Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.441
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Biochem ; 90: 165-191, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-33792375

RESUMEN

Double-strand DNA breaks (DSBs) are the most lethal type of DNA damage, making DSB repair critical for cell survival. However, some DSB repair pathways are mutagenic and promote genome rearrangements, leading to genome destabilization. One such pathway is break-induced replication (BIR), which repairs primarily one-ended DSBs, similar to those formed by collapsed replication forks or telomere erosion. BIR is initiated by the invasion of a broken DNA end into a homologous template, synthesizes new DNA within the context of a migrating bubble, and is associated with conservative inheritance of new genetic material. This mode of synthesis is responsible for a high level of genetic instability associated with BIR. Eukaryotic BIR was initially investigated in yeast, but now it is also actively studied in mammalian systems. Additionally, a significant breakthrough has been made regarding the role of microhomology-mediated BIR in the formation of complex genomic rearrangements that underly various human pathologies.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Replicación del ADN , Mamíferos/genética , Homeostasis del Telómero/genética , Animales , Reparación del ADN por Unión de Extremidades , Humanos , Mutación , Levaduras/genética
2.
Cell ; 175(2): 544-557.e16, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30245013

RESUMEN

A major challenge in genetics is to identify genetic variants driving natural phenotypic variation. However, current methods of genetic mapping have limited resolution. To address this challenge, we developed a CRISPR-Cas9-based high-throughput genome editing approach that can introduce thousands of specific genetic variants in a single experiment. This enabled us to study the fitness consequences of 16,006 natural genetic variants in yeast. We identified 572 variants with significant fitness differences in glucose media; these are highly enriched in promoters, particularly in transcription factor binding sites, while only 19.2% affect amino acid sequences. Strikingly, nearby variants nearly always favor the same parent's alleles, suggesting that lineage-specific selection is often driven by multiple clustered variants. In sum, our genome editing approach reveals the genetic architecture of fitness variation at single-base resolution and could be adapted to measure the effects of genome-wide genetic variation in any screen for cell survival or cell-sortable markers.


Asunto(s)
Edición Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Saccharomyces cerevisiae/genética , Sistemas CRISPR-Cas , Mapeo Cromosómico , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Variación Genética/genética , Vectores Genéticos , Genoma , Levaduras/genética
3.
Annu Rev Biochem ; 85: 515-42, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27145844

RESUMEN

Ice-binding proteins (IBPs) are a diverse class of proteins that assist organism survival in the presence of ice in cold climates. They have different origins in many organisms, including bacteria, fungi, algae, diatoms, plants, insects, and fish. This review covers the gamut of IBP structures and functions and the common features they use to bind ice. We discuss mechanisms by which IBPs adsorb to ice and interfere with its growth, evidence for their irreversible association with ice, and methods for enhancing the activity of IBPs. The applications of IBPs in the food industry, in cryopreservation, and in other technologies are vast, and we chart out some possibilities.


Asunto(s)
Adaptación Fisiológica/genética , Proteínas Anticongelantes/química , Criopreservación/métodos , Hielo/análisis , Animales , Proteínas Anticongelantes/genética , Proteínas Anticongelantes/metabolismo , Bacterias/genética , Bacterias/metabolismo , Frío , Almacenamiento de Alimentos/métodos , Expresión Génica , Humanos , Modelos Moleculares , Plantas/genética , Plantas/metabolismo , Unión Proteica , Dominios Proteicos , Ingeniería de Proteínas , Estructura Secundaria de Proteína , Levaduras/genética , Levaduras/metabolismo
4.
Cell ; 161(6): 1474-e1, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-26046445

RESUMEN

Spliceosomes are multi-megadalton RNA-protein molecular machines that carry out pre-mRNA splicing, that is, the removal of non-coding intervening sequences (introns) from eukaryotic pre-mRNAs and the ligation of neighboring coding regions (exons) to produce mature mRNA for protein biosynthesis on the ribosome. They are the prototypes of dynamic molecular machines, assembling de novo for each splicing event by the stepwise recruitment of subunits on a substrate.


Asunto(s)
Enfermedad/genética , Empalme del ARN , Empalmosomas/metabolismo , Levaduras/metabolismo , Animales , Humanos , Levaduras/genética
5.
Cell ; 161(5): 971-987, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-26000478

RESUMEN

Constraint-based reconstruction and analysis (COBRA) methods at the genome scale have been under development since the first whole-genome sequences appeared in the mid-1990s. A few years ago, this approach began to demonstrate the ability to predict a range of cellular functions, including cellular growth capabilities on various substrates and the effect of gene knockouts at the genome scale. Thus, much interest has developed in understanding and applying these methods to areas such as metabolic engineering, antibiotic design, and organismal and enzyme evolution. This Primer will get you started.


Asunto(s)
Modelos Genéticos , Biología de Sistemas/métodos , Simulación por Computador , Escherichia coli/genética , Humanos , Ingeniería Metabólica , Mapas de Interacción de Proteínas , Thermotoga maritima/genética , Levaduras/genética
6.
Nat Rev Mol Cell Biol ; 18(2): 115-126, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27924075

RESUMEN

Most histones are assembled into nucleosomes behind the replication fork to package newly synthesized DNA. By contrast, histone variants, which are encoded by separate genes, are typically incorporated throughout the cell cycle. Histone variants can profoundly change chromatin properties, which in turn affect DNA replication and repair, transcription, and chromosome packaging and segregation. Recent advances in the study of histone replacement have elucidated the dynamic processes by which particular histone variants become substrates of histone chaperones, ATP-dependent chromatin remodellers and histone-modifying enzymes. Here, we review histone variant dynamics and the effects of replacing DNA synthesis-coupled histones with their replication-independent variants on the chromatin landscape.


Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Animales , Cromatina/genética , Replicación del ADN , Variación Genética , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/genética , Humanos , Nucleosomas/metabolismo , Plantas/genética , Transcripción Genética , Levaduras/genética
7.
Cell ; 158(5): 1083-1093, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25171409

RESUMEN

In experimental science, organisms are usually studied in isolation, but in the wild, they compete and cooperate in complex communities. We report a system for cross-kingdom communication by which bacteria heritably transform yeast metabolism. An ancient biological circuit blocks yeast from using other carbon sources in the presence of glucose. [GAR(+)], a protein-based epigenetic element, allows yeast to circumvent this "glucose repression" and use multiple carbon sources in the presence of glucose. Some bacteria secrete a chemical factor that induces [GAR(+)]. [GAR(+)] is advantageous to bacteria because yeast cells make less ethanol and is advantageous to yeast because their growth and long-term viability is improved in complex carbon sources. This cross-kingdom communication is broadly conserved, providing a compelling argument for its adaptive value. By heritably transforming growth and survival strategies in response to the selective pressures of life in a biological community, [GAR(+)] presents a unique example of Lamarckian inheritance.


Asunto(s)
Epigénesis Genética , Priones/metabolismo , Saccharomyces cerevisiae/metabolismo , Staphylococcus hominis/metabolismo , Fermentación , Glucosa/metabolismo , Saccharomyces cerevisiae/genética , Staphylococcus hominis/genética , Vino/microbiología , Levaduras/genética , Levaduras/metabolismo
8.
Cell ; 158(1): 213-25, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24995987

RESUMEN

The availability of diverse genomes makes it possible to predict gene function based on shared evolutionary history. This approach can be challenging, however, for pathways whose components do not exhibit a shared history but rather consist of distinct "evolutionary modules." We introduce a computational algorithm, clustering by inferred models of evolution (CLIME), which inputs a eukaryotic species tree, homology matrix, and pathway (gene set) of interest. CLIME partitions the gene set into disjoint evolutionary modules, simultaneously learning the number of modules and a tree-based evolutionary history that defines each module. CLIME then expands each module by scanning the genome for new components that likely arose under the inferred evolutionary model. Application of CLIME to ∼1,000 annotated human pathways and to the proteomes of yeast, red algae, and malaria reveals unanticipated evolutionary modularity and coevolving components. CLIME is freely available and should become increasingly powerful with the growing wealth of eukaryotic genomes.


Asunto(s)
Algoritmos , Análisis por Conglomerados , Filogenia , Humanos , Mitocondrias/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteoma/análisis , Rhodophyta/genética , Rhodophyta/metabolismo , Transducción de Señal , Levaduras/genética , Levaduras/metabolismo
9.
Mol Cell ; 81(8): 1802-1815.e7, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33581077

RESUMEN

Measurements of cellular tRNA abundance are hampered by pervasive blocks to cDNA synthesis at modified nucleosides and the extensive similarity among tRNA genes. We overcome these limitations with modification-induced misincorporation tRNA sequencing (mim-tRNAseq), which combines a workflow for full-length cDNA library construction from endogenously modified tRNA with a comprehensive and user-friendly computational analysis toolkit. Our method accurately captures tRNA abundance and modification status in yeast, fly, and human cells and is applicable to any organism with a known genome. We applied mim-tRNAseq to discover a dramatic heterogeneity of tRNA isodecoder pools among diverse human cell lines and a surprising interdependence of modifications at distinct sites within the same tRNA transcript.


Asunto(s)
Eucariontes/genética , ARN de Transferencia/genética , Análisis de Secuencia de ARN/métodos , Animales , Línea Celular , Drosophila/genética , Genoma/genética , Células HEK293 , Humanos , Levaduras/genética
10.
Cell ; 152(3): 394-405, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23374337

RESUMEN

Changes in DNA copy number, whether confined to specific genes or affecting whole chromosomes, have been identified as causes of diseases and developmental abnormalities and as sources of adaptive potential. Here, we discuss the costs and benefits of DNA copy-number alterations. Changes in DNA copy number are largely detrimental. Amplifications or deletions of specific genes can elicit discrete defects. Large-scale changes in DNA copy number can also cause detrimental phenotypes that are due to the cumulative effects of copy-number alterations of many genes simultaneously. On the other hand, studies in microorganisms show that DNA copy-number alterations can be beneficial, increasing survival under selective pressure. As DNA copy-number alterations underlie many human diseases, we will end with a discussion of gene copy-number changes as therapeutic targets.


Asunto(s)
Aneuploidia , Variaciones en el Número de Copia de ADN , Poliploidía , Animales , Dosificación de Gen , Expresión Génica , Aptitud Genética , Humanos , Neoplasias/genética , Plantas/genética , Levaduras/genética , Levaduras/fisiología
11.
Annu Rev Genet ; 53: 45-65, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31430180

RESUMEN

The genetic control of the characteristic cell sizes of different species and tissues is a long-standing enigma. Plants are convenient for studying this question in a multicellular context, as their cells do not move and are easily tracked and measured from organ initiation in the meristems to subsequent morphogenesis and differentiation. In this article, we discuss cell size control in plants compared with other organisms. As seen from yeast cells to mammalian cells, size homeostasis is maintained cell autonomously in the shoot meristem. In developing organs, vacuolization contributes to cell size heterogeneity and may resolve conflicts between growth control at the cellular and organ levels. Molecular mechanisms for cell size control have implications for how cell size responds to changes in ploidy, which are particularly important in plant development and evolution. We also discuss comparatively the functional consequences of cell size and their potential repercussions at higher scales, including genome evolution.


Asunto(s)
Meristema/citología , Células Vegetales/fisiología , Ploidias , Tamaño de la Célula , Replicación del ADN , Células Eucariotas/citología , Meristema/crecimiento & desarrollo , Mitosis , Modelos Biológicos , Desarrollo de la Planta/genética , Levaduras/citología , Levaduras/genética
12.
Cell ; 151(4): 738-749, 2012 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-23141536

RESUMEN

The nucleosome represents a mechanical barrier to transcription that operates as a general regulator of gene expression. We investigate how each nucleosomal component-the histone tails, the specific histone-DNA contacts, and the DNA sequence-contributes to the strength of the barrier. Removal of the tails favors progression of RNA polymerase II into the entry region of the nucleosome by locally increasing the wrapping-unwrapping rates of the DNA around histones. In contrast, point mutations that affect histone-DNA contacts at the dyad abolish the barrier to transcription in the central region by decreasing the local wrapping rate. Moreover, we show that the nucleosome amplifies sequence-dependent transcriptional pausing, an effect mediated through the structure of the nascent RNA. Each of these nucleosomal elements controls transcription elongation by affecting distinctly the density and duration of polymerase pauses, thus providing multiple and alternative mechanisms for control of gene expression by chromatin remodeling and transcription factors.


Asunto(s)
Regulación de la Expresión Génica , Histonas/metabolismo , Nucleosomas , Transcripción Genética , Levaduras/genética , ADN/metabolismo , Histonas/química , ARN Polimerasa II/metabolismo , Levaduras/metabolismo
13.
Mol Cell ; 76(2): 268-285, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31585693

RESUMEN

The clearance of surplus, broken, or dangerous components is key for maintaining cellular homeostasis. The failure to remove protein aggregates, damaged organelles, or intracellular pathogens leads to diseases, including neurodegeneration, cancer, and infectious diseases. Autophagy is the evolutionarily conserved pathway that sequesters cytoplasmic components in specialized vesicles, autophagosomes, which transport the cargo to the degradative compartments (vacuoles or lysosomes). Research during the past few decades has elucidated how autophagosomes engulf their substrates selectively. This type of autophagy involves a growing number of selective autophagy receptors (SARs) (e.g., Atg19 in yeasts, p62/SQSTM1 in mammals), which bind to the cargo and simultaneously engage components of the core autophagic machinery via direct interaction with the ubiquitin-like proteins (UBLs) of the Atg8/LC3/GABARAP family and adaptors, Atg11 (in yeasts) or FIP200 (in mammals). In this Review, we critically discuss the biology of the SARs with special emphasis on their interactions with UBLs.


Asunto(s)
Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Proteínas Fúngicas/metabolismo , Transducción de Señal , Levaduras/metabolismo , Animales , Autofagosomas/patología , Proteínas Relacionadas con la Autofagia/genética , Sitios de Unión , Proteínas Fúngicas/genética , Humanos , Ligandos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Ubiquitinación , Ubiquitinas/metabolismo , Levaduras/genética
14.
Annu Rev Biochem ; 80: 16-40, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21456966

RESUMEN

My journey into a research career began in fermentation biochemistry in an applied science department during the difficult post-World War II time in Japan. Subsequently, my desire to do research in basic science developed. I was fortunate to be a postdoctoral fellow in the United States during the early days of molecular biology. From 1957 to 1960, I worked with three pioneers of molecular biology, Sol Spiegelman, James Watson, and Seymour Benzer. These experiences helped me develop into a basic research scientist. My initial research projects at Osaka University, and subsequently at the University of Wisconsin, Madison, were on the mode of action of colicins as well as on mRNA and ribosomes. Following success in the reconstitution of ribosomal subunits, my efforts focused more on ribosomes, initially on the aspects of structure, function, and in vitro assembly, such as the construction of the 30S subunit assembly map. After this, my laboratory studied the regulation of the synthesis of ribosomes and ribosomal components in Escherichia coli. Our achievements included the discovery of translational feedback regulation of ribosomal protein synthesis and the identification of several repressor ribosomal proteins used in this regulation. In 1984, I moved to the University of California, Irvine, and initiated research on rRNA transcription by RNA polymerase I in the yeast Saccharomyces cerevisiae. The use of yeast genetics combined with biochemistry allowed us to identify genes uniquely involved in rRNA synthesis and to elucidate the mechanism of initiation of transcription. This essay is a reflection on my life as a research scientist.


Asunto(s)
Biología Molecular , Investigación , Animales , Educación de Postgrado , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Japón , Biología Molecular/educación , Biosíntesis de Proteínas , Investigación/educación , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Estados Unidos , Recursos Humanos , Levaduras/genética , Levaduras/metabolismo
15.
Genes Dev ; 32(19-20): 1285-1296, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30275044

RESUMEN

Mitochondria contain their own genome that encodes for a small number of proteins, while the vast majority of mitochondrial proteins is produced on cytosolic ribosomes. The formation of respiratory chain complexes depends on the coordinated biogenesis of mitochondrially encoded and nuclear-encoded subunits. In this review, we describe pathways that adjust mitochondrial protein synthesis and import of nuclear-encoded subunits to the assembly of respiratory chain complexes. Furthermore, we outline how defects in protein import into mitochondria affect nuclear gene expression to maintain protein homeostasis under physiological and stress conditions.


Asunto(s)
Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Transporte de Electrón , Regulación de la Expresión Génica , Genoma Mitocondrial , Humanos , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/genética , Transporte de Proteínas , Estrés Fisiológico , Levaduras/genética
16.
Nat Rev Mol Cell Biol ; 14(8): 518-28, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23877564

RESUMEN

The accurate transition from G1 phase of the cell cycle to S phase is crucial for the control of eukaryotic cell proliferation, and its misregulation promotes oncogenesis. During G1 phase, growth-dependent cyclin-dependent kinase (CDK) activity promotes DNA replication and initiates G1-to-S phase transition. CDK activation initiates a positive feedback loop that further increases CDK activity, and this commits the cell to division by inducing genome-wide transcriptional changes. G1-S transcripts encode proteins that regulate downstream cell cycle events. Recent work is beginning to reveal the complex molecular mechanisms that control the temporal order of transcriptional activation and inactivation, determine distinct functional subgroups of genes and link cell cycle-dependent transcription to DNA replication stress in yeast and mammals.


Asunto(s)
Proteínas de Ciclo Celular/genética , Ciclo Celular/genética , Fase G1/genética , Fase S/genética , Transcripción Genética/fisiología , Animales , Ciclo Celular/fisiología , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Quinasas Ciclina-Dependientes/fisiología , Fase G1/fisiología , Humanos , Mamíferos/genética , Mamíferos/fisiología , Modelos Biológicos , Fase S/fisiología , Levaduras/genética , Levaduras/fisiología
17.
Cell ; 142(2): 184-8, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20655459

RESUMEN

Single-celled organisms monitor cell geometry and use this information to control cell division. Such geometry-sensing mechanisms control both the decision to enter into cell division and the physical orientation of the chromosome segregation machinery, suggesting that signals controlling cell division may be linked to the mechanisms that ensure proper chromosome segregation.


Asunto(s)
Bacterias/citología , División Celular , Levaduras/citología , Bacterias/genética , Segregación Cromosómica , Cromosomas Bacterianos , Cromosomas Fúngicos , Mitosis , Levaduras/genética
19.
Nucleic Acids Res ; 51(D1): D785-D791, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36350610

RESUMEN

YEASTRACT+ (http://yeastract-plus.org/) is a tool for the analysis, prediction and modelling of transcription regulatory data at the gene and genomic levels in yeasts. It incorporates three integrated databases: YEASTRACT (http://yeastract-plus.org/yeastract/), PathoYeastract (http://yeastract-plus.org/pathoyeastract/) and NCYeastract (http://yeastract-plus.org/ncyeastract/), focused on Saccharomyces cerevisiae, pathogenic yeasts of the Candida genus, and non-conventional yeasts of biotechnological relevance. In this release, YEASTRACT+ offers upgraded information on transcription regulation for the ten previously incorporated yeast species, while extending the database to another pathogenic yeast, Candida auris. Since the last release of YEASTRACT+ (January 2020), a fourth database has been integrated. CommunityYeastract (http://yeastract-plus.org/community/) offers a platform for the creation, use, and future update of YEASTRACT-like databases for any yeast of the users' choice. CommunityYeastract currently provides information for two Saccharomyces boulardii strains, Rhodotorula toruloides NP11 oleaginous yeast, and Schizosaccharomyces pombe 972h-. In addition, YEASTRACT+ portal currently gathers 304 547 documented regulatory associations between transcription factors (TF) and target genes and 480 DNA binding sites, considering 2771 TFs from 11 yeast species. A new set of tools, currently implemented for S. cerevisiae and C. albicans, is further offered, combining regulatory information with genome-scale metabolic models to provide predictions on the most promising transcription factors to be exploited in cell factory optimisation or to be used as novel drug targets. The expansion of these new tools to the remaining YEASTRACT+ species is ongoing.


Asunto(s)
Programas Informáticos , Transcripción Genética , Levaduras , Bases de Datos Genéticas , Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Levaduras/genética
20.
Nucleic Acids Res ; 51(13): e72, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37326023

RESUMEN

Use of synthetic genomics to design and build 'big' DNA has revolutionized our ability to answer fundamental biological questions by employing a bottom-up approach. Saccharomyces cerevisiae, or budding yeast, has become the major platform to assemble large synthetic constructs thanks to its powerful homologous recombination machinery and the availability of well-established molecular biology techniques. However, introducing designer variations to episomal assemblies with high efficiency and fidelity remains challenging. Here we describe CRISPR Engineering of EPisomes in Yeast, or CREEPY, a method for rapid engineering of large synthetic episomal DNA constructs. We demonstrate that CRISPR editing of circular episomes presents unique challenges compared to modifying native yeast chromosomes. We optimize CREEPY for efficient and precise multiplex editing of >100 kb yeast episomes, providing an expanded toolkit for synthetic genomics.


Asunto(s)
Edición Génica , Levaduras , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Sistemas CRISPR-Cas/genética , ADN , Edición Génica/métodos , Plásmidos/genética , Levaduras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA