Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 342
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Cell ; 178(6): 1344-1361.e11, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31474371

RESUMEN

Necrosis of infected macrophages constitutes a critical pathogenetic event in tuberculosis by releasing mycobacteria into the growth-permissive extracellular environment. In zebrafish infected with Mycobacterium marinum or Mycobacterium tuberculosis, excess tumor necrosis factor triggers programmed necrosis of infected macrophages through the production of mitochondrial reactive oxygen species (ROS) and the participation of cyclophilin D, a component of the mitochondrial permeability transition pore. Here, we show that this necrosis pathway is not mitochondrion-intrinsic but results from an inter-organellar circuit initiating and culminating in the mitochondrion. Mitochondrial ROS induce production of lysosomal ceramide that ultimately activates the cytosolic protein BAX. BAX promotes calcium flow from the endoplasmic reticulum into the mitochondrion through ryanodine receptors, and the resultant mitochondrial calcium overload triggers cyclophilin-D-mediated necrosis. We identify ryanodine receptors and plasma membrane L-type calcium channels as druggable targets to intercept mitochondrial calcium overload and necrosis of mycobacterium-infected zebrafish and human macrophages.


Asunto(s)
Macrófagos/microbiología , Macrófagos/patología , Mitocondrias/metabolismo , Infecciones por Mycobacterium no Tuberculosas/metabolismo , Tuberculosis/inmunología , Tuberculosis/patología , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Apoptosis , Calcio/metabolismo , Retículo Endoplásmico/microbiología , Humanos , Lisosomas/microbiología , Potencial de la Membrana Mitocondrial , Infecciones por Mycobacterium no Tuberculosas/patología , Mycobacterium marinum , Mycobacterium tuberculosis , Necrosis , Especies Reactivas de Oxígeno/metabolismo , Células THP-1 , Pez Cebra
2.
Cell ; 161(6): 1241-2, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-26046431

RESUMEN

Host-pathogen interactions involve a series of attacks and counter-attacks. Miao et al. show that, although some invading bacteria can take shelter in lysosomes by neutralizing their pH, this respite is temporary, as host cells can expel them in exosomes.


Asunto(s)
Infecciones por Escherichia coli/inmunología , Lisosomas/microbiología , Canales Catiónicos TRPC/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Infecciones Urinarias/inmunología , Escherichia coli Uropatógena/fisiología , Animales
3.
Cell ; 161(6): 1306-19, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-26027738

RESUMEN

Vertebrate cells have evolved elaborate cell-autonomous defense programs to monitor subcellular compartments for infection and to evoke counter-responses. These programs are activated by pathogen-associated pattern molecules and by various strategies intracellular pathogens employ to alter cellular microenvironments. Here, we show that, when uropathogenic E. coli (UPEC) infect bladder epithelial cells (BECs), they are targeted by autophagy but avoid degradation because of their capacity to neutralize lysosomal pH. This change is detected by mucolipin TRP channel 3 (TRPML3), a transient receptor potential cation channel localized to lysosomes. TRPML3 activation then spontaneously initiates lysosome exocytosis, resulting in expulsion of exosome-encased bacteria. These studies reveal a cellular default system for lysosome homeostasis that has been co-opted by the autonomous defense program to clear recalcitrant pathogens.


Asunto(s)
Infecciones por Escherichia coli/inmunología , Lisosomas/microbiología , Canales Catiónicos TRPC/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Infecciones Urinarias/inmunología , Escherichia coli Uropatógena/fisiología , Animales , Autofagia , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Exocitosis , Lisosomas/enzimología , Lisosomas/metabolismo , Ratones , Vejiga Urinaria/inmunología , Vejiga Urinaria/microbiología , Vejiga Urinaria/patología , Infecciones Urinarias/microbiología , Infecciones Urinarias/patología
4.
Nature ; 623(7989): 1062-1069, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37968398

RESUMEN

Endomembrane damage represents a form of stress that is detrimental for eukaryotic cells1,2. To cope with this threat, cells possess mechanisms that repair the damage and restore cellular homeostasis3-7. Endomembrane damage also results in organelle instability and the mechanisms by which cells stabilize damaged endomembranes to enable membrane repair remains unknown. Here, by combining in vitro and in cellulo studies with computational modelling we uncover a biological function for stress granules whereby these biomolecular condensates form rapidly at endomembrane damage sites and act as a plug that stabilizes the ruptured membrane. Functionally, we demonstrate that stress granule formation and membrane stabilization enable efficient repair of damaged endolysosomes, through both ESCRT (endosomal sorting complex required for transport)-dependent and independent mechanisms. We also show that blocking stress granule formation in human macrophages creates a permissive environment for Mycobacterium tuberculosis, a human pathogen that exploits endomembrane damage to survive within the host.


Asunto(s)
Endosomas , Membranas Intracelulares , Lisosomas , Macrófagos , Gránulos de Estrés , Humanos , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/metabolismo , Endosomas/microbiología , Endosomas/patología , Membranas Intracelulares/metabolismo , Membranas Intracelulares/microbiología , Membranas Intracelulares/patología , Lisosomas/metabolismo , Lisosomas/microbiología , Lisosomas/patología , Mycobacterium tuberculosis/metabolismo , Gránulos de Estrés/metabolismo , Técnicas In Vitro , Macrófagos/metabolismo , Macrófagos/microbiología , Macrófagos/patología
5.
Nat Immunol ; 17(6): 677-86, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27089382

RESUMEN

Mycobacterium tuberculosis (Mtb) survives in macrophages by evading delivery to the lysosome and promoting the accumulation of lipid bodies, which serve as a bacterial source of nutrients. We found that by inducing the microRNA (miRNA) miR-33 and its passenger strand miR-33*, Mtb inhibited integrated pathways involved in autophagy, lysosomal function and fatty acid oxidation to support bacterial replication. Silencing of miR-33 and miR-33* by genetic or pharmacological means promoted autophagy flux through derepression of key autophagy effectors (such as ATG5, ATG12, LC3B and LAMP1) and AMPK-dependent activation of the transcription factors FOXO3 and TFEB, which enhanced lipid catabolism and Mtb xenophagy. These data define a mammalian miRNA circuit used by Mtb to coordinately inhibit autophagy and reprogram host lipid metabolism to enable intracellular survival and persistence in the host.


Asunto(s)
Autofagia/genética , Metabolismo de los Lípidos/genética , Lisosomas/fisiología , Macrófagos/fisiología , MicroARNs/metabolismo , Mycobacterium tuberculosis/fisiología , Tuberculosis/genética , Animales , Células Cultivadas , Interacciones Huésped-Patógeno , Humanos , Evasión Inmune , Lisosomas/microbiología , Macrófagos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Transducción de Señal , Factores de Transcripción/metabolismo
6.
Mol Cell ; 77(5): 951-969.e9, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31995728

RESUMEN

AMPK is a central regulator of metabolism and autophagy. Here we show how lysosomal damage activates AMPK. This occurs via a hitherto unrecognized signal transduction system whereby cytoplasmic sentinel lectins detect membrane damage leading to ubiquitination responses. Absence of Galectin 9 (Gal9) or loss of its capacity to recognize lumenal glycans exposed during lysosomal membrane damage abrogate such ubiquitination responses. Proteomic analyses with APEX2-Gal9 have revealed global changes within the Gal9 interactome during lysosomal damage. Gal9 association with lysosomal glycoproteins increases whereas interactions with a newly identified Gal9 partner, deubiquitinase USP9X, diminishes upon lysosomal injury. In response to damage, Gal9 displaces USP9X from complexes with TAK1 and promotes K63 ubiquitination of TAK1 thus activating AMPK on damaged lysosomes. This triggers autophagy and contributes to autophagic control of membrane-damaging microbe Mycobacterium tuberculosis. Thus, galectin and ubiquitin systems converge to activate AMPK and autophagy during endomembrane homeostasis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia , Metabolismo Energético , Galectinas/metabolismo , Lisosomas/enzimología , Ubiquitina/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Adolescente , Adulto , Animales , Autofagia/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Activación Enzimática , Femenino , Galectinas/genética , Células HEK293 , Células HeLa , Humanos , Hipoglucemiantes/farmacología , Lisosomas/efectos de los fármacos , Lisosomas/microbiología , Lisosomas/patología , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Masculino , Metformina/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados , Mycobacterium tuberculosis/patogenicidad , Transducción de Señal , Células THP-1 , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación , Adulto Joven
7.
Cell ; 150(4): 803-15, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22901810

RESUMEN

Eukaryotic cells sterilize the cytosol by using autophagy to route invading bacterial pathogens to the lysosome. During macrophage infection with Mycobacterium tuberculosis, a vacuolar pathogen, exogenous induction of autophagy can limit replication, but the mechanism of autophagy targeting and its role in natural infection remain unclear. Here we show that phagosomal permeabilization mediated by the bacterial ESX-1 secretion system allows cytosolic components of the ubiquitin-mediated autophagy pathway access to phagosomal M. tuberculosis. Recognition of extracelluar bacterial DNA by the STING-dependent cytosolic pathway is required for marking bacteria with ubiquitin, and delivery of bacilli to autophagosomes requires the ubiquitin-autophagy receptors p62 and NDP52 and the DNA-responsive kinase TBK1. Remarkably, mice with monocytes incapable of delivering bacilli to the autophagy pathway are extremely susceptible to infection. Our results reveal an unexpected link between DNA sensing, innate immunity, and autophagy and indicate a major role for this autophagy pathway in resistance to M. tuberculosis infection.


Asunto(s)
Autofagia , ADN Bacteriano/inmunología , Inmunidad Innata , Macrófagos/inmunología , Macrófagos/microbiología , Mycobacterium tuberculosis/fisiología , Animales , Proteína 5 Relacionada con la Autofagia , Citosol/microbiología , Desoxirribonucleasas/metabolismo , Lisosomas/microbiología , Macrófagos/citología , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mycobacterium tuberculosis/genética , Fagosomas/microbiología , Ubiquitina/metabolismo , Ubiquitinación
8.
PLoS Pathog ; 20(5): e1011783, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38739652

RESUMEN

Legionella pneumophila strains harboring wild-type rpsL such as Lp02rpsLWT cannot replicate in mouse bone marrow-derived macrophages (BMDMs) due to induction of extensive lysosome damage and apoptosis. The bacterial factor directly responsible for inducing such cell death and the host factor involved in initiating the signaling cascade that leads to lysosome damage remain unknown. Similarly, host factors that may alleviate cell death induced by these bacterial strains have not yet been investigated. Using a genome-wide CRISPR/Cas9 screening, we identified Hmg20a and Nol9 as host factors important for restricting strain Lp02rpsLWT in BMDMs. Depletion of Hmg20a protects macrophages from infection-induced lysosomal damage and apoptosis, allowing productive bacterial replication. The restriction imposed by Hmg20a was mediated by repressing the expression of several endo-lysosomal proteins, including the small GTPase Rab7. We found that SUMOylated Rab7 is recruited to the bacterial phagosome via SulF, a Dot/Icm effector that harbors a SUMO-interacting motif (SIM). Moreover, overexpression of Rab7 rescues intracellular growth of strain Lp02rpsLWT in BMDMs. Our results establish that L. pneumophila exploits the lysosomal network for the biogenesis of its phagosome in BMDMs.


Asunto(s)
Legionella pneumophila , Lisosomas , Macrófagos , Fagosomas , Proteínas de Unión al GTP rab , Proteínas de Unión a GTP rab7 , Legionella pneumophila/metabolismo , Legionella pneumophila/genética , Animales , Proteínas de Unión al GTP rab/metabolismo , Ratones , Fagosomas/metabolismo , Fagosomas/microbiología , Lisosomas/metabolismo , Lisosomas/microbiología , Macrófagos/microbiología , Macrófagos/metabolismo , Enfermedad de los Legionarios/metabolismo , Enfermedad de los Legionarios/microbiología , Sumoilación , Ratones Endogámicos C57BL , Endosomas/metabolismo , Endosomas/microbiología
9.
PLoS Pathog ; 20(5): e1012205, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38701094

RESUMEN

Mycobacterium tuberculosis (Mtb) infects lung myeloid cells, but the specific Mtb-permissive cells and host mechanisms supporting Mtb persistence during chronic infection are incompletely characterized. We report that after the development of T cell responses, CD11clo monocyte-derived cells harbor more live Mtb than alveolar macrophages (AM), neutrophils, and CD11chi monocyte-derived cells. Transcriptomic and functional studies revealed that the lysosome pathway is underexpressed in this highly permissive subset, characterized by less lysosome content, acidification, and proteolytic activity than AM, along with less nuclear TFEB, a regulator of lysosome biogenesis. Mtb infection does not drive lysosome deficiency in CD11clo monocyte-derived cells but promotes recruitment of monocytes that develop into permissive lung cells, mediated by the Mtb ESX-1 secretion system. The c-Abl tyrosine kinase inhibitor nilotinib activates TFEB and enhances lysosome functions of macrophages in vitro and in vivo, improving control of Mtb infection. Our results suggest that Mtb exploits lysosome-poor lung cells for persistence and targeting lysosome biogenesis is a potential host-directed therapy for tuberculosis.


Asunto(s)
Lisosomas , Macrófagos Alveolares , Monocitos , Mycobacterium tuberculosis , Lisosomas/metabolismo , Lisosomas/microbiología , Animales , Monocitos/metabolismo , Monocitos/microbiología , Ratones , Macrófagos Alveolares/microbiología , Macrófagos Alveolares/metabolismo , Pulmón/microbiología , Pulmón/metabolismo , Ratones Endogámicos C57BL , Enfermedad Crónica , Tuberculosis Pulmonar/microbiología , Tuberculosis Pulmonar/metabolismo , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/patología , Humanos , Tuberculosis/microbiología , Tuberculosis/inmunología , Tuberculosis/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo
10.
Mol Cell ; 70(1): 120-135.e8, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625033

RESUMEN

The Ser/Thr protein kinase mTOR controls metabolic pathways, including the catabolic process of autophagy. Autophagy plays additional, catabolism-independent roles in homeostasis of cytoplasmic endomembranes and whole organelles. How signals from endomembrane damage are transmitted to mTOR to orchestrate autophagic responses is not known. Here we show that mTOR is inhibited by lysosomal damage. Lysosomal damage, recognized by galectins, leads to association of galectin-8 (Gal8) with the mTOR apparatus on the lysosome. Gal8 inhibits mTOR activity through its Ragulator-Rag signaling machinery, whereas galectin-9 activates AMPK in response to lysosomal injury. Both systems converge upon downstream effectors including autophagy and defense against Mycobacterium tuberculosis. Thus, a novel galectin-based signal-transduction system, termed here GALTOR, intersects with the known regulators of mTOR on the lysosome and controls them in response to lysosomal damage. VIDEO ABSTRACT.


Asunto(s)
Autofagia , Galectinas/metabolismo , Lisosomas/enzimología , Serina-Treonina Quinasas TOR/metabolismo , Tuberculosis/enzimología , Proteínas Quinasas Activadas por AMP/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Galectinas/deficiencia , Galectinas/genética , Células HEK293 , Células HeLa , Humanos , Lisosomas/microbiología , Lisosomas/patología , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Complejos Multiproteicos , Mycobacterium tuberculosis/patogenicidad , Transducción de Señal , Células THP-1 , Serina-Treonina Quinasas TOR/genética , Tuberculosis/genética , Tuberculosis/microbiología , Tuberculosis/patología
11.
Infect Immun ; 92(6): e0014124, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38722166

RESUMEN

The human-specific bacterial pathogen group A Streptococcus (GAS) is a significant cause of morbidity and mortality. Macrophages are important to control GAS infection, but previous data indicate that GAS can persist in macrophages. In this study, we detail the molecular mechanisms by which GAS survives in THP-1 macrophages. Our fluorescence microscopy studies demonstrate that GAS is readily phagocytosed by macrophages, but persists within phagolysosomes. These phagolysosomes are not acidified, which is in agreement with our findings that GAS cannot survive in low pH environments. We find that the secreted pore-forming toxin Streptolysin O (SLO) perforates the phagolysosomal membrane, allowing leakage of not only protons but also large proteins including the lysosomal protease cathepsin B. Additionally, GAS recruits CD63/LAMP-3, which may contribute to lysosomal permeabilization, especially in the absence of SLO. Thus, although GAS does not inhibit fusion of the lysosome with the phagosome, it has multiple mechanisms to prevent proper phagolysosome function, allowing for persistence of the bacteria within the macrophage. This has important implications for not only the initial response but also the overall functionality of the macrophages, which may lead to the resulting pathologies in GAS infection. Our data suggest that therapies aimed at improving macrophage function may positively impact patient outcomes in GAS infection.


Asunto(s)
Proteínas Bacterianas , Lisosomas , Macrófagos , Streptococcus pyogenes , Estreptolisinas , Streptococcus pyogenes/inmunología , Humanos , Macrófagos/microbiología , Macrófagos/inmunología , Macrófagos/metabolismo , Lisosomas/metabolismo , Lisosomas/microbiología , Estreptolisinas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Fagosomas/microbiología , Fagosomas/metabolismo , Células THP-1 , Fagocitosis , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/metabolismo , Catepsina B/metabolismo , Concentración de Iones de Hidrógeno
12.
Proc Natl Acad Sci U S A ; 117(12): 6801-6810, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32152125

RESUMEN

Coxiella burnetii is an intracellular pathogen that replicates in a lysosome-like vacuole through activation of a Dot/Icm-type IVB secretion system and subsequent translocation of effectors that remodel the host cell. Here a genome-wide small interfering RNA screen and reporter assay were used to identify host proteins required for Dot/Icm effector translocation. Significant, and independently validated, hits demonstrated the importance of multiple protein families required for endocytic trafficking of the C. burnetii-containing vacuole to the lysosome. Further analysis demonstrated that the degradative activity of the lysosome created by proteases, such as TPP1, which are transported to the lysosome by receptors, such as M6PR and LRP1, are critical for C. burnetii virulence. Indeed, the C. burnetii PmrA/B regulon, responsible for transcriptional up-regulation of genes encoding the Dot/Icm apparatus and a subset of effectors, induced expression of a virulence-associated transcriptome in response to degradative products of the lysosome. Luciferase reporter strains, and subsequent RNA-sequencing analysis, demonstrated that particular amino acids activate the C. burnetii PmrA/B two-component system. This study has further enhanced our understanding of C. burnetii pathogenesis, the host-pathogen interactions that contribute to bacterial virulence, and the different environmental triggers pathogens can sense to facilitate virulence.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/fisiología , Coxiella burnetii/fisiología , Interacciones Huésped-Patógeno , Lisosomas/metabolismo , Fiebre Q/microbiología , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Células HeLa , Humanos , Lisosomas/microbiología , Transporte de Proteínas , Tripeptidil Peptidasa 1 , Virulencia
13.
PLoS Pathog ; 16(7): e1008220, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32658937

RESUMEN

The intracellular lifestyle of Salmonella enterica is characterized by the formation of a replication-permissive membrane-bound niche, the Salmonella-containing vacuole (SCV). As a further consequence of the massive remodeling of the host cell endosomal system, intracellular Salmonella establish a unique network of various Salmonella-induced tubules (SIT). The bacterial repertoire of effector proteins required for the establishment for one type of these SIT, the Salmonella-induced filaments (SIF), is rather well-defined. However, the corresponding host cell proteins are still poorly understood. To identify host factors required for the formation of SIF, we performed a sub-genomic RNAi screen. The analyses comprised high-resolution live cell imaging to score effects on SIF induction, dynamics and morphology. The hits of our functional RNAi screen comprise: i) The late endo-/lysosomal SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex, consisting of STX7, STX8, VTI1B, and VAMP7 or VAMP8, which is, in conjunction with RAB7 and the homotypic fusion and protein sorting (HOPS) tethering complex, a complete vesicle fusion machinery. ii) Novel interactions with the early secretory GTPases RAB1A and RAB1B, providing a potential link to coat protein complex I (COPI) vesicles and reinforcing recently identified ties to the endoplasmic reticulum. iii) New connections to the late secretory pathway and/or the recycling endosome via the GTPases RAB3A, RAB8A, and RAB8B and the SNAREs VAMP2, VAMP3, and VAMP4. iv) An unprecedented involvement of clathrin-coated structures. The resulting set of hits allowed us to characterize completely new host factor interactions, and to strengthen observations from several previous studies.


Asunto(s)
Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno/fisiología , Infecciones por Salmonella/metabolismo , Salmonella typhimurium/metabolismo , Endosomas/metabolismo , Endosomas/microbiología , Células HeLa , Humanos , Lisosomas/metabolismo , Lisosomas/microbiología , ARN Interferente Pequeño
14.
PLoS Pathog ; 15(4): e1007724, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30998773

RESUMEN

Type 2 diabetes mellitus (DM) is a major risk factor for developing tuberculosis (TB). TB-DM comorbidity is expected to pose a serious future health problem due to the alarming rise in global DM incidence. At present, the causal underlying mechanisms linking DM and TB remain unclear. DM is associated with elevated levels of oxidized low-density lipoprotein (oxLDL), a pathologically modified lipoprotein which plays a key role during atherosclerosis development through the formation of lipid-loaded foamy macrophages, an event which also occurs during progression of the TB granuloma. We therefore hypothesized that oxLDL could be a common factor connecting DM to TB. To study this, we measured oxLDL levels in plasma samples of healthy controls, TB, DM and TB-DM patients, and subsequently investigated the effect of oxLDL treatment on human macrophage infection with Mycobacterium tuberculosis (Mtb). Plasma oxLDL levels were significantly elevated in DM patients and associated with high triglyceride levels in TB-DM. Strikingly, incubation with oxLDL strongly increased macrophage Mtb load compared to native or acetylated LDL (acLDL). Mechanistically, oxLDL -but not acLDL- treatment induced macrophage lysosomal cholesterol accumulation and increased protein levels of lysosomal and autophagy markers, while reducing Mtb colocalization with lysosomes. Importantly, combined treatment of acLDL and intracellular cholesterol transport inhibitor (U18666A) mimicked the oxLDL-induced lysosomal phenotype and impaired macrophage Mtb control, illustrating that the localization of lipid accumulation is critical. Collectively, these results demonstrate that oxLDL could be an important DM-associated TB-risk factor by causing lysosomal dysfunction and impaired control of Mtb infection in human macrophages.


Asunto(s)
Diabetes Mellitus Tipo 2/fisiopatología , Lipoproteínas LDL/metabolismo , Lisosomas/patología , Macrófagos/microbiología , Mycobacterium tuberculosis/crecimiento & desarrollo , Tuberculosis/microbiología , Autofagia , Estudios de Casos y Controles , Células Cultivadas , Colesterol/metabolismo , Estudios de Cohortes , Humanos , Incidencia , Lisosomas/metabolismo , Lisosomas/microbiología , Macrófagos/metabolismo , Macrófagos/patología , Tuberculosis/epidemiología , Tuberculosis/metabolismo , Tuberculosis/patología
15.
J Biol Chem ; 294(39): 14289-14307, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31387948

RESUMEN

Autophagy plays multiple roles in host cells challenged with extracellular pathogens. Here, we aimed to explore whether autophagy inhibition could prevent bacterial infections. We first confirmed widely distinct patterns of autophagy responses in host cells infected with Staphylococcus aureus, as compared with Salmonella Only infection with Staphylococcus produced strong accumulation of lipidated autophagy-related protein LC3B (LC3B-II). Infection with virulent Staphylococcus strains induced formation of p62-positive aggregates, suggestive of accumulated ubiquitinated targets. During Salmonella infection, bacteria remain enclosed by lysosomal-associated membrane protein 2 (LAMP2)-positive lysosomes, whereas virulent Staphylococcus apparently exited from enlarged lysosomes and invaded the cytoplasm. Surprisingly, Staphylococcus appeared to escape from the lysosome without generation of membrane-damage signals as detected by galectin-3 recruitment. In contrast, Salmonella infection produced high levels of lysosomal damage, consistent with a downstream antibacterial xenophagy response. Finally, we studied the Unc-51-like autophagy-activating kinase 1 (ULK1) regulatory complex, including the essential subunit autophagy-related protein 13 (ATG13). Infection of cells with either Staphylococcus or Salmonella led to recruitment of ATG13 to sites of cytosolic bacterial cells to promote autophagosome formation. Of note, genetic targeting of ATG13 suppressed autophagy and the ability of Staphylococcus to infect and kill host cells. Two different ULK1 inhibitors also prevented Staphylococcus intracellular replication and host cell death. Interestingly, inhibition of the ULK1 pathway had the opposite effect on Salmonella, sensitizing cells to the infection. Our results suggest that ULK1 inhibitors may offer a potential strategy to impede cellular infection by S. aureus.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Autofagia , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Staphylococcus/patogenicidad , Autofagosomas , Homólogo de la Proteína 1 Relacionada con la Autofagia/antagonistas & inhibidores , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Muerte Celular/efectos de los fármacos , Citoplasma/metabolismo , Citoplasma/microbiología , Inhibidores Enzimáticos/farmacología , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Lisosomas/metabolismo , Lisosomas/microbiología , Salmonella/patogenicidad
16.
Crit Rev Eukaryot Gene Expr ; 30(2): 121-123, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32558491

RESUMEN

Metastatic cancer is caused by hyperactivated lysosomes. Such activation causes a fungus, Aspergillus fumigatus, to permanently activate the AKT gene network that controls the lysosome through positive feedback loops. Targeting such a network by the redox balance change, and with an antifungal medication eliminates the metastatic phenotype, the complexity and robustness of the cancer. This principal mechanism of gene targeting, which suppressed metastasis of unknown origin, was observed clinically.


Asunto(s)
Antifúngicos/uso terapéutico , Aspergillus fumigatus/patogenicidad , Neoplasias/microbiología , Proteínas Proto-Oncogénicas c-akt/genética , Aspergillus fumigatus/efectos de los fármacos , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/microbiología , Metástasis de la Neoplasia/tratamiento farmacológico , Metástasis de la Neoplasia/genética , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Fosforilación/efectos de los fármacos , Transducción de Señal , Microambiente Tumoral/efectos de los fármacos
17.
PLoS Pathog ; 14(4): e1007011, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29709019

RESUMEN

To subvert host defenses, Mycobacterium tuberculosis (Mtb) avoids being delivered to degradative phagolysosomes in macrophages by arresting the normal host process of phagosome maturation. Phagosome maturation arrest by Mtb involves multiple effectors and much remains unknown about this important aspect of Mtb pathogenesis. The SecA2 dependent protein export system is required for phagosome maturation arrest and consequently growth of Mtb in macrophages. To better understand the role of the SecA2 pathway in phagosome maturation arrest, we identified two effectors exported by SecA2 that contribute to this process: the phosphatase SapM and the kinase PknG. Then, utilizing the secA2 mutant of Mtb as a platform to study effector functions, we identified specific steps in phagosome maturation inhibited by SapM and/or PknG. By identifying a histidine residue that is essential for SapM phosphatase activity, we confirmed for the first time that the phosphatase activity of SapM is required for its effects on phagosome maturation in macrophages. We further demonstrated that SecA2 export of SapM and PknG contributes to the ability of Mtb to replicate in macrophages. Finally, we extended our understanding of the SecA2 pathway, SapM, and PknG by revealing that their contribution goes beyond preventing Mtb delivery to mature phagolysosomes and includes inhibiting Mtb delivery to autophagolysosomes. Together, our results revealed SapM and PknG to be two effectors exported by the SecA2 pathway of Mtb with distinct as well as cumulative effects on phagosome and autophagosome maturation. Our results further reveal that Mtb must have additional mechanisms of limiting acidification of the phagosome, beyond inhibiting recruitment of the V-ATPase proton pump to the phagosome, and they indicate differences between effects of Mtb on phagosome and autophagosome maturation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Autofagosomas/microbiología , Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Macrófagos/microbiología , Proteínas de Transporte de Membrana/metabolismo , Mycobacterium tuberculosis/patogenicidad , Fagosomas/microbiología , Tuberculosis/microbiología , Adenosina Trifosfatasas/genética , Animales , Autofagosomas/inmunología , Autofagosomas/metabolismo , Autofagia , Proteínas Bacterianas/genética , Femenino , Lisosomas/inmunología , Lisosomas/metabolismo , Lisosomas/microbiología , Macrófagos/inmunología , Macrófagos/metabolismo , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/inmunología , Fagosomas/inmunología , Fagosomas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Bombas de Protones , Tuberculosis/inmunología , Tuberculosis/metabolismo
18.
Cell Microbiol ; 21(9): e13046, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31099152

RESUMEN

The virulence strategy of pathogenic Yersinia spp. involves cell-invasive as well as phagocytosis-preventing tactics to enable efficient colonisation of the host organism. Enteropathogenic yersiniae display an invasive phenotype in early infection stages, which facilitates penetration of the intestinal mucosa. Here we show that invasion of epithelial cells by Yersinia enterocolitica is followed by intracellular survival and multiplication of a subset of ingested bacteria. The replicating bacteria were enclosed in vacuoles with autophagy-related characteristics, showing phagophore formation, xenophagy, and recruitment of cytoplasmic autophagosomes to the bacteria-containing compartments. The subsequent fusion of these vacuoles with lysosomes and concomitant vesicle acidification were actively blocked by Yersinia. This resulted in increased intracellular proliferation and detectable egress of yersiniae from infected cells. Notably, deficiency of the core autophagy machinery component FIP200 impaired the development of autophagic features at Yersinia-containing vacuoles as well as intracellular replication and release of bacteria to the extracellular environment. These results suggest that Y. enterocolitica may take advantage of the macroautophagy pathway in epithelial cells to create an autophagosomal niche that supports intracellular bacterial survival, replication, and, eventually, spread of the bacteria from infected cells.


Asunto(s)
Autofagosomas/microbiología , Células Epiteliales/microbiología , Yersinia enterocolitica/patogenicidad , Animales , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Muerte Celular , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Células HeLa , Interacciones Microbiota-Huesped , Humanos , Lisosomas/metabolismo , Lisosomas/microbiología , Lisosomas/ultraestructura , Ratones , Microscopía Electrónica de Transmisión , Proteínas Asociadas a Microtúbulos/metabolismo , Vacuolas/metabolismo , Vacuolas/microbiología , Vacuolas/ultraestructura , Yersinia enterocolitica/crecimiento & desarrollo , Yersinia enterocolitica/metabolismo
19.
J Immunol ; 201(5): 1421-1433, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30037848

RESUMEN

Phagosome maturation is an important innate defense mechanism of macrophages against bacterial infections. The mycobacterial secretory protein kinase G (PknG), a serine/threonine kinase, is known to block phagosome-lysosome (P-L) fusion, and the kinase activity of PknG appears to be crucial for this. However, the detail mechanisms are not well understood. In the current study, we demonstrate that PknG of Mycobacterium sp interacts with the human Rab GTPase protein, Rab7l1, but not with other Rab proteins as well as factors like Rabaptin, Rabex5, PI3K3, Mon1a, Mon1b, early endosome autoantigen 1, and LAMP2 that are known to play crucial roles in P-L fusion. The Rab7l1 protein is shown to play a role in P-L fusion during mycobacterial infection, and its absence promotes survival of bacilli inside macrophages. PknG was found to be translocated to the Golgi complex where it interacted with GDP-bound Rab7l1 and blocked transition of inactive Rab7l1-GDP to active Rab7l1-GTP, resulting in inhibition of recruitment of Rab7l1-GTP to bacilli-containing phagosomes, and these processes are dependent on the kinase activity of PknG. Localization of Rab7l1-GTP to phagosomes was found to be critical for the subsequent recruitment of other phago-lysosomal markers like early endosome autoantigen 1, Rab7, and LAMP2 during infection. Thus, by interfering with the Rab7l1 signaling process, PknG prevents P-L fusion and favors bacterial survival inside human macrophages. This study highlights a novel role of Rab7l1 in the phagosomal maturation process and hints at unique strategies of mycobacteria used to interfere with Rab7l1 function to favor its survival inside human macrophages.


Asunto(s)
Proteínas Bacterianas/inmunología , Proteínas Quinasas Dependientes de GMP Cíclico/inmunología , Lisosomas/inmunología , Macrófagos/inmunología , Mycobacterium/inmunología , Fagocitosis , Fagosomas/inmunología , Transducción de Señal/inmunología , Proteínas Bacterianas/genética , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Células HEK293 , Humanos , Lisosomas/genética , Lisosomas/microbiología , Macrófagos/microbiología , Macrófagos/patología , Fusión de Membrana/inmunología , Mycobacterium/genética , Fagosomas/genética , Fagosomas/microbiología , Fagosomas/patología , Células THP-1 , Proteínas de Unión al GTP rab , Proteínas de Unión al GTP rab1
20.
Int J Mol Sci ; 21(18)2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32937921

RESUMEN

The antimicrobial peptide LL-37 inhibits the growth of the major human pathogen Mycobacterium tuberculosis (Mtb), but the mechanism of the peptide-pathogen interaction inside human macrophages remains unclear. Super-resolution imaging techniques provide a novel opportunity to visualize these interactions on a molecular level. Here, we adapt the super-resolution technique of stimulated emission depletion (STED) microscopy to study the uptake, intracellular localization and interaction of LL-37 with macrophages and virulent Mtb. We demonstrate that LL-37 is internalized by both uninfected and Mtb infected primary human macrophages. The peptide localizes in the membrane of early endosomes and lysosomes, the compartment in which mycobacteria reside. Functionally, LL-37 disrupts the cell wall of intra- and extracellular Mtb, resulting in the killing of the pathogen. In conclusion, we introduce STED microscopy as an innovative and informative tool for studying host-pathogen-peptide interactions, clearly extending the possibilities of conventional confocal microscopy.


Asunto(s)
Catelicidinas/metabolismo , Catelicidinas/farmacología , Interacciones Huésped-Patógeno/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Péptidos Catiónicos Antimicrobianos , Pared Celular/microbiología , Células Cultivadas , Endosomas/microbiología , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/microbiología , Lisosomas/microbiología , Macrófagos/microbiología , Microscopía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA