Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57.158
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 42(1): 585-613, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38424470

RESUMEN

Alzheimer disease (AD) is the most common neurodegenerative disease, and with no efficient curative treatment available, its medical, social, and economic burdens are expected to dramatically increase. AD is historically characterized by amyloid ß (Aß) plaques and tau neurofibrillary tangles, but over the last 25 years chronic immune activation has been identified as an important factor contributing to AD pathogenesis. In this article, we review recent and important advances in our understanding of the significance of immune activation in the development of AD. We describe how brain-resident macrophages, the microglia, are able to detect Aß species and be activated, as well as the consequences of activated microglia in AD pathogenesis. We discuss transcriptional changes of microglia in AD, their unique heterogeneity in humans, and emerging strategies to study human microglia. Finally, we expose, beyond Aß and microglia, the role of peripheral signals and different cell types in immune activation.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Microglía , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Humanos , Animales , Microglía/inmunología , Microglía/metabolismo , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/inmunología , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/patología , Macrófagos/inmunología , Macrófagos/metabolismo
2.
Annu Rev Immunol ; 38: 289-313, 2020 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31986069

RESUMEN

A striking change has happened in the field of immunology whereby specific metabolic processes have been shown to be a critical determinant of immune cell activation. Multiple immune receptor types rewire metabolic pathways as a key part of how they promote effector functions. Perhaps surprisingly for immunologists, the Krebs cycle has emerged as the central immunometabolic hub of the macrophage. During proinflammatory macrophage activation, there is an accumulation of the Krebs cycle intermediates succinate and citrate, and the Krebs cycle-derived metabolite itaconate. These metabolites have distinct nonmetabolic signaling roles that influence inflammatory gene expression. A key bioenergetic target for the Krebs cycle, the electron transport chain, also becomes altered, generating reactive oxygen species from Complexes I and III. Similarly, alternatively activated macrophages require α-ketoglutarate-dependent epigenetic reprogramming to elicit anti-inflammatory gene expression. In this review, we discuss these advances and speculate on the possibility of targeting these events therapeutically for inflammatory diseases.


Asunto(s)
Ciclo del Ácido Cítrico , Inmunidad , Macrófagos/inmunología , Macrófagos/metabolismo , Animales , Susceptibilidad a Enfermedades , Metabolismo Energético , Humanos , Inmunomodulación , Activación de Macrófagos/inmunología , Transducción de Señal
3.
Annu Rev Immunol ; 38: 341-363, 2020 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31961750

RESUMEN

Recent years have witnessed an emergence of interest in understanding metabolic changes associated with immune responses, termed immunometabolism. As oxygen is central to all aerobic metabolism, hypoxia is now recognized to contribute fundamentally to inflammatory and immune responses. Studies from a number of groups have implicated a prominent role for oxygen metabolism and hypoxia in innate immunity of healthy tissue (physiologic hypoxia) and during active inflammation (inflammatory hypoxia). This inflammatory hypoxia emanates from a combination of recruited inflammatory cells (e.g., neutrophils, eosinophils, and monocytes), high rates of oxidative metabolism, and the activation of multiple oxygen-consuming enzymes during inflammation. These localized shifts toward hypoxia have identified a prominent role for the transcription factor hypoxia-inducible factor (HIF) in the regulation of innate immunity. Such studies have provided new and enlightening insight into our basic understanding of immune mechanisms, and extensions of these findings have identified potential therapeutic targets. In this review, we summarize recent literature around the topic of innate immunity and mucosal hypoxia with a focus on transcriptional responses mediated by HIF.


Asunto(s)
Hipoxia/inmunología , Hipoxia/metabolismo , Inmunidad Innata , Animales , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Metabolismo Energético , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/inmunología , Humanos , Hipoxia/genética , Factor 1 Inducible por Hipoxia/genética , Factor 1 Inducible por Hipoxia/metabolismo , Inmunomodulación , Macrófagos/inmunología , Macrófagos/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Transducción de Señal
4.
Annu Rev Immunol ; 36: 639-665, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29400999

RESUMEN

Granulomas are organized aggregates of macrophages, often with characteristic morphological changes, and other immune cells. These evolutionarily ancient structures form in response to persistent particulate stimuli-infectious or noninfectious-that individual macrophages cannot eradicate. Granulomas evolved as protective responses to destroy or sequester particles but are frequently pathological in the context of foreign bodies, infections, and inflammatory diseases. We summarize recent findings that suggest that the granulomatous response unfolds in a stepwise program characterized by a series of macrophage activations and transformations that in turn recruit additional cells and produce structural changes. We explore why different granulomas vary and the reasons that granulomas are protective and pathogenic. Understanding the mechanisms and role of granuloma formation may uncover new therapies for the multitude of granulomatous diseases that constitute serious medical problems while enhancing the protective function of granulomas in infections.


Asunto(s)
Granuloma/diagnóstico , Granuloma/etiología , Animales , Diagnóstico Diferencial , Fibrosis , Interacciones Huésped-Patógeno/inmunología , Humanos , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Necrosis , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
5.
Annu Rev Immunol ; 36: 489-517, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29400998

RESUMEN

The human body generates 10-100 billion cells every day, and the same number of cells die to maintain homeostasis in our body. Cells infected by bacteria or viruses also die. The cell death that occurs under physiological conditions mainly proceeds by apoptosis, which is a noninflammatory, or silent, process, while pathogen infection induces necroptosis or pyroptosis, which activates the immune system and causes inflammation. Dead cells generated by apoptosis are quickly engulfed by macrophages for degradation. Caspases are a large family of cysteine proteases that act in cascades. A cascade that leads to caspase 3 activation mediates apoptosis and is responsible for killing cells, recruiting macrophages, and presenting an "eat me" signal(s). When apoptotic cells are not efficiently engulfed by macrophages, they undergo secondary necrosis and release intracellular materials that represent a damage-associated molecular pattern, which may lead to a systemic lupus-like autoimmune disease.


Asunto(s)
Apoptosis/inmunología , Fagocitosis/inmunología , Animales , Biomarcadores , Caspasas/metabolismo , Muerte Celular , Humanos , Lisosomas/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Receptores de Muerte Celular/metabolismo , Transducción de Señal , Especificidad por Sustrato
6.
Annu Rev Immunol ; 36: 435-459, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29400984

RESUMEN

The initiation and maintenance of adaptive immunity require multifaceted modes of communication between different types of immune cells, including direct intercellular contact, secreted soluble signaling molecules, and extracellular vesicles (EVs). EVs can be formed as microvesicles directly pinched off from the plasma membrane or as exosomes secreted by multivesicular endosomes. Membrane receptors guide EVs to specific target cells, allowing directional transfer of specific and complex signaling cues. EVs are released by most, if not all, immune cells. Depending on the type and status of their originating cell, EVs may facilitate the initiation, expansion, maintenance, or silencing of adaptive immune responses. This review focusses on EVs from professional antigen-presenting cells, their demonstrated and speculated roles, and their potential for cancer immunotherapy.


Asunto(s)
Presentación de Antígeno/inmunología , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Vesículas Extracelulares/metabolismo , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Transporte Biológico , Micropartículas Derivadas de Células/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células Epiteliales/metabolismo , Exosomas/metabolismo , Antígenos de Histocompatibilidad/genética , Antígenos de Histocompatibilidad/inmunología , Humanos , Tolerancia Inmunológica , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo
7.
Cell ; 186(6): 1144-1161.e18, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36868219

RESUMEN

Germinal centers (GCs) that form within lymphoid follicles during antibody responses are sites of massive cell death. Tingible body macrophages (TBMs) are tasked with apoptotic cell clearance to prevent secondary necrosis and autoimmune activation by intracellular self antigens. We show by multiple redundant and complementary methods that TBMs derive from a lymph node-resident, CD169-lineage, CSF1R-blockade-resistant precursor that is prepositioned in the follicle. Non-migratory TBMs use cytoplasmic processes to chase and capture migrating dead cell fragments using a "lazy" search strategy. Follicular macrophages activated by the presence of nearby apoptotic cells can mature into TBMs in the absence of GCs. Single-cell transcriptomics identified a TBM cell cluster in immunized lymph nodes which upregulated genes involved in apoptotic cell clearance. Thus, apoptotic B cells in early GCs trigger activation and maturation of follicular macrophages into classical TBMs to clear apoptotic debris and prevent antibody-mediated autoimmune diseases.


Asunto(s)
Centro Germinal , Ganglios Linfáticos , Macrófagos , Apoptosis , Linfocitos B , Ganglios Linfáticos/citología , Macrófagos/citología , Macrófagos/metabolismo
8.
Annu Rev Immunol ; 33: 643-75, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25861979

RESUMEN

Macrophages are myeloid immune cells that are strategically positioned throughout the body tissues, where they ingest and degrade dead cells, debris, and foreign material and orchestrate inflammatory processes. Here we review two major recent paradigm shifts in our understanding of tissue macrophage biology. The first is the realization that most tissue-resident macrophages are established prenatally and maintained through adulthood by longevity and self-renewal. Their generation and maintenance are thus independent from ongoing hematopoiesis, although the cells can be complemented by adult monocyte-derived macrophages. Second, aside from being immune sentinels, tissue macrophages form integral components of their host tissue. This entails their specialization in response to local environmental cues to contribute to the development and specific function of their tissue of residence. Factors that govern tissue macrophage specialization are emerging. Moreover, tissue specialization is reflected in discrete gene expression profiles of macrophages, as well as epigenetic signatures reporting actual and potential enhancer usage.


Asunto(s)
Macrófagos/inmunología , Macrófagos/metabolismo , Animales , Diferenciación Celular , Humanos , Inmunidad , Macrófagos/clasificación , Macrófagos/citología , Especificidad de Órganos/inmunología , Fenotipo
9.
Annu Rev Immunol ; 33: 445-74, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25622193

RESUMEN

The observation that a subset of cancer patients show evidence for spontaneous CD8+ T cell priming against tumor-associated antigens has generated renewed interest in the innate immune pathways that might serve as a bridge to an adaptive immune response to tumors. Manipulation of this endogenous T cell response with therapeutic intent-for example, using blocking antibodies inhibiting PD-1/PD-L1 (programmed death-1/programmed death ligand 1) interactions-is showing impressive clinical results. As such, understanding the innate immune mechanisms that enable this T cell response has important clinical relevance. Defined innate immune interactions in the cancer context include recognition by innate cell populations (NK cells, NKT cells, and γδ T cells) and also by dendritic cells and macrophages in response to damage-associated molecular patterns (DAMPs). Recent evidence has indicated that the major DAMP driving host antitumor immune responses is tumor-derived DNA, sensed by the stimulator of interferon gene (STING) pathway and driving type I IFN production. A deeper knowledge of the clinically relevant innate immune pathways involved in the recognition of tumors is leading toward new therapeutic strategies for cancer treatment.


Asunto(s)
Inmunidad Innata , Neoplasias/inmunología , Neoplasias/metabolismo , Animales , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Proteínas del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/metabolismo , Citotoxicidad Inmunológica , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Humanos , Sistema Inmunológico/citología , Inmunoterapia , Ligandos , Activación de Macrófagos , Macrófagos/inmunología , Macrófagos/metabolismo , Microbiota , Neoplasias/microbiología , Neoplasias/terapia , Transducción de Señal
10.
Annu Rev Immunol ; 33: 823-74, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25706096

RESUMEN

Patients with autoinflammatory diseases present with noninfectious fever flares and systemic and/or disease-specific organ inflammation. Their excessive proinflammatory cytokine and chemokine responses can be life threatening and lead to organ damage over time. Studying such patients has revealed genetic defects that have helped unravel key innate immune pathways, including excessive IL-1 signaling, constitutive NF-κB activation, and, more recently, chronic type I IFN signaling. Discoveries of monogenic defects that lead to activation of proinflammatory cytokines have inspired the use of anticytokine-directed treatment approaches that have been life changing for many patients and have led to the approval of IL-1-blocking agents for a number of autoinflammatory conditions. In this review, we describe the genetically characterized autoinflammatory diseases, we summarize our understanding of the molecular pathways that drive clinical phenotypes and that continue to inspire the search for novel treatment targets, and we provide a conceptual framework for classification.


Asunto(s)
Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/inmunología , Predisposición Genética a la Enfermedad , Inflamación/genética , Inflamación/inmunología , Animales , Enfermedades Autoinmunes/metabolismo , Autoinmunidad , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/inmunología , Síndromes de Inmunodeficiencia/metabolismo , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Interferones/metabolismo , Interleucina-1/metabolismo , Trastornos Linfoproliferativos/genética , Trastornos Linfoproliferativos/inmunología , Trastornos Linfoproliferativos/metabolismo , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , FN-kappa B/metabolismo , Transducción de Señal
11.
Cell ; 185(26): 4887-4903.e17, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36563662

RESUMEN

Our bodies turn over billions of cells daily via apoptosis and are in turn cleared by phagocytes via the process of "efferocytosis." Defects in efferocytosis are now linked to various inflammatory diseases. Here, we designed a strategy to boost efferocytosis, denoted "chimeric receptor for efferocytosis" (CHEF). We fused a specific signaling domain within the cytoplasmic adapter protein ELMO1 to the extracellular phosphatidylserine recognition domains of the efferocytic receptors BAI1 or TIM4, generating BELMO and TELMO, respectively. CHEF-expressing phagocytes display a striking increase in efferocytosis. In mouse models of inflammation, BELMO expression attenuates colitis, hepatotoxicity, and nephrotoxicity. In mechanistic studies, BELMO increases ER-resident enzymes and chaperones to overcome protein-folding-associated toxicity, which was further validated in a model of ER-stress-induced renal ischemia-reperfusion injury. Finally, TELMO introduction after onset of kidney injury significantly reduced fibrosis. Collectively, these data advance a concept of chimeric efferocytic receptors to boost efferocytosis and dampen inflammation.


Asunto(s)
Macrófagos , Fagocitosis , Animales , Ratones , Macrófagos/metabolismo , Inflamación/metabolismo , Fagocitos/metabolismo , Proteínas Portadoras/metabolismo , Apoptosis , Proteínas Adaptadoras Transductoras de Señales/metabolismo
12.
Cell ; 185(2): 379-396.e38, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35021063

RESUMEN

The liver is the largest solid organ in the body, yet it remains incompletely characterized. Here we present a spatial proteogenomic atlas of the healthy and obese human and murine liver combining single-cell CITE-seq, single-nuclei sequencing, spatial transcriptomics, and spatial proteomics. By integrating these multi-omic datasets, we provide validated strategies to reliably discriminate and localize all hepatic cells, including a population of lipid-associated macrophages (LAMs) at the bile ducts. We then align this atlas across seven species, revealing the conserved program of bona fide Kupffer cells and LAMs. We also uncover the respective spatially resolved cellular niches of these macrophages and the microenvironmental circuits driving their unique transcriptomic identities. We demonstrate that LAMs are induced by local lipid exposure, leading to their induction in steatotic regions of the murine and human liver, while Kupffer cell development crucially depends on their cross-talk with hepatic stellate cells via the evolutionarily conserved ALK1-BMP9/10 axis.


Asunto(s)
Evolución Biológica , Hepatocitos/metabolismo , Macrófagos/metabolismo , Proteogenómica , Animales , Núcleo Celular/metabolismo , Hígado Graso/genética , Hígado Graso/patología , Homeostasis , Humanos , Macrófagos del Hígado/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Lípidos/química , Hígado/metabolismo , Linfocitos/metabolismo , Ratones Endogámicos C57BL , Modelos Biológicos , Células Mieloides/metabolismo , Obesidad/patología , Proteoma/metabolismo , Transducción de Señal , Transcriptoma/genética
13.
Cell ; 185(4): 614-629.e21, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35148840

RESUMEN

Activation of the innate immune system via pattern recognition receptors (PRRs) is key to generate lasting adaptive immunity. PRRs detect unique chemical patterns associated with invading microorganisms, but whether and how the physical properties of PRR ligands influence the development of the immune response remains unknown. Through the study of fungal mannans, we show that the physical form of PRR ligands dictates the immune response. Soluble mannans are immunosilent in the periphery but elicit a potent pro-inflammatory response in the draining lymph node (dLN). By modulating the physical form of mannans, we developed a formulation that targets both the periphery and the dLN. When combined with viral glycoprotein antigens, this mannan formulation broadens epitope recognition, elicits potent antigen-specific neutralizing antibodies, and confers protection against viral infections of the lung. Thus, the physical properties of microbial ligands determine the outcome of the immune response and can be harnessed for vaccine development.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Antígenos Virales/inmunología , Candida albicans/química , Mananos/inmunología , Hidróxido de Aluminio/química , Animales , Anticuerpos Neutralizantes/inmunología , Especificidad de Anticuerpos/inmunología , Linfocitos B/inmunología , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Chlorocebus aethiops , Epítopos/inmunología , Inmunidad Innata , Inmunización , Inflamación/patología , Interferones/metabolismo , Lectinas Tipo C/metabolismo , Ligandos , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Senos Paranasales/metabolismo , Subunidades de Proteína/metabolismo , Lectina 1 Similar a Ig de Unión al Ácido Siálico/metabolismo , Solubilidad , Glicoproteína de la Espiga del Coronavirus/metabolismo , Linfocitos T/inmunología , Factor de Transcripción ReIB/metabolismo , Células Vero , beta-Glucanos/metabolismo
14.
Nat Immunol ; 25(1): 155-165, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38102487

RESUMEN

In mouse peritoneal and other serous cavities, the transcription factor GATA6 drives the identity of the major cavity resident population of macrophages, with a smaller subset of cavity-resident macrophages dependent on the transcription factor IRF4. Here we showed that GATA6+ macrophages in the human peritoneum were rare, regardless of age. Instead, more human peritoneal macrophages aligned with mouse CD206+ LYVE1+ cavity macrophages that represent a differentiation stage just preceding expression of GATA6. A low abundance of CD206+ macrophages was retained in C57BL/6J mice fed a high-fat diet and in wild-captured mice, suggesting that differences between serous cavity-resident macrophages in humans and mice were not environmental. IRF4-dependent mouse serous cavity macrophages aligned closely with human CD1c+CD14+CD64+ peritoneal cells, which, in turn, resembled human peritoneal CD1c+CD14-CD64- cDC2. Thus, major populations of serous cavity-resident mononuclear phagocytes in humans and mice shared common features, but the proportions of different macrophage differentiation stages greatly differ between the two species, and dendritic cell (DC2)-like cells were especially prominent in humans.


Asunto(s)
Macrófagos Peritoneales , Macrófagos , Humanos , Ratones , Animales , Ratones Endogámicos C57BL , Macrófagos/metabolismo , Macrófagos Peritoneales/metabolismo , Diferenciación Celular , Células Dendríticas
15.
Nat Immunol ; 25(6): 1110-1122, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38698086

RESUMEN

Lung-resident macrophages, which include alveolar macrophages and interstitial macrophages (IMs), exhibit a high degree of diversity, generally attributed to different activation states, and often complicated by the influx of monocytes into the pool of tissue-resident macrophages. To gain a deeper insight into the functional diversity of IMs, here we perform comprehensive transcriptional profiling of resident IMs and reveal ten distinct chemokine-expressing IM subsets at steady state and during inflammation. Similar IM subsets that exhibited coordinated chemokine signatures and differentially expressed genes were observed across various tissues and species, indicating conserved specialized functional roles. Other macrophage types shared specific IM chemokine profiles, while also presenting their own unique chemokine signatures. Depletion of CD206hi IMs in Pf4creR26EYFP+DTR and Pf4creR26EYFPCx3cr1DTR mice led to diminished inflammatory cell recruitment, reduced tertiary lymphoid structure formation and fewer germinal center B cells in models of allergen- and infection-driven inflammation. These observations highlight the specialized roles of IMs, defined by their coordinated chemokine production, in regulating immune cell influx and organizing tertiary lymphoid tissue architecture.


Asunto(s)
Quimiocinas , Macrófagos , Animales , Ratones , Quimiocinas/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Pulmón/inmunología , Ratones Endogámicos C57BL , Inflamación/inmunología , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Especificidad de Órganos/inmunología , Perfilación de la Expresión Génica , Ratones Transgénicos , Estructuras Linfoides Terciarias/inmunología , Transcriptoma
16.
Nat Immunol ; 25(5): 790-801, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38664585

RESUMEN

Innate immune cells generate a multifaceted antitumor immune response, including the conservation of essential nutrients such as iron. These cells can be modulated by commensal bacteria; however, identifying and understanding how this occurs is a challenge. Here we show that the food commensal Lactiplantibacillus plantarum IMB19 augments antitumor immunity in syngeneic and xenograft mouse tumor models. Its capsular heteropolysaccharide is the major effector molecule, functioning as a ligand for TLR2. In a two-pronged manner, it skews tumor-associated macrophages to a classically active phenotype, leading to generation of a sustained CD8+ T cell response, and triggers macrophage 'nutritional immunity' to deploy the high-affinity iron transporter lipocalin-2 for capturing and sequestering iron in the tumor microenvironment. This process induces a cycle of tumor cell death, epitope expansion and subsequent tumor clearance. Together these data indicate that food commensals might be identified and developed into 'oncobiotics' for a multi-layered approach to cancer therapy.


Asunto(s)
Hierro , Microambiente Tumoral , Animales , Hierro/metabolismo , Ratones , Microambiente Tumoral/inmunología , Humanos , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 2/inmunología , Ratones Endogámicos C57BL , Lipocalina 2/metabolismo , Lipocalina 2/inmunología , Femenino , Simbiosis/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Activación de Macrófagos/inmunología , Ratones Noqueados
17.
Nat Immunol ; 25(5): 847-859, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658806

RESUMEN

Immune cells need to sustain a state of constant alertness over a lifetime. Yet, little is known about the regulatory processes that control the fluent and fragile balance that is called homeostasis. Here we demonstrate that JAK-STAT signaling, beyond its role in immune responses, is a major regulator of immune cell homeostasis. We investigated JAK-STAT-mediated transcription and chromatin accessibility across 12 mouse models, including knockouts of all STAT transcription factors and of the TYK2 kinase. Baseline JAK-STAT signaling was detected in CD8+ T cells and macrophages of unperturbed mice-but abrogated in the knockouts and in unstimulated immune cells deprived of their normal tissue context. We observed diverse gene-regulatory programs, including effects of STAT2 and IRF9 that were independent of STAT1. In summary, our large-scale dataset and integrative analysis of JAK-STAT mutant and wild-type mice uncovered a crucial role of JAK-STAT signaling in unstimulated immune cells, where it contributes to a poised epigenetic and transcriptional state and helps prepare these cells for rapid response to immune stimuli.


Asunto(s)
Homeostasis , Quinasas Janus , Macrófagos , Ratones Noqueados , Factores de Transcripción STAT , Transducción de Señal , Animales , Ratones , Macrófagos/inmunología , Macrófagos/metabolismo , Quinasas Janus/metabolismo , Factores de Transcripción STAT/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT1/genética , Ratones Endogámicos C57BL , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/metabolismo , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/genética , TYK2 Quinasa/metabolismo , TYK2 Quinasa/genética , Regulación de la Expresión Génica
18.
Nat Immunol ; 25(7): 1296-1305, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38806708

RESUMEN

Inflammatory pain results from the heightened sensitivity and reduced threshold of nociceptor sensory neurons due to exposure to inflammatory mediators. However, the cellular and transcriptional diversity of immune cell and sensory neuron types makes it challenging to decipher the immune mechanisms underlying pain. Here we used single-cell transcriptomics to determine the immune gene signatures associated with pain development in three skin inflammatory pain models in mice: zymosan injection, skin incision and ultraviolet burn. We found that macrophage and neutrophil recruitment closely mirrored the kinetics of pain development and identified cell-type-specific transcriptional programs associated with pain and its resolution. Using a comprehensive list of potential interactions mediated by receptors, ligands, ion channels and metabolites to generate injury-specific neuroimmune interactomes, we also uncovered that thrombospondin-1 upregulated by immune cells upon injury inhibited nociceptor sensitization. This study lays the groundwork for identifying the neuroimmune axes that modulate pain in diverse disease contexts.


Asunto(s)
Nociceptores , Dolor , Animales , Ratones , Dolor/inmunología , Dolor/metabolismo , Nociceptores/metabolismo , Transcriptoma , Ratones Endogámicos C57BL , Inflamación/inmunología , Masculino , Macrófagos/inmunología , Macrófagos/metabolismo , Modelos Animales de Enfermedad , Trombospondina 1/metabolismo , Trombospondina 1/genética , Piel/inmunología , Piel/metabolismo , Piel/patología , Zimosan , Análisis de la Célula Individual , Neuroinmunomodulación , Perfilación de la Expresión Génica , Neutrófilos/inmunología , Neutrófilos/metabolismo
19.
Cell ; 184(3): 792-809.e23, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33545035

RESUMEN

Tumor-infiltrating myeloid cells (TIMs) are key regulators in tumor progression, but the similarity and distinction of their fundamental properties across different tumors remain elusive. Here, by performing a pan-cancer analysis of single myeloid cells from 210 patients across 15 human cancer types, we identified distinct features of TIMs across cancer types. Mast cells in nasopharyngeal cancer were found to be associated with better prognosis and exhibited an anti-tumor phenotype with a high ratio of TNF+/VEGFA+ cells. Systematic comparison between cDC1- and cDC2-derived LAMP3+ cDCs revealed their differences in transcription factors and external stimulus. Additionally, pro-angiogenic tumor-associated macrophages (TAMs) were characterized with diverse markers across different cancer types, and the composition of TIMs appeared to be associated with certain features of somatic mutations and gene expressions. Our results provide a systematic view of the highly heterogeneous TIMs and suggest future avenues for rational, targeted immunotherapies.


Asunto(s)
Células Mieloides/patología , Neoplasias/genética , Neoplasias/patología , Análisis de la Célula Individual , Transcripción Genética , Línea Celular Tumoral , Linaje de la Célula , Células Dendríticas/metabolismo , Femenino , Humanos , Proteínas de Membrana de los Lisosomas/metabolismo , Macrófagos/metabolismo , Masculino , Mastocitos/patología , Monocitos/metabolismo , Proteínas de Neoplasias/metabolismo , Transcriptoma/genética
20.
Cell ; 184(4): 969-982.e13, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33571427

RESUMEN

Iron overload causes progressive organ damage and is associated with arthritis, liver damage, and heart failure. Elevated iron levels are present in 1%-5% of individuals; however, iron overload is undermonitored and underdiagnosed. Genetic factors affecting iron homeostasis are emerging. Individuals with hereditary xerocytosis, a rare disorder with gain-of-function (GOF) mutations in mechanosensitive PIEZO1 ion channel, develop age-onset iron overload. We show that constitutive or macrophage expression of a GOF Piezo1 allele in mice disrupts levels of the iron regulator hepcidin and causes iron overload. We further show that PIEZO1 is a key regulator of macrophage phagocytic activity and subsequent erythrocyte turnover. Strikingly, we find that E756del, a mild GOF PIEZO1 allele present in one-third of individuals of African descent, is strongly associated with increased plasma iron. Our study links macrophage mechanotransduction to iron metabolism and identifies a genetic risk factor for increased iron levels in African Americans.


Asunto(s)
Canales Iónicos/metabolismo , Hierro/metabolismo , Negro o Afroamericano , Envejecimiento/metabolismo , Alelos , Animales , Estudios de Cohortes , Recuento de Eritrocitos , Eritropoyesis , Mutación con Ganancia de Función/genética , Hepatocitos/metabolismo , Hepcidinas/sangre , Hepcidinas/metabolismo , Humanos , Hierro/sangre , Sobrecarga de Hierro/metabolismo , Macrófagos/metabolismo , Mecanotransducción Celular , Ratones Endogámicos C57BL , Fagocitosis , Fenotipo , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA