Brennkogel located in the Eastern European Alps (Austria), and the other on Mt. Stanley located in the Rwenzori mountains of equatorial Africa (Uganda). The primary aim of this research was to undertake a comparative investigation into the bacterial compositions, and diversities, identifying potential indicators and exploring their potential metabolisms, of these lichen samples. Bulk genomic DNA was extracted from the lichen samples, which was used to amplify the 18S rRNA gene by Sanger sequencing and the V3-V4 region of the 16S rRNA gene by Illumina Miseq sequencing. Examination of the fungal partner was carried out through the analysis of 18S rRNA gene sequences, belonging to the genus Umbilicaria (Ascomycota), and the algal partner affiliated with the lineage Trebouxia (Chlorophyta), constituted the symbiotic components. Analyzing the MiSeq datasets by using bioinformatics methods, operational taxonomic units (OTUs) were established based on a predetermined similarity threshold for the V3-V4 sequences, which were assigned to a total of 26 bacterial phyla that were found in both areas. Eight of the 26 phyla, i.e. Acidobacteriota, Actinomycota, Armatimonadota, Bacteroidota, Chloroflexota, Deinococcota, Planctomycetota, and Pseudomonadota, were consistently present in all samples, each accounting for more than 1% of the total read count. Distinct differences in bacterial composition emerged between lichen samples from Austria and Uganda, with the OTU frequency-based regional indicator phyla, Pseudomonadota and Armatimonadota, respectively. Despite the considerable geographic separation of approximately 5430 km between the two regions, the prediction of potential metabolic pathways based on OTU analysis revealed similar relative abundances. This similarity is possibly influenced by comparable alpine climatic conditions prevailing in both areas.


Asunto(s)
Ascomicetos , Chlorophyta , Líquenes , Líquenes/microbiología , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN/métodos , Filogenia , Bacterias/genética , Ascomicetos/genética , Chlorophyta/genética , África
5.
Curr Microbiol ; 81(7): 195, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809483

RESUMEN

The endolichenic fungi are an unexplored group of organisms for the production of bioactive secondary metabolites. The aim of the present study is to determine the antibacterial potential of endolichenic fungi isolated from genus Parmotrema. The study is continuation of our previous work, wherein a total of 73 endolichenic fungi were isolated from the lichenized fungi, which resulted in 47 species under 23 genera. All the isolated endolichenic fungi were screened for preliminary antibacterial activity. Five endolichenic fungi-Daldinia eschscholtzii, Nemania diffusa, Preussia sp., Trichoderma sp. and Xylaria feejeensis, were selected for further antibacterial activity by disc diffusion method. The zone of inhibition ranged from 14.3 ± 0.1 to 23.2 ± 0.1. The chemical composition of the selected endolichenic fungi was analysed through GC-MS, which yielded a total of 108 compounds from all the selected five endolichenic fungi. Diethyl phthalate, 1-hexadecanol, dibutyl phthalate, n-tetracosanol-1, 1-nonadecene, pyrrol[1,2-a] pyrazine-1,4-dione, hexahydro-3-(2-methyl) and tetratetracontane were found to be common compounds among one or the other endolichenic fungi, which possibly were responsible for antibacterial activity. GC-MS data were further analysed through Principal Component Analysis which showed D. eschscholtzii to be with unique pattern of expression of metabolites. Compound confirmation test revealed coumaric acid to be responsible for antibacterial activity in D. eschscholtzii. So, the study proves that endolichenic fungi that inhabit lichenized fungal thalli could be a source of potential antibacterial compounds.


Asunto(s)
Antibacterianos , Pruebas de Sensibilidad Microbiana , Metabolismo Secundario , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/metabolismo , Líquenes/microbiología , Líquenes/química , Bacterias/efectos de los fármacos , Bacterias/clasificación , Bacterias/metabolismo , Ascomicetos/metabolismo , Ascomicetos/química , Cromatografía de Gases y Espectrometría de Masas
6.
New Phytol ; 238(4): 1362-1378, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36710517

RESUMEN

Exposing their vegetative bodies to the light, lichens are outstanding amongst other fungal symbioses. Not requiring a pre-established host, 'lichenized fungi' build an entirely new structure together with microbial photosynthetic partners that neither can form alone. The signals involved in the transition of a fungus and a compatible photosynthetic partner from a free-living to a symbiotic state culminating in thallus formation, termed 'lichenization', and in the maintenance of the symbiosis, are poorly understood. Here, we synthesise the puzzle pieces of the scarce knowledge available into an updated concept of signalling involved in lichenization, comprising five main stages: (1) the 'pre-contact stage', (2) the 'contact stage', (3) 'envelopment' of algal cells by the fungus, (4) their 'incorporation' into a pre-thallus and (5) 'differentiation' into a complex thallus. Considering the involvement of extracellularly released metabolites in each phase, we propose that compounds such as fungal lectins and algal cyclic peptides elicit early contact between the symbionts-to-be, whereas phytohormone signalling, antioxidant protection and carbon exchange through sugars and sugar alcohols are of continued importance throughout all stages. In the fully formed lichen thallus, secondary lichen metabolites and mineral nutrition are suggested to stabilize the functionalities of the thallus, including the associated microbiota.


Asunto(s)
Líquenes , Líquenes/microbiología , Simbiosis , Fotosíntesis
7.
Mol Ecol ; 32(23): 6619-6630, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35398946

RESUMEN

Holobionts are dynamic ecosystems that may respond to abiotic drivers with compositional changes. Uncovering elevational diversity patterns within these microecosystems can further our understanding of community-environment interactions. Here, we assess how the major components of lichen holobionts-fungal hosts, green algal symbionts, and the bacterial community-collectively respond to an elevational gradient. We analyse populations of two lichen symbioses, Umbilicaria pustulata and U. hispanica, along an elevational gradient spanning 2100 altitudinal metres and covering three major biomes. Our study shows (i) discontinuous genomic variation in fungal hosts with one abrupt genomic differentiation within each of the two host species, (ii) altitudinally structured bacterial communities with pronounced turnover within and between hosts, and (iii) altitude-specific presence of algal symbionts. Alpha diversity of bacterial communities decreased with increasing elevation. A marked turnover in holobiont diversity occurred across two altitudinal belts: at 11°C-13°C average annual temperature (here: 800-1200 m a.s.l.), and at 7°C-9°C average annual temperature (here: 1500-1800 m a.s.l.). The two observed zones mark a clustering of distribution limits and community shifts. The three ensuing altitudinal classes, that is, the most frequent combinations of species in holobionts, approximately correspond to the Mediterranean, cool-temperate, and alpine climate zones. We conclude that multitrophic microecosystems, such as lichen holobionts, respond with concerted compositional changes to climatic factors that also structure communities of macroorganisms, for example, vascular plants.


Asunto(s)
Líquenes , Líquenes/genética , Líquenes/microbiología , Ecosistema , Ambiente , Altitud , Bacterias/genética
8.
Mol Ecol ; 32(5): 1045-1061, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36478478

RESUMEN

Photosymbiodemes are a special case of lichen symbiosis where one lichenized fungus engages in symbiosis with two different photosynthetic partners, a cyanobacterium and a green alga, to develop two distinctly looking photomorphs. We compared gene expression of thallus sectors of the photosymbiodeme-forming lichen Peltigera britannica containing cyanobacterial photobionts with thallus sectors with both green algal and cyanobacterial photobionts and investigated differential gene expression at different temperatures representing mild and putatively stressful conditions. First, we quantified photobiont-mediated differences in fungal gene expression. Second, because of known ecological differences between photomorphs, we investigated symbiont-specific responses in gene expression to temperature increases. Photobiont-mediated differences in fungal gene expression could be identified, with upregulation of distinct biological processes in the different morphs, showing that interaction with specific symbiosis partners profoundly impacts fungal gene expression. Furthermore, high temperatures expectedly led to an upregulation of genes involved in heat shock responses in all organisms in whole transcriptome data and to an increased expression of genes involved in photosynthesis in both photobiont types at 15 and 25°C. The fungus and the cyanobacteria exhibited thermal stress responses already at 15°C, the green algae mainly at 25°C, demonstrating symbiont-specific responses to environmental cues and symbiont-specific ecological optima.


Asunto(s)
Cianobacterias , Líquenes , Líquenes/genética , Líquenes/microbiología , Simbiosis/genética , Señales (Psicología) , Cianobacterias/genética , Filogenia
9.
Arch Microbiol ; 205(6): 232, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37166571

RESUMEN

A Gram-negative, strictly aerobic, chemoorganotrophic, bacteriochlorophyll a-containing, slow-growing bacterium was isolated from the lichen Flavocetraria nivalis and designated strain BP6-180914 T. Cells of this strain were large nonmotile rods, which reproduced by binary fission. Cells grew under oxic conditions and were able to utilize sugars and several polysaccharides, including starch and pectin. Strain BP6-180914 T was psychrotolerant and moderately acidophilic growing at 4-35 °C (optimum 20-28 °C) and between pH 4.0 and 7.5 (optimum 4.5-5.5). The major fatty acids were C18:1ω7c, C19:0 cyclo, C16:0 and C18:0. The polar lipids were diphosphatidylglycerols, phosphatidylglycerols, phosphatidylethanolamines, phosphatidylcholines, unidentified aminolipids, and a number of glycolipids, the major one being an unidentified glycolipid. The quinone was Q-10. The DNA G + C content was 63.65%. Comparative 16S rRNA gene sequence analysis revealed that strain BP6-180914 T was a member of the order Hyphomicrobiales and belonged to the family Lichenihabitantaceae defined by the lichen-dwelling facultative aerobic chemo-organotroph Lichenihabitans psoromatis (92.7% sequence similarity). The results of phylogenomic and genomic relatedness analyses showed that strain BP6-180914 T could clearly be distinguished from other species in the order Hyphomicrobiales with average nucleotide identity values of < 74.05% and genome-to-genome distance values of < 21.1%. The AAI value of 65.9% between strain BP6-180914 T and L. psoromatis allowed us to assign this strain to the novel genus of the family Lichenihabitantaceae. Therefore, it is proposed that strain BP6-180914 T represents a novel species in a new genus, Lichenifustis flavocetrariae gen. nov., sp. nov.; strain BP6-180914 T (= KCTC 92872 T = VKM B-3641 T = UQM 41506 T) is the type strain.


Asunto(s)
Alphaproteobacteria , Líquenes , Líquenes/microbiología , Ubiquinona/química , ARN Ribosómico 16S/genética , Ácidos Grasos/análisis , Alphaproteobacteria/genética , Glucolípidos/análisis , ADN Bacteriano/genética , Filogenia , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana , Fosfolípidos/análisis
10.
New Phytol ; 233(3): 1317-1330, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34797921

RESUMEN

Although secondary metabolites are typically associated with competitive or pathogenic interactions, the high bioactivity of endophytic fungi in the Xylariales, coupled with their abundance and broad host ranges spanning all lineages of land plants and lichens, suggests that enhanced secondary metabolism might facilitate symbioses with phylogenetically diverse hosts. Here, we examined secondary metabolite gene clusters (SMGCs) across 96 Xylariales genomes in two clades (Xylariaceae s.l. and Hypoxylaceae), including 88 newly sequenced genomes of endophytes and closely related saprotrophs and pathogens. We paired genomic data with extensive metadata on endophyte hosts and substrates, enabling us to examine genomic factors related to the breadth of symbiotic interactions and ecological roles. All genomes contain hyperabundant SMGCs; however, Xylariaceae have increased numbers of gene duplications, horizontal gene transfers (HGTs) and SMGCs. Enhanced metabolic diversity of endophytes is associated with a greater diversity of hosts and increased capacity for lignocellulose decomposition. Our results suggest that, as host and substrate generalists, Xylariaceae endophytes experience greater selection to diversify SMGCs compared with more ecologically specialised Hypoxylaceae species. Overall, our results provide new evidence that SMGCs may facilitate symbiosis with phylogenetically diverse hosts, highlighting the importance of microbial symbioses to drive fungal metabolic diversity.


Asunto(s)
Líquenes , Xylariales , Endófitos , Hongos , Líquenes/microbiología , Familia de Multigenes , Simbiosis/genética
11.
New Phytol ; 234(5): 1566-1582, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35302240

RESUMEN

Lichens are the symbiotic outcomes of open, interspecies relationships, central to which are a fungus and a phototroph, typically an alga and/or cyanobacterium. The evolutionary processes that led to the global success of lichens are poorly understood. In this review, we explore the goods and services exchange between fungus and phototroph and how this propelled the success of both symbiont and symbiosis. Lichen fungal symbionts count among the only filamentous fungi that expose most of their mycelium to an aerial environment. Phototrophs export carbohydrates to the fungus, which converts them to specific polyols. Experimental evidence suggests that polyols are not only growth and respiratory substrates but also play a role in anhydrobiosis, the capacity to survive desiccation. We propose that this dual functionality is pivotal to the evolution of fungal symbionts, enabling persistence in environments otherwise hostile to fungi while simultaneously imposing costs on growth. Phototrophs, in turn, benefit from fungal protection from herbivory and light stress, while appearing to exert leverage over fungal sex and morphogenesis. Combined with the recently recognized habit of symbionts to occur in multiple symbioses, this creates the conditions for a multiplayer marketplace of rewards and penalties that could drive symbiont selection and lichen diversification.


Asunto(s)
Cianobacterias , Líquenes , Biología , Hongos , Líquenes/microbiología , Filogenia , Simbiosis
12.
Mol Phylogenet Evol ; 174: 107543, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35690378

RESUMEN

While advances in sequencing technologies have been invaluable for understanding evolutionary relationships, increasingly large genomic data sets may result in conflicting evolutionary signals that are often caused by biological processes, including hybridization. Hybridization has been detected in a variety of organisms, influencing evolutionary processes such as generating reproductive barriers and mixing standing genetic variation. Here, we investigate the potential role of hybridization in the diversification of the most speciose genus of lichen-forming fungi, Xanthoparmelia. As Xanthoparmelia is projected to have gone through recent, rapid diversification, this genus is particularly suitable for investigating and interpreting the origins of phylogenomic conflict. Focusing on a clade of Xanthoparmelia largely restricted to the Holarctic region, we used a genome skimming approach to generate 962 single-copy gene regions representing over 2 Mbp of the mycobiont genome. From this genome-scale dataset, we inferred evolutionary relationships using both concatenation and coalescent-based species tree approaches. We also used three independent tests for hybridization. Although different species tree reconstruction methods recovered largely consistent and well-supported trees, there was widespread incongruence among individual gene trees. Despite challenges in differentiating hybridization from ILS in situations of recent rapid radiations, our genome-wide analyses detected multiple potential hybridization events in the Holarctic clade, suggesting one possible source of trait variability in this hyperdiverse genus. This study highlights the value in using a pluralistic approach for characterizing genome-scale conflict, even in groups with well-resolved phylogenies, while highlighting current challenges in detecting the specific impacts of hybridization.


Asunto(s)
Líquenes , Hongos , Estudio de Asociación del Genoma Completo , Hibridación Genética , Líquenes/genética , Líquenes/microbiología , Filogenia
13.
Microb Cell Fact ; 21(1): 80, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35534897

RESUMEN

BACKGROUND: Due to their huge biodiversity and the capability to produce a wide range of secondary metabolites, lichens have a great potential in biotechnological applications. They have, however, hardly been used as cell factories to date, as it is considered to be difficult and laborious to cultivate lichen partners in pure or co-culture in the laboratory. The various methods used to isolate lichen fungi, based on either the ascospores, the conidia, or the thallus, have so far not been compared or critically examined. Therefore, here we systematically investigate and compare the known methods and two new methods to identify the most suitable technology for isolation of fungi from lichens. RESULTS: Within this study six lichen fungi species were isolated and propagated as pure cultures. All of them formed colonies within one month. In case of lichens with ascocarps the spore discharge was the most suitable method. Spores were already discharged within 2 days and germinated within only four days and the contamination rate was low. Otherwise, the soredia and thallus method without homogenization, as described in this work, are also well suited to obtain pure fungal cultures. For the isolation of algae, we were also successful with the thallus method without homogenization. CONCLUSION: With the methods described here and the proposed strategic approach, we believe that a large proportion of the lichen fungi can be cultivated within a reasonable time and effort. Based on this, methods of controlled cultivation and co-cultivation must now be developed in order to use the potential of lichens with regard to their secondary metabolites, but also for other applications.


Asunto(s)
Ascomicetos , Líquenes , Biodiversidad , Líquenes/microbiología , Esporas Fúngicas , Simbiosis
14.
Am J Bot ; 109(1): 58-66, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34636414

RESUMEN

PREMISE: Lichen-forming fungi that colonize leaf surfaces must find a compatible algal symbiont, establish lichen symbiosis, and reproduce within the limited life span of their substratum. Many produce specialized asexual propagules that appear to be dispersed by rain and runoff currents, but less is known about dispersal of their meiotic ascospores. In some taxa, a layer of algal symbionts covers the hymenial surface of the apothecia, where asci discharge their ascospores. We examined the untested hypothesis that their ascospores are ejected into air currents and carry with them algal symbionts from the epihymenial layer for subsequent lichenization. METHODS: Leaves bearing the lichens Calopadia puiggarii, Sporopodium marginatum (Pilocarpaceae), and Gyalectidium viride (Gomphillaceae) were collected in southern Florida. The latter two species have epihymenial algal layers. Leaf fragments with apotheciate thalli were affixed in petri dishes, with glass cover slips attached inside the lid over the thalli. Subsequent discharge of ascospores and any co-dispersed algae was evaluated with light microscopy. RESULTS: All three species discharged ascospores aerially. Discharged ascospores were frequently surrounded by a halo-like sheath of transparent material. In the two species with an epihymenial algal layer, most dispersing ascospores (>90%) co-transported algal cells attached to the spore sheath or wall. CONCLUSIONS: While water may be the usual vector for their asexual propagules, foliicolous lichen-forming fungi make use of air currents to disperse their ascospores. The epihymenial algal layer represents an adaptation for efficient co-dispersal of the algal symbiont with the next genetic generation of the fungus.


Asunto(s)
Líquenes , Florida , Líquenes/microbiología , Hojas de la Planta , Simbiosis
15.
Phys Chem Chem Phys ; 24(37): 22624-22633, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36102934

RESUMEN

Lichens are unique symbiotic organisms from a mutually beneficial alliance of fungi and algae/cyanobacteria that successfully survive extreme temperatures and drought conditions. Most probably such extraordinary vitality of lichens is underlain by melanins, one of the main structural and chemical lichen components, and their mutual relationship with residual water. In this paper, we propose mechanisms, which allow lichens to store up the extra water in their structure. Melanins that are constituents of the cortical lichen layer and presumably contribute to unique water-lichen interactions are chosen for physical experiments in a wide temperature domain. Two melanin pigments extracted from different lichens are studied here - eumelanin from Lobaria pulmonaria and allomelanin from Cetraria islandica. To investigate the inner melanin structure and water-melanin interactions, FTIR and BDS techniques are applied. The BDS technique was used in a wide temperature region of 123-293 K for melanins with various hydration levels. The relaxation processes related to the confinement of supercooled water - in melanins are observed and discussed in details. At medium and high hydration levels, the relaxation process in two melanins of different chemical compositions and supramolecular structures exhibits a well-known crossover that was already observed in many types of confinements. The analysis of FTIR and BDS results helps to clarify the lichen-water interaction processes.


Asunto(s)
Cianobacterias , Líquenes , Líquenes/química , Líquenes/microbiología , Melaninas , Temperatura , Agua
16.
Proc Natl Acad Sci U S A ; 116(49): 24682-24688, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31727845

RESUMEN

Biological nitrogen fixation (BNF) by microorganisms associated with cryptogamic covers, such as cyanolichens and bryophytes, is a primary source of fixed nitrogen in pristine, high-latitude ecosystems. On land, low molybdenum (Mo) availability has been shown to limit BNF by the most common form of nitrogenase (Nase), which requires Mo in its active site. Vanadium (V) and iron-only Nases have been suggested as viable alternatives to countering Mo limitation of BNF; however, field data supporting this long-standing hypothesis have been lacking. Here, we elucidate the contribution of vanadium nitrogenase (V-Nase) to BNF by cyanolichens across a 600-km latitudinal transect in eastern boreal forests of North America. Widespread V-Nase activity was detected (∼15-50% of total BNF rates), with most of the activity found in the northern part of the transect. We observed a 3-fold increase of V-Nase contribution during the 20-wk growing season. By including the contribution of V-Nase to BNF, estimates of new N input by cyanolichens increase by up to 30%. We find that variability in V-based BNF is strongly related to Mo availability, and we identify a Mo threshold of ∼250 ng·glichen-1 for the onset of V-based BNF. Our results provide compelling ecosystem-scale evidence for the use of the V-Nase as a surrogate enzyme that contributes to BNF when Mo is limiting. Given widespread findings of terrestrial Mo limitation, including the carbon-rich circumboreal belt where global change is most rapid, additional consideration of V-based BNF is required in experimental and modeling studies of terrestrial biogeochemistry.


Asunto(s)
Proteínas Bacterianas/metabolismo , Líquenes/microbiología , Fijación del Nitrógeno/fisiología , Nitrogenasa/metabolismo , Nostoc/enzimología , Atmósfera/análisis , Canadá , Carbono/metabolismo , Ciclo del Carbono , Bosques , Líquenes/metabolismo , Molibdeno/análisis , Molibdeno/metabolismo , Suelo/química , Simbiosis , Taiga , Estados Unidos , Vanadio/análisis , Vanadio/metabolismo
17.
Environ Microbiol ; 23(11): 6637-6650, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34697892

RESUMEN

Viruses can play critical roles in symbioses by initiating horizontal gene transfer, affecting host phenotypes, or expanding their host's ecological niche. However, knowledge of viral diversity and distribution in symbiotic organisms remains elusive. Here we use deep-sequenced metagenomic DNA (PacBio Sequel II; two individuals), paired with a population genomics approach (Pool-seq; 11 populations, 550 individuals) to understand viral distributions in the lichen Umbilicaria phaea. We assess (i) viral diversity in lichen thalli, (ii) putative viral hosts (fungi, algae, bacteria) and (iii) viral distributions along two replicated elevation gradients. We identified five novel viruses, showing 28%-40% amino acid identity to known viruses. They tentatively belong to the families Caulimoviridae, Myoviridae, Podoviridae and Siphoviridae. Our analysis suggests that the Caulimovirus is associated with green algal photobionts (Trebouxia) of the lichen, and the remaining viruses with bacterial hosts. We did not detect viral sequences in the mycobiont. Caulimovirus abundance decreased with increasing elevation, a pattern reflected by a specific algal lineage hosting this virus. Bacteriophages showed population-specific patterns. Our work provides the first comprehensive insights into viruses associated with a lichen holobiont and suggests an interplay of viral hosts and environment in structuring viral distributions.


Asunto(s)
Ascomicetos , Bacteriófagos , Líquenes , Ascomicetos/genética , Bacteriófagos/genética , Genoma Viral/genética , Líquenes/genética , Líquenes/microbiología , Metagenoma , Filogenia , Simbiosis
18.
Arch Microbiol ; 203(4): 1731-1742, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33459813

RESUMEN

Study of carbohydrate-active enzymes (CAZymes) can reveal information about the lifestyle and behavior of an organism. Rhodococcus species is well known for xenobiotic metabolism; however, their carbohydrate utilization ability has been less discussed till date. This study aimed to present the CAZyme analysis of two Rhodococcus strains, PAMC28705 and PAMC28707, isolated from lichens in Antarctica, and compare them with other Rhodococcus, Mycobacterium, and Corynebacterium strains. Genome-wide computational analysis was performed using various tools. Results showed similarities in CAZymes across all the studied genera. All three genera showed potential for significant polysaccharide utilization, including starch, cellulose, and pectin referring their biotechnological potential. Keeping in mind the pathogenic strains listed across all three genera, CAZymes associated to pathogenicity were analyzed too. Cutinase enzyme, which has been associated with phytopathogenicity, was abundant in all the studied organisms. CAZyme gene cluster of Rhodococcus sp. PAMC28705 and Rhodococcus sp. PAMC28707 showed the insertion of cutinase in the cluster, further supporting their possible phytopathogenic properties.


Asunto(s)
Celulosa/metabolismo , Genoma Bacteriano/genética , Polisacáridos/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo , Regiones Antárticas , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Líquenes/microbiología , Pectinas/metabolismo , Rhodococcus/aislamiento & purificación , Secuenciación Completa del Genoma
19.
Arch Microbiol ; 203(5): 2439-2444, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33666687

RESUMEN

A novel Actinobacterium strain YIM 131861 T, was isolated from lichen collected from the South Bank Forest of the Baltic Sea, Germany. It was Gram-stain-positive, strictly aerobic, catalase positive and oxidase negative, yellow pigmented. Cells were motile with a polar flagellum, irregular rod shaped and did not display spore formation. The strain grew at 15 - 30 °C (optimum 25 °C), at pH 6.0 - 10.0 (optimum pH 7.0) and in the presence of 0 - 1.5% (w/v) NaCl (optimum 1%). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain YIM 131861 T belonged to the genus Glaciibacter, and exhibited a high sequence similarity (96.4%) with Glaciibacter superstes NBRC 104264 T. The genomic DNA G + C content of strain YIM 131861 T was 68.2 mol%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain YIM 131861 T and Glaciibacter superstes NBRC 104264 T were 73.2 and 19.9% based on the draft genome sequence. The cell-wall peptidoglycan type was B2γ and contained the 2, 4-diaminobutyric acid as the diagnostic amino acid. Whole cell sugars were galactose, rhamnose, ribose and glucose. It contained MK-12 and MK-13 as the predominant menaquinones. The major cellular fatty acids (> 10%) were identified as anteiso-C15:0, iso-C16:0 and anteiso-C17:0. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol and two unknown glycolipids. Based on the results of phenotypic, chemotaxonomic and phylogenetic analyses, strain YIM 131861 T should belong to the genus Glaciibacter and represents a novel species of the genus Glaciibacter, for which the name Glaciibacter flavus sp. nov. is proposed. The type strain is YIM 131861 T (= CGMCC 1.16588 T = NBRC 113572 T).


Asunto(s)
Actinomycetales/clasificación , Líquenes/microbiología , Actinomycetales/química , Actinomycetales/citología , Actinomycetales/fisiología , ADN Bacteriano/genética , Ácidos Grasos/química , Genoma Bacteriano/genética , Peptidoglicano/química , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/química
20.
Artículo en Inglés | MEDLINE | ID: mdl-34319866

RESUMEN

Two actinobacteria, designated as strain LDG1-01T and LDG1-06T, were isolated from lichen samples collected in Thailand. Results of morphological characterization, chemotaxonomic studies and 16S rRNA gene analysis indicated that both strains were members of the genus Actinoplanes. MK-9(H4) was found as the major menaquinone. The major fatty acids were anteiso-C15 : 0, iso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0. Phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol were observed as the polar lipids, but differences in minor unidentified polar lipids were found between the strains. Results of comparative genome analysis based on average nucleotide identity and digital DNA-DNA hybridization calculations revealed that both strains showed values below 95 and 70 %, respectively, from each other and closely related Actinoplanes type strains. Based on data from this polyphasic study, strains LDG1-01T and LDG1-06T represent novel species of the genus Actinoplanes. The names proposed are Actinoplanes lichenicola sp. nov. (type strain, LDG1-01T (=JCM 33066T=TISTR 2982T) and Actinoplanes ovalisporus sp. nov. (type strain, LDG1-06T=JCM 33067T=TISTR 2983T).


Asunto(s)
Actinoplanes/clasificación , Líquenes/microbiología , Filogenia , Actinoplanes/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Tailandia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA