Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.145
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Immunol ; 212(4): 551-562, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38197664

RESUMEN

Rhabdoviruses with rich species lead a variety of high lethality and rapid transmission diseases to plants and animals around the globe. Vaccination is one of the most effective approaches to prevent and control virus disease. However, the key antigenic epitopes of glycoprotein being used for vaccine development are unclear. In this study, fish-derived Abs are employed for a Micropterus salmoides rhabdovirus (MSRV) vaccine design by phage display and bioinformatics analysis. We constructed an anti-MSRV phage Ab library to screen Abs for glycoprotein segment 2 (G2) (G129-266). Four M13-phage-displayed Abs (Ab-5, Ab-7, Ab-8 and Ab-30) exhibited strong specificity to target Ag, and Ab-7 had the highest affinity with MSRV. Ab-7 (300 µg/ml) significantly increased grass carp ovary cell viability to 83.40% and significantly decreased the titer of MSRV. Molecular docking results showed that the key region of Ag-Ab interaction was located in 10ESQEFTTLTSH20 of G2. G2Ser11 and G2Gln12 were replaced with alanine, respectively, and molecular docking results showed that the Ag-Ab was nonbinding (ΔG > 0). Then, the peptide vaccine KLH-G210-20 was immunized to M. salmoides via i.p. injection. ELISA result showed that the serum Ab potency level increased significantly (p < 0.01). More importantly, the challenge test demonstrated that the peptide vaccine elicited robust protection against MSRV invasion, and the relative percentage survival reached 62.07%. Overall, this study proposed an approach for screening key epitope by combining phage display technology and bioinformatics tools to provide a reliable theoretical reference for the prevention and control of viral diseases.


Asunto(s)
Lubina , Rhabdoviridae , Vacunas , Animales , Femenino , Simulación del Acoplamiento Molecular , Epítopos , Glicoproteínas , Desarrollo de Vacunas
2.
BMC Genomics ; 25(1): 64, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38229016

RESUMEN

BACKGROUND: Largemouth bass (Micropterus salmoides) has significant economic value as a high-yielding fish species in China's freshwater aquaculture industry. Determining the major genes related to growth traits and identifying molecular markers associated with these traits serve as the foundation for breeding strategies involving gene pyramiding. In this study, we screened restriction-site associated DNA sequencing (RAD-seq) data to identify single nucleotide polymorphism (SNP) loci potentially associated with extreme growth differences between fast-growth and slow-growth groups in the F1 generation of a largemouth bass population. RESULTS: We subsequently identified associations between these loci and specific candidate genes related to four key growth traits (body weight, body length, body height, and body thickness) based on SNP genotyping. In total, 4,196,486 high-quality SNPs were distributed across 23 chromosomes. Using a population-specific genotype frequency threshold of 0.7, we identified 30 potential SNPs associated with growth traits. Among the 30 SNPs, SNP19140160, SNP9639603, SNP9639605, and SNP23355498 showed significant associations; three of them (SNP9639603, SNP9639605, and SNP23355498) were significantly associated with one trait, body length, in the F1 generation, and one (SNP19140160) was significantly linked with four traits (body weight, height, length, and thickness) in the F1 generation. The markers SNP19140160 and SNP23355498 were located near two growth candidate genes, fam174b and ppip5k1b, respectively, and these candidate genes were closely linked with growth, development, and feeding. The average body weight of the group with four dominant genotypes at these SNP loci in the F1 generation population (703.86 g) was 19.63% higher than that of the group without dominant genotypes at these loci (588.36 g). CONCLUSIONS: Thus, these four markers could be used to construct a population with dominant genotypes at loci related to fast growth. These findings demonstrate how markers can be used to identify genes related to fast growth, and will be useful for molecular marker-assisted selection in the breeding of high-quality largemouth bass.


Asunto(s)
Lubina , Polimorfismo de Nucleótido Simple , Animales , Lubina/genética , Frecuencia de los Genes , Genotipo , Peso Corporal/genética
3.
BMC Genomics ; 25(1): 580, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858615

RESUMEN

BACKGROUND: Understanding growth regulatory pathways is important in aquaculture, fisheries, and vertebrate physiology generally. Machine learning pattern recognition and sensitivity analysis were employed to examine metabolomic small molecule profiles and transcriptomic gene expression data generated from liver and white skeletal muscle of hybrid striped bass (white bass Morone chrysops x striped bass M. saxatilis) representative of the top and bottom 10 % by body size of a production cohort. RESULTS: Larger fish (good-growth) had significantly greater weight, total length, hepatosomatic index, and specific growth rate compared to smaller fish (poor-growth) and also had significantly more muscle fibers of smaller diameter (≤ 20 µm diameter), indicating active hyperplasia. Differences in metabolomic pathways included enhanced energetics (glycolysis, citric acid cycle) and amino acid metabolism in good-growth fish, and enhanced stress, muscle inflammation (cortisol, eicosanoids) and dysfunctional liver cholesterol metabolism in poor-growth fish. The majority of gene transcripts identified as differentially expressed between groups were down-regulated in good-growth fish. Several molecules associated with important growth-regulatory pathways were up-regulated in muscle of fish that grew poorly: growth factors including agt and agtr2 (angiotensins), nicotinic acid (which stimulates growth hormone production), gadd45b, rgl1, zfp36, cebpb, and hmgb1; insulin-like growth factor signaling (igfbp1 and igf1); cytokine signaling (socs3, cxcr4); cell signaling (rgs13, rundc3a), and differentiation (rhou, mmp17, cd22, msi1); mitochondrial uncoupling proteins (ucp3, ucp2); and regulators of lipid metabolism (apoa1, ldlr). Growth factors pttg1, egfr, myc, notch1, and sirt1 were notably up-regulated in muscle of good-growing fish. CONCLUSION: A combinatorial pathway analysis using metabolomic and transcriptomic data collectively suggested promotion of cell signaling, proliferation, and differentiation in muscle of good-growth fish, whereas muscle inflammation and apoptosis was observed in poor-growth fish, along with elevated cortisol (an anti-inflammatory hormone), perhaps related to muscle wasting, hypertrophy, and inferior growth. These findings provide important biomarkers and mechanisms by which growth is regulated in fishes and other vertebrates as well.


Asunto(s)
Lubina , Perfilación de la Expresión Génica , Animales , Lubina/genética , Lubina/crecimiento & desarrollo , Lubina/metabolismo , Femenino , Masculino , Metabolómica , Desarrollo de Músculos/genética , Transcriptoma , Músculo Esquelético/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Metaboloma , Hígado/metabolismo
4.
BMC Genomics ; 25(1): 210, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38408914

RESUMEN

BACKGROUND: Due to its enormous biomass, Antarctic krill (Euphausia superba) plays a crucial role in the Antarctic Ocean ecosystem. In recent years, Antarctic krill has found extensive application in aquaculture, emerging as a sustainable source of aquafeed with ideal nutritional profiles. However, a comprehensive study focused on the detailed effects of dietary Antarctic krill on aquaculture animals, especially farmed marine fishes, is yet to be demonstrated. RESULTS: In this study, a comparative experiment was performed using juvenile P. leopardus, fed with diets supplemented with Antarctic krill (the krill group) or without Antarctic krill (the control group). Histological observation revealed that dietary Antarctic krill could reduce lipid accumulation in the liver while the intestine exhibited no obvious changes. Enzyme activity measurements demonstrated that dietary Antarctic krill had an inhibitory effect on oxidative stress in both the intestine and the liver. By comparative transcriptome analysis, a total of 1,597 and 1,161 differentially expressed genes (DEGs) were identified in the intestine and liver, respectively. Functional analysis of the DEGs showed multiple enriched terms significantly related to cholesterol metabolism, antioxidants, and immunity. Furthermore, the expression profiles of representative DEGs, such as dhcr7, apoa4, sc5d, and scarf1, were validated by qRT-PCR and fluorescence in situ hybridization. Finally, a comparative transcriptome analysis was performed to demonstrate the biased effects of dietary Antarctic krill and astaxanthin on the liver of P. leopardus. CONCLUSIONS: Our study demonstrated that dietary Antarctic krill could reduce lipid accumulation in the liver of P. leopardus, enhance antioxidant capacities in both the intestine and liver, and exhibit molecular-level improvements in lipid metabolism, immunity, and antioxidants. It will contribute to understanding the protective effects of Antarctic krill in P. leopardus and provide insights into aquaculture nutritional strategies.


Asunto(s)
Lubina , Euphausiacea , Animales , Antioxidantes , Euphausiacea/genética , Ecosistema , Hibridación Fluorescente in Situ , Perfilación de la Expresión Génica , Dieta , Lubina/genética , Lípidos , Regiones Antárticas
5.
J Virol ; 97(1): e0174822, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36633407

RESUMEN

Nervous necrosis virus (NNV), a formidable pathogen in marine and freshwater fish, has inflicted enormous financial tolls on the aquaculture industry worldwide. Although capsid protein (CP) is the sole structural protein with pathogenicity and antigenicity, public information on immunodominant regions remains extremely scarce. Here, we employed neutralizing monoclonal antibodies (MAbs) specific for red-spotted grouper NNV (RGNNV) CNPgg2018 in combination with partially overlapping truncated proteins and peptides to identify two minimal B-cell epitope clusters on CP, 122GYVAGFL128 and 227SLYNDSL233. Site-directed mutational analysis confirmed residues Y123, G126, and L128 and residues L228, Y229, N230, D231, and L233 as the critical residues responsible for the direct interaction with ligand, respectively. According to homologous modeling and bioinformatic evaluation, 122GYVAGFL128 is harbored at the groove of the CP junction with strict conservation among all NNV isolates, while 227SLYNDSL233 is localized in proximity to the tip of a viral protrusion having relatively high evolutionary dynamics in different genotypes. Additionally, 227SLYNDSL233 was shown to be a receptor-binding site, since the corresponding polypeptide could moderately suppress RGNNV multiplication by impeding virion entry. In contrast, 122GYVAGFL128 seemed dedicated only to stabilizing viral native conformation and not to assisting initial virus attachment. Altogether, these findings contribute to a novel understanding of the antigenic distribution pattern of NNV and the molecular basis for neutralization, thus advancing the development of biomedical products, especially epitope-based vaccines, against NNV. IMPORTANCE NNV is a common etiological agent associated with neurological virosis in multiple aquatic organisms, causing significant hazards to the host. However, licensed drugs or vaccines to combat NNV infection are very limited to date. Toward the advancement of broad-spectrum prophylaxis and therapeutics against NNV, elucidating the diversity of immunodominant regions within it is undoubtedly essential. Here, we identified two independent B-cell epitopes on NNV CP, followed by the confirmation of critical amino acid residues participating in direct interaction. These two sites were distributed on the shell and protrusion domains of the virion, respectively, and mediated the neutralization exerted by MAbs via drastically distinct mechanisms. Our work promotes new insights into NNV antigenicity as well as neutralization and, more importantly, offers promising targets for the development of antiviral countermeasures.


Asunto(s)
Lubina , Enfermedades de los Peces , Nodaviridae , Infecciones por Virus ARN , Animales , Lubina/virología , Proteínas de la Cápside/metabolismo , Epítopos de Linfocito B/genética , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Epítopos Inmunodominantes , Necrosis , Nodaviridae/fisiología , Infecciones por Virus ARN/inmunología
6.
J Virol ; 97(10): e0071423, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37735152

RESUMEN

IMPORTANCE: Although Micropterus salmoides rhabdovirus (MSRV) causes serious fish epidemics worldwide, the detailed mechanism of MSRV entry into host cells remains unknown. Here, we comprehensively investigated the mechanism of MSRV entry into epithelioma papulosum cyprinid (EPC) cells. This study demonstrated that MSRV enters EPC cells via a low pH, dynamin-dependent, microtubule-dependent, and clathrin-mediated endocytosis. Subsequently, MSRV transports from early endosomes to late endosomes and further into lysosomes in a microtubule-dependent manner. The characterization of MSRV entry will further advance the understanding of rhabdovirus cellular entry pathways and provide novel targets for antiviral drug against MSRV infection.


Asunto(s)
Lubina , Rhabdoviridae , Animales , Rhabdoviridae/metabolismo , Lubina/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Endocitosis , Dinaminas/metabolismo , Microtúbulos/metabolismo , Clatrina/metabolismo , Concentración de Iones de Hidrógeno , Internalización del Virus
7.
BMC Microbiol ; 24(1): 239, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961321

RESUMEN

BACKGROUND: The gut microbiota significantly influences the health and growth of red-spotted grouper (Epinephelus akaara), a well-known commercial marine fish from Fujian Province in southern China. However, variations in survival strategies and seasons can impact the stability of gut microbiota data, rendering it inaccurate in reflecting the state of gut microbiota. Which impedes the effective enhancement of aquaculture health through a nuanced understanding of gut microbiota. Inspired by this, we conducted a comprehensive analysis of the gut microbiota of wild and captive E. akaara in four seasons. RESULTS: Seventy-two E. akaara samples were collected from wild and captive populations in Dongshan city, during four different seasons. Four sections of the gut were collected to obtain comprehensive information on the gut microbial composition and sequenced using 16S rRNA next-generation Illumina MiSeq. We observed the highest gut microbial diversity in both captive and wild E. akaara during the winter season, and identified strong correlations with water temperature using Mantel analysis. Compared to wild E. akaara, we found a more complex microbial network in captive E. akaara, as evidenced by increased abundance of Bacillaceae, Moraxellaceae and Enterobacteriaceae. In contrast, Vibrionaceae, Clostridiaceae, Flavobacteriaceae and Rhodobacteraceae were found to be more active in wild E. akaara. However, some core microorganisms, such as Firmicutes and Photobacterium, showed similar distribution patterns in both wild and captive groups. Moreover, we found the common community composition and distribution characteristics of top 10 core microbes from foregut to hindgut in E. akaara. CONCLUSIONS: Collectively, the study provides relatively more comprehensive description of the gut microbiota in E. akaara, taking into account survival strategies and temporal dimensions, which yields valuable insights into the gut microbiota of E. akaara and provides a valuable reference to its aquaculture.


Asunto(s)
Bacterias , Microbioma Gastrointestinal , ARN Ribosómico 16S , Estaciones del Año , Animales , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , China , Ecosistema , Filogenia , Acuicultura , Lubina/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Biodiversidad
8.
Mol Ecol ; 33(4): e17281, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38247292

RESUMEN

Colours and associated patterns are probably some of the most obvious phenotypic traits in animals and reef teleost fishes are often cited as a textbook example for illustrating this type of diversity. Even if it is well established that colour patterns play a central role in the ecology and evolution of reef fishes, we still lack the necessary toolkits to fully grasp the mechanisms driving the diversification of this obvious phenotypic trait. On the one hand, genotyping power seems now limitless thanks to current DNA sequencing technologies. Today, entire genomes of fishes can be easily produced for large sets of species. On the other hand, the description of colour patterns and the quantification of their variation across reef fishes might be highly challenging. In a cover manuscript in this issue of Molecular Ecology, Coulmance et al. (2023) introduced an innovative approach for extracting and quantifying the major colour pattern elements present in the hamlets (Hypoplectrus spp., Serranidae), a recent reef fish radiation from the Caribbean. Then, they intelligently used the quantified colour pattern variation as a phenotypic trait for a genome-wide association study (GWAS). Interestingly, using a method that required no a priori knowledge, they were able to recover well-established marks (e.g., vertical bars) and to highlight less expected colour pattern elements (e.g., dark to light gradient on ventral part as well as caudal and anal fins), which show strong association peaks on linkage group (LG) 12 and 04. Beyond the demonstration of the potential of their new quantitative analysis of colour pattern variation in reef fishes combined with GWAS, their findings offer new perspectives on our understanding of the intrinsic and extrinsic factors generating this outstanding diversity of the fish world.


Asunto(s)
Lubina , Estudio de Asociación del Genoma Completo , Animales , Color , Peces/genética , Lubina/genética , Ecología , Fenotipo , Arrecifes de Coral
9.
Microb Pathog ; 189: 106597, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38395316

RESUMEN

Vibrio anguillarum is one of the major pathogens responsible for bacterial infections in marine environments, causing significant impacts on the aquaculture industry. The misuse of antibiotics leads to bacteria developing multiple drug resistances, which is detrimental to the development of the fisheries industry. In contrast, live attenuated vaccines are gradually gaining acceptance and widespread recognition. In this study, we constructed a double-knockout attenuated strain, V. anguillarum ΔspeA-aroC, to assess its potential for preparing a live attenuated vaccine. The research results indicate a significant downregulation of virulence-related genes, including Type VI secretion system, Type II secretion system, biofilm synthesis, iron uptake system, and other related genes, in the mutant strain. Furthermore, the strain lacking the genes exhibited a 67.47% reduction in biofilm formation ability and increased sensitivity to antibiotics. The mutant strain exhibited significantly reduced capability in evading host immune system defenses and causing in vivo infections in spotted sea bass (Lateolabrax maculatus), with an LD50 that was 13.93 times higher than that of the wild-type V. anguillarum. Additionally, RT-qPCR analysis of immune-related gene expression in spotted sea bass head kidney and spleen showed a weakened immune response triggered by the knockout strain. Compared to the wild-type V. anguillarum, the mutant strain caused reduced levels of tissue damage. The results demonstrate that the deletion of speA and aroC significantly reduces the biosynthesis of biofilms in V. anguillarum, leading to a decrease in its pathogenicity. This suggests a crucial role of biofilms in the survival and invasive capabilities of V. anguillarum.


Asunto(s)
Lubina , Enfermedades de los Peces , Vibriosis , Vibrio , Animales , Vibriosis/microbiología , Lubina/microbiología , Virulencia/genética , Vibrio/genética , Antibacterianos , Enfermedades de los Peces/microbiología
10.
J Exp Biol ; 227(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38197261

RESUMEN

The olfactory epithelium of fish is - of necessity - in intimate contact with the surrounding water. In euryhaline fish, movement from seawater to freshwater (and vice versa) exposes the epithelium to massive changes in salinity and ionic concentrations. How does the olfactory system function in the face of such changes? The current study compared olfactory sensitivity in seawater- (35‰) and brackish water-adapted seabass (5‰) using extracellular multi-unit recording from the olfactory nerve. Seawater-adapted bass had higher olfactory sensitivity to amino acid odorants when delivered in seawater than in freshwater. Conversely, brackish water-adapted bass had largely similar sensitivities to the same odorants when delivered in seawater or freshwater, although sensitivity was still slightly higher in seawater. The olfactory system of seawater-adapted bass was sensitive to decreases in external [Ca2+], whereas brackish water-adapted bass responded to increases in [Ca2+]; both seawater- and brackish water-adapted bass responded to increases in external [Na+] but the sensitivity was markedly higher in brackish water-adapted bass. In seawater-adapted bass, olfactory sensitivity to l-alanine depended on external Ca2+ ions, but not Na+; brackish water-adapted bass did respond to l-alanine in the absence of Ca2+, albeit with lower sensitivity, whereas sensitivity was unaffected by removal of Na+ ions. A possible adaptation of the olfactory epithelium was the higher number of mucous cells in brackish water-adapted bass. The olfactory system of seabass is able to adapt to low salinities, but this is not immediate; further studies are needed to identify the processes involved.


Asunto(s)
Lubina , Animales , Lubina/fisiología , Salinidad , Calcio/metabolismo , Agua de Mar/química , Agua/metabolismo , Sodio/metabolismo , Alanina/metabolismo , Branquias/metabolismo
11.
Br J Nutr ; 131(8): 1308-1325, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38073302

RESUMEN

A 60-d feeding trial was conducted to explore the potential regulatory effects of dietary Clostridium butyricum cultures (CBC) supplementation in high-carbohydrate diet (HCD) on carbohydrate utilisation, antioxidant capacity and intestinal microbiota of largemouth bass. Triplicate groups of largemouth bass (average weight 35·03 ± 0·04 g), with a destiny of twenty-eight individuals per tank, were fed low-carbohydrate diet and HCD supplemented with different concentration of CBC (0 %, 0·25 %, 0·50 % and 1·00 %). The results showed that dietary CBC inclusion alleviated the hepatic glycogen accumulation induced by HCD intake. Additionally, the expression of hepatic ampkα1 and insulin signaling pathway-related genes (ira, irb, irs, p13kr1 and akt1) increased linearly with dietary CBC inclusion, which might be associated with the activation of glycolysis-related genes (gk, pfkl and pk). Meanwhile, the expression of intestinal SCFA transport-related genes (ffar3 and mct1) was significantly increased with dietary CBC inclusion. In addition, the hepatic antioxidant capacity was improved with dietary CBC supplementation, as evidenced by linear decrease in malondialdehyde concentration and expression of keap1, and linear increase in antioxidant enzyme activities (total antioxidative capacity, total superoxide dismutase and catalase) and expression of antioxidant enzyme-related genes (nrf2, sod1, sod2 and cat). The analysis of bacterial 16S rRNA V3-4 region indicated that dietary CBC inclusion significantly reduced the enrichment of Firmicutes and potential pathogenic bacteria genus Mycoplasma but significantly elevated the relative abundance of Fusobacteria and Cetobacterium. In summary, dietary CBC inclusion improved carbohydrate utilization, antioxidant capacity and intestinal microbiota of largemouth bass fed HCD.


Asunto(s)
Lubina , Clostridium butyricum , Humanos , Animales , Antioxidantes/metabolismo , Lubina/metabolismo , Clostridium butyricum/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , ARN Ribosómico 16S/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Dieta/veterinaria , Carbohidratos
12.
Fish Shellfish Immunol ; 144: 109298, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38122954

RESUMEN

The bulbus arteriosus tissue of teleosts, which is located at the forefront of the heart, is used to reduce the pulse pressure. In this study, we constructed a permanent cell line (LmAB) for the first time using bulbus arteriosus tissue from spotted sea bass (Lateolabrax maculatus). This cell line has been passaged more than 80 times. Currently, it can be subcultured in L-15 medium with 8 % fetal bovine serum added. The optimal fetal bovine serum concentration and culture temperature for LmAB cells at 62 passages are 20 % and 28 °C, respectively. This cell line consists predominantly of epithelial-like cells. We used 18S rRNA gene sequencing to confirm that LmAB cells originated from spotted sea bass. Karyotype analysis revealed that 43 % of LmAB cells in passage 63 had 48 chromosomes. Exogenous plasmid transfection revealed that LmAB cells can express the green fluorescent protein gene with a transfection efficiency of up to 40 %, indicating that these cells can be used for in vitro genetic research. LmAB cells showed susceptibility to nervous necrosis virus, largemouth bass ulcer syndrome virus, and infectious spleen and kidney necrosis virus, which results in severe cytopathic effects. PCR analysis verified that these viruses can replicate in LmAB cells, and analysis of cytoskeletal F-actin patterns verified that infected cells exhibit serious changes in their actin cytoskeleton. LmAB cells infected with these three viruses showed increased expressions of interferon signaling pathway genes (IFNd, IFNγ-rel, and ISG15), indicating that the host interferon signaling pathway participates in the antiviral immune response. These findings indicate that our newly developed LmAB cell line is a valuable resource for future research in genetics, virology, and immunology.


Asunto(s)
Lubina , Enfermedades de los Peces , Animales , Lubina/genética , Albúmina Sérica Bovina/genética , Línea Celular , Cromosomas , Interferones/genética
13.
Fish Shellfish Immunol ; 145: 109296, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38104698

RESUMEN

Streptococcus iniae, a zoonotic Gram-positive pathogen, poses a threat to finfish aquaculture, causing streptococcosis with an annual economic impact exceeding $150 million globally. As aquaculture trends shift towards recirculating systems, the potential for horizontal transmission of S. iniae among fish intensifies. Current vaccine development provides only short-term protection, driving the widespread use of antibiotics like florfenicol. However, this practice raises environmental concerns and potentially contributes to antibiotic resistance. Thus, alternative strategies are urgently needed. Endolysin therapy, derived from bacteriophages, employs hydrolytic endolysin enzymes that target bacterial peptidoglycan cell walls. This study assesses three synthetic endolysins (PlyGBS 90-1, PlyGBS 90-8, and ClyX-2) alongside the antibiotic carbenicillin in treating S. iniae-infected hybrid striped bass (HSB). Results demonstrate that ClyX-2 exhibits remarkable bacteriolytic potency, with lytic activity detected at concentrations as low as ∼15 µg/mL, approximately 8-fold more potent than the PlyGBS derivatives. In therapeutic effectiveness assessments, both carbenicillin and ClyX-2 treatments achieved significantly higher survival rates (85 % and 95 %, respectively) compared to placebo and PlyGBS-based endolysin treatments. Importantly, no statistical differences were observed between ClyX-2 and carbenicillin treatments. This highlights ClyX-2 as a promising alternative for combating S. iniae infections in aquaculture, offering potent bacteriolytic activity and high survival rates.


Asunto(s)
Lubina , Endopeptidasas , Enfermedades de los Peces , Infecciones Estreptocócicas , Animales , Lubina/microbiología , Streptococcus , Streptococcus iniae , Antibacterianos , Carbenicilina
14.
Fish Shellfish Immunol ; 145: 109292, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38145783

RESUMEN

Type II interferons (IFNs) exert antiviral functions by binding to receptors and activating downstream signaling pathways. However, our understanding of the antiviral functions and the receptor complex model of type II IFNs in teleost fish remains limited. In this study, we determined the functions of type II IFNs (LmIFN-γ and LmIFN-γrel) in Lateolabrax maculatus and assessed their antiviral ability mediated by their combination with different cytokine receptor family B members (LmCRFB6, LmCRFB13, and LmCRFB17). After infection with largemouth bass ulcer syndrome virus (LBUSV), the expression levels of LmIFNs and LmCRFBs increased significantly in vitro and in vivo. Incubation or injection with LmIFNs-His activated the expressions of LmISG15, LmMx, and LmIRF1. LmIFN-γ and LmIFN-γrel both bound to the extracellular domains of the three CRFBs via Pull-down. Furthermore, LmIFN-γ combined with LmCRFB6, LmCRFB6+LmCRFB13, and LmCRFB6+LmCRFB13+LmCRFB17 and LmIFN-γrel combined with all combinations containing LmCRFB17 induced the transcription of downstream genes and reduced the number of LBUSV copies. Therefore, type II IFNs (LmIFN-γ and LmIFN-γrel) contribute to enhanced antiviral immunity in L. maculatus and that ligand-receptor combinations effectively suppress virus replication. These findings provide a reference for future studies of the signal transduction mechanism of type II IFNs in teleost fish.


Asunto(s)
Lubina , Virus , Animales , Interferón gamma/genética , Lubina/metabolismo , Transducción de Señal , Interferones
15.
Fish Shellfish Immunol ; 148: 109517, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38513916

RESUMEN

Largemouth bass ranavirus (LMBV) is an epidemic disease that seriously jeopardizes the culture of largemouth bass(Micropterus salmoides), and it has a very high incidence in largemouth bass. Once an outbreak occurs, it may directly lead to the failure of the culture, resulting in substantial economic losses, but there is no effective vaccine or special effective drug yet. Consequently, it is important to establish an accurate, sensitive, convenient and specific detection approach for preventing LMBV infection. The recombinant enzyme-assisted amplification (RAA) technology was used in combination with clustered regularly interspaced short palindromic repeats (CRISPR), and associated protein 13a (CRISPR/Cas13a) to detect LMBV. We designed RAA primers and CRISPR RNA (crRNA) that targeted the conserved region in the LMBV main capsid protein (MCP) gene, amplified sample nucleic acids using the RAA technology, performed CRISPR/Cas13a fluorescence detection and evaluated the sensitivity and specificity of the established method with qPCR as a control method. This technique was able to determine the results by collecting fluorescence signals, visualizing fluorescence by UV excitation and combining with lateral flow strips (LFS). The sensitivity and specificity of the established method were consistent with the qPCR method. Besides, it was performed at a constant temperature of 37 °C and the sensitivity of the reaction system was 3.1 × 101 copies/µL, with no cross-reactivity with other common aquatic pathogens. Further, the positive detection rate of the proposed method in 32 clinical samples was consistent with that of qPCR. In conclusion, our established RAA-CRISPR/Cas13 method for detecting LMBV is sensitive, simple and specific, which is applicable in the rapid on-site detection and epidemiological monitoring of LMBV.


Asunto(s)
Lubina , Infecciones por Virus ADN , Enfermedades de los Peces , Ranavirus , Animales , Proteínas de la Cápside
16.
Fish Shellfish Immunol ; 145: 109319, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38145782

RESUMEN

The thymus is a sophisticated primary lymphoid organ in jawed vertebrates, but knowledge on teleost thymus remains scarce. In this study, for the first time in the European sea bass, laser capture microdissection was leveraged to collect two thymic regions based on histological features, namely the cortex and the medulla. The two regions were then processed by RNAseq and in-depth functional transcriptome analyses with the aim of revealing differential gene expression patterns and gene sets enrichments, ultimately unraveling unique microenvironments imperative for the development of functional T cells. The sea bass cortex emerged as a hub of T cell commitment, somatic recombination, chromatin remodeling, cell cycle regulation, and presentation of self antigens from autophagy-, proteasome- or proteases-processed proteins. The cortex therefore accommodated extensive thymocyte proliferation and differentiation up to the checkpoint of positive selection. The medulla instead appeared as the center stage in autoimmune regulation by negative selection and deletion of autoreactive T cells, central tolerance mechanisms and extracellular matrix organization. Region-specific canonical markers of T and non-T lineage cells as well as signals for migration to/from, and trafficking within, the thymus were identified, shedding light on the highly coordinated and exquisitely complex bi-directional interactions among thymocytes and stromal components. Markers ascribable to thymic nurse cells and poorly characterized post-aire mTEC populations were found in the cortex and medulla, respectively. An in-depth data mining also exposed previously un-annotated genomic resources with differential signatures. Overall, our findings contribute to a broader understanding of the relationship between regional organization and function in the European sea bass thymus, and provide essential insights into the molecular mechanisms underlying T-cell mediated adaptive immune responses in teleosts.


Asunto(s)
Lubina , Glándulas Endocrinas , Animales , Timo , Linfocitos T , Perfilación de la Expresión Génica
17.
Fish Shellfish Immunol ; 148: 109465, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38408547

RESUMEN

IL-8 and IL-10 are crucial inflammatory cytokines that participate in defending host cells against infections. To demonstrate the function of the two interleukin genes in largemouth bass (Micropterus salmoides), we initially cloned and identified the cDNA sequences of il-8 and il-10 in largemouth bass, referred to as Msil-8 and Msil-10, respectively. The open reading frame (ORF) of Msil-8 was 324 bp in length, encoding 107 amino acids, while the ORF of Msil-10 consisted of 726 bp and encoded 241 amino acids. Furthermore, the functional domains of the SCY domain in MsIL-8 and the IL-10 family signature motif in MsIL-10 were highly conserved across vertebrates. Additionally, both MsIL-8 and MsIL-10 showed close relationships with M. dolomieu. Constitutive expression of Msil-8 and Msil-10 was observed in various tissues, with the highest level found in the head kidney. Subsequently, largemouth bass were infected with Nocardia seriolae via intraperitoneal injection to gain a further understanding of the function of these two genes. Bacterial loads were initially detected in the foregut, followed by the midgut, hindgut, and liver. The mRNA expression of Msil-8 was significantly down-regulated after infection, especially at 2 days post-infection (DPI), with a similar expression to Msil-10. In contrast, the expression of Msil-8 and Msil-10 was significantly upregulated in the foregut at 14 DPI. Taken together, these results reveal that the function of IL-8 and IL-10 was likely hindered by N. seriolae, which promoted bacterial proliferation and intercellular diffusion.


Asunto(s)
Lubina , Nocardiosis , Nocardia , Animales , Lubina/genética , Interleucina-8/genética , Interleucina-10/genética , Nocardiosis/genética , Nocardiosis/veterinaria , Aminoácidos
18.
Fish Shellfish Immunol ; 144: 109295, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38101589

RESUMEN

The leopard coral grouper (Plectropomus leopardus), which has become increasingly popular in consumption due to its bright body color and great nutritional, holds a high economic and breeding potential. However, in recent years, the P.leopardus aquaculture industry has been impeded by the nervous necrosis virus (NNV) outbreak, leading to widespread mortality among fry and juvenile grouper. However, the genetic basis of resistance to NNV in P. leopardus remains to be investigated. In the present study, we conducted a genome-wide association analysis (GWAS) on 100 resistant and 100 susceptible samples to discover variants and potential genes linked with NNV resistance. For this study, 157,926 high-quality single nucleotide polymorphisms (SNPs) based on whole genome resequencing were discovered, and eighteen SNPs loci linked to disease resistance were discovered. We annotated six relevant candidate genes, including sik2, herc2, pip5k1c, npr1, mybpc3, and arhgap9, which showed important roles in lipid metabolism, oxidative stress, and neuronal survival. In the brain tissues of resistant and susceptible groups, candidate genes against NNV infection showed significant differential expression. The results indicate that regulating neuronal survival or pathways involved in lipid metabolism may result in increased resistance to NNV. Understanding the molecular mechanisms that lead to NNV resistance will be beneficial for the growth of the P. leopardus breeding sector. Additionally, the identified SNPs could be employed as biomarkers of disease resistance in P. leopardus, which will facilitate the selective breeding of grouper.


Asunto(s)
Antozoos , Lubina , Nodaviridae , Infecciones por Virus ARN , Animales , Lubina/genética , Estudio de Asociación del Genoma Completo/veterinaria , Polimorfismo de Nucleótido Simple , Resistencia a la Enfermedad/genética , Nodaviridae/fisiología , Infecciones por Virus ARN/veterinaria
19.
Fish Shellfish Immunol ; 145: 109313, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38128678

RESUMEN

The dual-specificity phosphatase (DUSP) family plays key roles in the maintenance of cellular homeostasis and apoptosis etc. In this study, the DUSP member DUSP1 of Epinephelus coioides was characterized: the length was 2371 bp including 281 bp 5' UTR, 911 bp 3' UTR, and a 1125 bp open reading frame encoding 374 amino acids. E. coioides DUSP1 has two conserved domains, a ROHD and DSPc along with a p38 MAPK phosphorylation site, localized at Ser308. E. coioides DUSP1 mRNA can be detected in all of the tissues examined, and the subcellular localization showed that DUSP1 was mainly distributed in the nucleus. Singapore grouper iridovirus (SGIV) infection could induce the differential expression of E. coioides DUSP1. Overexpression of DUSP1 could inhibit SGIV-induced cytopathic effect (CPE), the expressions of SGIV key genes, and the viral titers. Overexpression of DUSP1 could also regulate SGIV-induced apoptosis, and the expression of apoptosis-related factor caspase 3. The results would be helpful to further study the role of DUSP1 in viral infection.


Asunto(s)
Lubina , Infecciones por Virus ADN , Enfermedades de los Peces , Iridovirus , Ranavirus , Animales , Lubina/genética , Iridovirus/fisiología , Singapur , Clonación Molecular , Apoptosis , Fosfatasas de Especificidad Dual/genética , Proteínas de Peces/genética , Filogenia
20.
Fish Shellfish Immunol ; 145: 109364, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199264

RESUMEN

Micropterus salmoides rhabdovirus (MSRV) is one of the main pathogens of largemouth bass, leading to serious economic losses. The G protein, as the only envelope protein present on the surface of MSRV virion, contains immune-related antigenic determinants, thereby becoming the primary target for the design of MSRV vaccines. Here, we displayed the G protein on the surface of yeast cells (named EBY100/pYD1-G) and conducted a preliminary assessment of the protective efficacy of the recombinant yeast vaccine. Upon oral vaccination, a robust immune response was observed in systemic and mucosal tissue. Remarkably, following the MSRV challenge, the relative percent survival of EBY100/pYD1-G treated largemouth bass significantly increased to 66.7 %. In addition, oral administration inhibited viral replication and alleviated the pathological symptoms of MSRV-infected largemouth bass. These results suggest that EBY100/pYD1-G could be used as a potential oral vaccine against MSRV infection.


Asunto(s)
Lubina , Enfermedades de los Peces , Rhabdoviridae , Animales , Saccharomyces cerevisiae , Vacunación , Proteínas Fúngicas , Vacunas Sintéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA