Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.702
Filtrar
Más filtros

Intervalo de año de publicación
1.
Hum Mol Genet ; 32(15): 2523-2531, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37220876

RESUMEN

Rare missense and nonsense variants in the Angiopoietin-like 7 (ANGPTL7) gene confer protection from primary open-angle glaucoma (POAG), though the functional mechanism remains uncharacterized. Interestingly, a larger variant effect size strongly correlates with in silico predictions of increased protein instability (r = -0.98), suggesting that protective variants lower ANGPTL7 protein levels. Here, we show that missense and nonsense variants cause aggregation of mutant ANGPTL7 protein in the endoplasmic reticulum (ER) and decreased levels of secreted protein in human trabecular meshwork (TM) cells; a lower secreted:intracellular protein ratio strongly correlates with variant effects on intraocular pressure (r = 0.81). Importantly, accumulation of mutant protein in the ER does not increase expression of ER stress proteins in TM cells (P > 0.05 for all variants tested). Cyclic mechanical stress, a glaucoma-relevant physiologic stressor, also significantly lowers ANGPTL7 expression in primary cultures of human Schlemm's canal (SC) cells (-2.4-fold-change, P = 0.01). Collectively, these data suggest that the protective effects of ANGPTL7 variants in POAG stem from lower levels of secreted protein, which may modulate responses to physiologic and pathologic ocular cell stressors. Downregulation of ANGPTL7 expression may therefore serve as a viable preventative and therapeutic strategy for this common, blinding disease.


Asunto(s)
Glaucoma de Ángulo Abierto , Glaucoma , Humanos , Glaucoma de Ángulo Abierto/patología , Glaucoma/metabolismo , Malla Trabecular/metabolismo , Presión Intraocular , Angiopoyetinas/genética , Angiopoyetinas/metabolismo , Proteínas Similares a la Angiopoyetina/genética , Proteínas Similares a la Angiopoyetina/metabolismo , Proteína 7 Similar a la Angiopoyetina/genética
2.
FASEB J ; 38(15): e23848, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39092889

RESUMEN

Glucocorticoid use may cause elevated intraocular pressure, leading to the development of glucocorticoid-induced glaucoma (GIG). However, the mechanism of GIG development remains incompletely understood. In this study, we subjected primary human trabecular meshwork cells (TMCs) and mice to dexamethasone treatment to mimic glucocorticoid exposure. The myofibroblast transdifferentiation of TMCs was observed in cellular and mouse models, as well as in human trabecular mesh specimens. This was demonstrated by the cytoskeletal reorganization, alterations in cell morphology, heightened transdifferentiation markers, increased extracellular matrix deposition, and cellular dysfunction. Knockdown of Rho guanine nucleotide exchange factor 26 (ARHGEF26) expression ameliorated dexamethasone-induced changes in cell morphology and upregulation of myofibroblast markers, reversed dysfunction and extracellular matrix deposition in TMCs, and prevented the development of dexamethasone-induced intraocular hypertension. And, this process may be related to the TGF-ß pathway. In conclusion, glucocorticoids induced the myofibroblast transdifferentiation in TMCs, which played a crucial role in the pathogenesis of GIG. Inhibition of ARHGEF26 expression protected TMCs by reversing myofibroblast transdifferentiation. This study demonstrated the potential of reversing the myofibroblast transdifferentiation of TMCs as a new target for treating GIG.


Asunto(s)
Transdiferenciación Celular , Dexametasona , Glaucoma , Miofibroblastos , Factores de Intercambio de Guanina Nucleótido Rho , Malla Trabecular , Dexametasona/farmacología , Malla Trabecular/efectos de los fármacos , Malla Trabecular/metabolismo , Malla Trabecular/citología , Transdiferenciación Celular/efectos de los fármacos , Animales , Humanos , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Miofibroblastos/citología , Ratones , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/genética , Glaucoma/patología , Glaucoma/metabolismo , Células Cultivadas , Glucocorticoides/farmacología , Ratones Endogámicos C57BL , Masculino
3.
FASEB J ; 38(10): e23651, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38752537

RESUMEN

Singleton-Merten syndrome (SMS) is a rare immunogenetic disorder affecting multiple systems, characterized by dental dysplasia, aortic calcification, glaucoma, skeletal abnormalities, and psoriasis. Glaucoma, a key feature of both classical and atypical SMS, remains poorly understood in terms of its molecular mechanism caused by DDX58 mutation. This study presented a novel DDX58 variant (c.1649A>C [p.Asp550Ala]) in a family with childhood glaucoma. Functional analysis showed that DDX58 variant caused an increase in IFN-stimulated gene expression and high IFN-ß-based type-I IFN. As the trabecular meshwork (TM) is responsible for controlling intraocular pressure (IOP), we examine the effect of IFN-ß on TM cells. Our study is the first to demonstrate that IFN-ß significantly reduced TM cell viability and function by activating autophagy. In addition, anterior chamber injection of IFN-ß remarkably increased IOP level in mice, which can be attenuated by treatments with autophagy inhibitor chloroquine. To uncover the specific mechanism underlying IFN-ß-induced autophagy in TM cells, we performed microarray analysis in IFN-ß-treated and DDX58 p.Asp550Ala TM cells. It showed that RSAD2 is necessary for IFN-ß-induced autophagy. Knockdown of RSAD2 by siRNA significantly decreased autophagy flux induced by IFN-ß. Our findings suggest that DDX58 mutation leads to the overproduction of IFN-ß, which elevates IOP by modulating autophagy through RSAD2 in TM cells.


Asunto(s)
Autofagia , Proteína 58 DEAD Box , Glaucoma , Presión Intraocular , Malla Trabecular , Animales , Femenino , Humanos , Masculino , Ratones , Enfermedades de la Aorta , Autofagia/efectos de los fármacos , Proteína 58 DEAD Box/metabolismo , Proteína 58 DEAD Box/genética , Hipoplasia del Esmalte Dental , Glaucoma/patología , Glaucoma/metabolismo , Glaucoma/genética , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/patología , Pérdida Auditiva Sensorineural/metabolismo , Interferón beta/metabolismo , Presión Intraocular/genética , Metacarpo/anomalías , Ratones Endogámicos C57BL , Enfermedades Musculares , Mutación , Odontodisplasia , Atrofia Óptica/genética , Atrofia Óptica/metabolismo , Atrofia Óptica/patología , Osteoporosis , Linaje , Receptores Inmunológicos , Malla Trabecular/metabolismo , Malla Trabecular/efectos de los fármacos , Calcificación Vascular
4.
Exp Cell Res ; 440(1): 114137, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38897410

RESUMEN

Glaucoma is characterized by pathological elevation of intraocular pressure (IOP) due to dysfunctional trabecular meshwork (TM), which is the primary cause of irreversible vision loss. There are currently no effective treatment strategies for glaucoma. Mitochondrial function plays a crucial role in regulating IOP within the TM. In this study, primary TM cells treated with dexamethasone were used to simulate glaucomatous changes, showing abnormal cellular cytoskeleton, increased expression of extracellular matrix, and disrupted mitochondrial fusion and fission dynamics. Furthermore, glaucomatous TM cell line GTM3 exhibited impaired mitochondrial membrane potential and phagocytic function, accompanied by decreased oxidative respiratory levels as compared to normal TM cells iHTM. Mechanistically, lower NAD + levels in GTM3, possibly associated with increased expression of key enzymes CD38 and PARP1 related to NAD + consumption, were observed. Supplementation of NAD + restored mitochondrial function and cellular viability in GTM3 cells. Therefore, we propose that the aberrant mitochondrial function in glaucomatous TM cells may be attributed to increased NAD + consumption dependent on CD38 and PARP1, and NAD + supplementation could effectively ameliorate mitochondrial function and improve TM function, providing a novel alternative approach for glaucoma treatment.


Asunto(s)
Glaucoma , Mitocondrias , NAD , Malla Trabecular , Malla Trabecular/metabolismo , Malla Trabecular/efectos de los fármacos , Malla Trabecular/patología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Glaucoma/metabolismo , Glaucoma/patología , Glaucoma/tratamiento farmacológico , NAD/metabolismo , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Presión Intraocular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , ADP-Ribosil Ciclasa 1/metabolismo , ADP-Ribosil Ciclasa 1/genética , Línea Celular , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Dexametasona/farmacología , Células Cultivadas
5.
Am J Physiol Cell Physiol ; 326(5): C1293-C1307, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38525543

RESUMEN

Given the widespread application of glucocorticoids in ophthalmology, the associated elevation of intraocular pressure (IOP) has long been a vexing concern for clinicians, yet the underlying mechanisms remain inconclusive. Much of the discussion focuses on the extracellular matrix (ECM) of trabecular meshwork (TM). It is widely agreed that glucocorticoids impact the expression of matrix metalloproteinases (MMPs), leading to ECM deposition. Since Zn2+ is vital for MMPs, we explored its role in ECM alterations induced by dexamethasone (DEX). Our study revealed that in human TM cells treated with DEX, the level of intracellular Zn2+ significantly decreased, accompanied by impaired extracellular Zn2+ uptake. This correlated with changes in several Zrt-, Irt-related proteins (ZIPs) and metallothionein. ZIP8 knockdown impaired extracellular Zn2+ uptake, but Zn2+ chelation did not affect ZIP8 expression. Resembling DEX's effects, chelation of Zn2+ decreased MMP2 expression, increased the deposition of ECM proteins, and induced structural disarray of ECM. Conversely, supplementation of exogenous Zn2+ in DEX-treated cells ameliorated these outcomes. Notably, dietary zinc supplementation in mice significantly reduced DEX-induced IOP elevation and collagen content in TM, thereby rescuing the visual function of the mice. These findings underscore zinc's pivotal role in ECM regulation, providing a novel perspective on the pathogenesis of glaucoma.NEW & NOTEWORTHY Our study explores zinc's pivotal role in mitigating extracellular matrix dysregulation in the trabecular meshwork and glucocorticoid-induced ocular hypertension. We found that in human trabecular meshwork cells treated with dexamethasone, intracellular Zn2+ significantly decreased, accompanied by impaired extracellular Zn2+ uptake. Zinc supplementation rescues visual function by modulating extracellular matrix proteins and lowering intraocular pressure, offering a direction for further exploration in glaucoma management.


Asunto(s)
Glaucoma , Malla Trabecular , Ratones , Humanos , Animales , Malla Trabecular/metabolismo , Dexametasona/farmacología , Glucocorticoides/farmacología , Glaucoma/patología , Presión Intraocular , Proteínas de la Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Zinc/metabolismo , Células Cultivadas
6.
Am J Physiol Cell Physiol ; 327(2): C403-C414, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38881423

RESUMEN

Aqueous humor drainage from the anterior eye determines intraocular pressure (IOP) under homeostatic and pathological conditions. Swelling of the trabecular meshwork (TM) alters its flow resistance but the mechanisms that sense and transduce osmotic gradients remain poorly understood. We investigated TM osmotransduction and its role in calcium and chloride homeostasis using molecular analyses, optical imaging, and electrophysiology. Anisosmotic conditions elicited proportional changes in TM cell volume, with swelling, but not shrinking, evoking elevations in intracellular calcium concentration [Ca2+]TM. Hypotonicity-evoked calcium signals were sensitive to HC067047, a selective blocker of TRPV4 channels, whereas the agonist GSK1016790A promoted swelling under isotonic conditions. TRPV4 inhibition partially suppressed hypotonicity-induced volume increases and reduced the magnitude of the swelling-induced membrane current, with a substantial fraction of the swelling-evoked current abrogated by Cl- channel antagonists 4,4'-diisothiocyanato-2,2'-stilbenedisulfonic acid (DIDS) and niflumic acid. The transcriptome of volume-sensing chloride channel candidates in primary human was dominated by ANO6 transcripts, with moderate expression of ANO3, ANO7, and ANO10 transcripts and low expression of LTTRC genes that encode constituents of the volume-activated anion channel. Imposition of 190 mosM but not 285 mosM hypotonic gradients increased conventional outflow in mouse eyes. TRPV4-mediated cation influx thus works with Cl- efflux to sense and respond to osmotic stress, potentially contributing to pathological swelling, calcium overload, and intracellular signaling that could exacerbate functional disturbances in inflammatory disease and glaucoma.NEW & NOTEWORTHY Intraocular pressure is dynamically regulated by the flow of aqueous humor through paracellular passages within the trabecular meshwork (TM). This study shows hypotonic gradients that expand the TM cell volume and reduce the outflow facility in mouse eyes. The swelling-induced current consists of TRPV4 and chloride components, with TRPV4 as a driver of swelling-induced calcium signaling. TRPV4 inhibition reduced swelling, suggesting a novel treatment for trabeculitis and glaucoma.


Asunto(s)
Tamaño de la Célula , Canales de Cloruro , Canales Catiónicos TRPV , Malla Trabecular , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/agonistas , Malla Trabecular/metabolismo , Malla Trabecular/efectos de los fármacos , Canales de Cloruro/metabolismo , Canales de Cloruro/genética , Animales , Ratones , Tamaño de la Célula/efectos de los fármacos , Humanos , Calcio/metabolismo , Ratones Endogámicos C57BL , Presión Osmótica , Señalización del Calcio/efectos de los fármacos , Masculino , Presión Intraocular/fisiología , Presión Intraocular/efectos de los fármacos , Células Cultivadas , Femenino , Leucina/análogos & derivados , Morfolinas , Pirroles , Sulfonamidas
7.
Am J Physiol Cell Physiol ; 326(5): C1505-C1519, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557355

RESUMEN

Glaucoma is a blinding disease. Reduction of intraocular pressure (IOP) is the mainstay of treatment, but current drugs show side effects or become progressively ineffective, highlighting the need for novel compounds. We have synthesized a family of perhydro-1,4-oxazepine derivatives of digoxin, the selective inhibitor of Na,K-ATPase. The cyclobutyl derivative (DcB) displays strong selectivity for the human α2 isoform and potently reduces IOP in rabbits. These observations appeared consistent with a hypothesis that in ciliary epithelium DcB inhibits the α2 isoform of Na,K-ATPase, which is expressed strongly in nonpigmented cells, reducing aqueous humor (AH) inflow. This paper extends assessment of efficacy and mechanism of action of DcB using an ocular hypertensive nonhuman primate model (OHT-NHP) (Macaca fascicularis). In OHT-NHP, DcB potently lowers IOP, in both acute (24 h) and extended (7-10 days) settings, accompanied by increased aqueous humor flow rate (AFR). By contrast, ocular normotensive animals (ONT-NHP) are poorly responsive to DcB, if at all. The mechanism of action of DcB has been analyzed using isolated porcine ciliary epithelium and perfused enucleated eyes to study AH inflow and AH outflow facility, respectively. 1) DcB significantly stimulates AH inflow although prior addition of 8-Br-cAMP, which raises AH inflow, precludes additional effects of DcB. 2) DcB significantly increases AH outflow facility via the trabecular meshwork (TM). Taken together, the data indicate that the original hypothesis on the mechanism of action must be revised. In the OHT-NHP, and presumably other species, DcB lowers IOP by increasing AH outflow facility rather than by decreasing AH inflow.NEW & NOTEWORTHY When applied topically, a cyclobutyl derivative of digoxin (DcB) potently reduces intraocular pressure in an ocular hypertensive nonhuman primate model (Macaca fascicularis), associated with increased aqueous humor (AH) flow rate (AFR). The mechanism of action of DcB involves increased AH outflow facility as detected in enucleated perfused porcine eyes and, in parallel, increased (AH) inflow as detected in isolated porcine ciliary epithelium. DcB might have potential as a drug for the treatment of open-angle human glaucoma.


Asunto(s)
Humor Acuoso , Digoxina , Presión Intraocular , Macaca fascicularis , Hipertensión Ocular , Animales , Presión Intraocular/efectos de los fármacos , Digoxina/farmacología , Humor Acuoso/metabolismo , Humor Acuoso/efectos de los fármacos , Hipertensión Ocular/tratamiento farmacológico , Hipertensión Ocular/fisiopatología , Hipertensión Ocular/metabolismo , Modelos Animales de Enfermedad , Glaucoma/tratamiento farmacológico , Glaucoma/metabolismo , Glaucoma/fisiopatología , Conejos , Humanos , Cuerpo Ciliar/efectos de los fármacos , Cuerpo Ciliar/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Masculino , Malla Trabecular/efectos de los fármacos , Malla Trabecular/metabolismo
8.
Lab Invest ; 104(4): 102025, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38290601

RESUMEN

Growth differentiation factor 15 (GDF15), a stress-sensitive cytokine, and a distant member of the transforming growth factor ß superfamily, has been shown to exhibit increased levels with aging, and in various age-related pathologies. Although GDF15 levels are elevated in the aqueous humor (AH) of glaucoma (optic nerve atrophy) patients, the possible role of this cytokine in the modulation of intraocular pressure (IOP) or AH outflow is unknown. The current study addresses this question using transgenic mice expressing human GDF15 and GDF15 null mice, and by perfusing enucleated mouse eyes with recombinant human GDF15 (rhGDF15). Treatment of primary cultures of human trabecular meshwork cells with a telomerase inhibitor, an endoplasmic reticulum stress-inducing agent, hydrogen peroxide, or an autophagy inhibitor resulted in significant elevation in GDF15 levels relative to the respective control cells. rhGDF15 stimulated modest but significant increases in the expression of genes encoding the extracellular matrix, cell adhesion proteins, and chemokine receptors (C-C chemokine receptor type 2) in human trabecular meshwork cells compared with controls, as deduced from the differential transcriptional profiles using RNA-sequencing analysis. There was a significant increase in IOP in transgenic mice expressing human GDF15, but not in GDF15 null mice, compared with the respective wild-type control mice. The AH outflow facility was decreased in enucleated wild-type mouse eyes perfused with rhGDF15. Light microcopy-based histologic examination of the conventional AH outflow pathway tissues did not reveal identifiable differences between the GDF15-targeted and control mice. Taken together, these results reveal the modest elevation of IOP in mice expressing human GDF15 possibly stemming from decreased AH outflow through the trabecular pathway.


Asunto(s)
Factor 15 de Diferenciación de Crecimiento , Presión Intraocular , Ratones , Humanos , Animales , Factor 15 de Diferenciación de Crecimiento/genética , Factor 15 de Diferenciación de Crecimiento/metabolismo , Malla Trabecular/metabolismo , Malla Trabecular/patología , Humor Acuoso/metabolismo , Ratones Transgénicos , Ratones Noqueados
9.
Mol Vis ; 30: 107-113, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601017

RESUMEN

Purpose: To compare the microstructure of the corneal endothelial transition zone in different laboratory animals. Methods: Flat-mount corneas of rabbits, rats, and mice were stained with Alizarin Red S (ARS) and observed using scanning electron microscopy (SEM). The progenitor cell markers p75 neurotrophin receptor (p75NTR), SRY-box transcription factor 9 (SOX9), leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5), telomerase reverse transcriptase (TERT), and proliferation marker Ki-67 were examined in the flat-mounted corneas of three laboratory animals using immunofluorescence microscopy. Results: On flat mounts, proximity to the trabecular meshwork correlated with weaker ARS staining and greater polymorphism of endothelial cells in the transition zone in all animals. On SEM, distinct and smooth structures of the transition zone were negligibly detected in all animals. The endothelial cells in the transition zone had irregular shapes, with less dense, less wavy intercellular junctions, especially in murine corneas, exhibiting unique intercellular cystic spaces. In the transition zone of the rabbit cornea, progenitor cell markers p75NTR, SOX9, Lgr5, TERT, and proliferation marker Ki-67 were expressed, in contrast to those in other murine corneas. Conclusions: Although the transition zone was not identified clearly, irregular cell morphology and loss of cell-cell contact were observed in all animal corneal endothelial cells. The proliferative capacity and the presence of progenitor cells were confirmed in the transition zone, especially in the rabbit cornea.


Asunto(s)
Células Endoteliales , Endotelio Corneal , Animales , Ratas , Ratones , Conejos , Córnea , Animales de Laboratorio , Malla Trabecular
10.
Ophthalmology ; 131(1): 37-47, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37702635

RESUMEN

PURPOSE: To review the current published literature for high-quality studies on the use of selective laser trabeculoplasty (SLT) for the treatment of glaucoma. This is an update of the Ophthalmic Technology Assessment titled, "Laser Trabeculoplasty for Open-Angle Glaucoma," published in November 2011. METHODS: Literature searches in the PubMed database in March 2020, September 2021, August 2022, and March 2023 yielded 110 articles. The abstracts of these articles were examined to include those written since November 2011 and to exclude reviews and non-English articles. The panel reviewed 47 articles in full text, and 30 were found to fit the inclusion criteria. The panel methodologist assigned a level I rating to 19 studies and a level II rating to 11 studies. RESULTS: Data in the level I studies support the long-term effectiveness of SLT as primary treatment or as a supplemental therapy to glaucoma medications for patients with open-angle glaucoma. Several level I studies also found that SLT and argon laser trabeculoplasty (ALT) are equivalent in terms of safety and long-term efficacy. Level I evidence indicates that perioperative corticosteroid and nonsteroidal anti-inflammatory drug eye drops do not hinder the intraocular pressure (IOP)-lowering effect of SLT treatment. The impact of these eye drops on lowering IOP differed in various studies. No level I or II studies exist that determine the ideal power settings for SLT. CONCLUSIONS: Based on level I evidence, SLT is an effective long-term option for the treatment of open-angle glaucoma and is equivalent to ALT. It can be used as either a primary intervention, a replacement for medication, or an additional therapy with glaucoma medications. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.


Asunto(s)
Glaucoma de Ángulo Abierto , Glaucoma , Oftalmología , Trabeculectomía , Humanos , Glaucoma/cirugía , Glaucoma de Ángulo Abierto/cirugía , Rayos Láser , Soluciones Oftálmicas , Malla Trabecular/cirugía , Estados Unidos
11.
Exp Eye Res ; 239: 109784, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199261

RESUMEN

Transient receptor potential vanilloid (TRPV) channels are members of the TRP channel superfamily, which are ion channels that sense mechanical and osmotic stimuli and participate in Ca2+ signalling across the cell membrane. TRPV channels play important roles in maintaining the normal functions of an organism, and defects or abnormalities in TRPV channel function cause a range of diseases, including cardiovascular, neurological and urological disorders. Glaucoma is a group of chronic progressive optic nerve diseases with pathological changes that can occur in the tissues of the anterior and posterior segments of the eye, including the ciliary body, trabecular meshwork, Schlemm's canal, and retina. TRPV channels are expressed in these tissues and play various roles in glaucoma. In this article, we review various aspects of the pathogenesis of glaucoma, the structure and function of TRPV channels, the relationship between TRPV channels and systemic diseases, and the relationship between TRPV channels and ocular diseases, especially glaucoma, and we suggest future research directions. This information will help to further our understanding of TRPV channels and provide new ideas and targets for the treatment of glaucoma and optic nerve damage.


Asunto(s)
Glaucoma , Traumatismos del Nervio Óptico , Humanos , Esclerótica/patología , Retina/patología , Malla Trabecular/metabolismo , Traumatismos del Nervio Óptico/metabolismo , Nervio Óptico/patología
12.
Exp Eye Res ; 243: 109904, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38642600

RESUMEN

Aqueous humor (AQH) is a transparent fluid with characteristics similar to those of the interstitial fluid, which fills the eyeball posterior and anterior chambers and circulates in them from the sites of production to those of drainage. The AQH volume and pressure homeostasis is essential for the trophism of the ocular avascular tissues and their normal structure and function. Different AQH outflow pathways exist, including a main pathway, quite well defined anatomically and referred to as the conventional pathway, and some accessory pathways, more recently described and still not fully morphofunctionally understood, generically referred to as unconventional pathways. The conventional pathway is based on the existence of a series of conduits starting with the trabecular meshwork and Schlemm's Canal and continuing with a system of intrascleral and episcleral venules, which are tributaries to veins of the anterior segment of the eyeball. The unconventional pathways are mainly represented by the uveoscleral pathway, in which AQH flows through clefts, interstitial conduits located in the ciliary body and sclera, and then merges into the aforementioned intrascleral and episcleral venules. A further unconventional pathway, the lymphatic pathway, has been supported by the demonstration of lymphatic microvessels in the limbal sclera and, possibly, in the uvea (ciliary body, choroid) as well as by the ocular glymphatic channels, present in the neural retina and optic nerve. It follows that AQH may be drained from the eyeball through blood vessels (TM-SC pathway, US pathway) or lymphatic vessels (lymphatic pathway), and the different pathways may integrate or compensate for each other, optimizing the AQH drainage. The present review aims to define the state-of-the-art concerning the structural organization and the functional anatomy of all the AQH outflow pathways. Particular attention is paid to examining the regulatory mechanisms active in each of them. The new data on the anatomy and physiology of AQH outflow pathways is the key to understanding the pathophysiology of AQH outflow disorders and could open the way for novel approaches to their treatment.


Asunto(s)
Humor Acuoso , Sistema Linfático , Humor Acuoso/fisiología , Humor Acuoso/metabolismo , Humanos , Sistema Linfático/fisiología , Esclerótica/irrigación sanguínea , Malla Trabecular/metabolismo , Vasos Linfáticos/fisiología , Venas/fisiología , Úvea , Animales , Presión Intraocular/fisiología , Linfa/fisiología , Cuerpo Ciliar/irrigación sanguínea , Cuerpo Ciliar/metabolismo
13.
Exp Eye Res ; 244: 109939, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38789021

RESUMEN

Transforming growth factor-ß2 (TGF-ß2) induced fibrogenic changes in human trabecular meshwork (HTM) cells have been implicated in trabecular meshwork (TM) damage and intraocular pressure (IOP) elevation in primary open-angle glaucoma (POAG) patients. Silibinin (SIL) exhibited anti-fibrotic properties in various organs and tissues. This study aimed to assess the effects of SIL on the TGF-ß2-treated HTM cells and to elucidate the underlying mechanisms. Our study found that SIL effectively inhibited HTM cell proliferation, attenuated TGF-ß2-induced cell migration, and mitigated TGF-ß2-induced reorganization of both actin and vimentin filaments. Moreover, SIL suppressed the expressions of fibronectin (FN), collagen type I alpha 1 chain (COL1A1), and alpha-smooth muscle actin (α-SMA) in the TGF-ß2-treated HTM cells. RNA sequencing indicated that SIL interfered with the phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB, also known as AKT) signaling pathway, extracellular matrix (ECM)-receptor interaction, and focal adhesion in the TGF-ß2-treated HTM cells. Western blotting demonstrated SIL inhibited the activation of Janus kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3) and the downstream PI3K/AKT signaling pathways induced by TGF-ß2, potentially contributing to its inhibitory effects on ECM protein production in the TGF-ß2-treated HTM cells. Our study demonstrated the ability of SIL to inhibit TGF-ß2-induced fibrogenic changes in HTM cells. SIL could be a potential IOP-lowering agent by reducing the fibrotic changes in the TM tissue of POAG patients, which warrants further investigation through additional animal and clinical studies.


Asunto(s)
Movimiento Celular , Proliferación Celular , Transducción de Señal , Silibina , Malla Trabecular , Humanos , Antioxidantes/farmacología , Western Blotting , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Fibrosis , Glaucoma de Ángulo Abierto/metabolismo , Glaucoma de Ángulo Abierto/tratamiento farmacológico , Glaucoma de Ángulo Abierto/patología , Janus Quinasa 2/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Silibina/farmacología , Silimarina/farmacología , Factor de Transcripción STAT3/metabolismo , Malla Trabecular/efectos de los fármacos , Malla Trabecular/metabolismo , Malla Trabecular/patología , Factor de Crecimiento Transformador beta2/farmacología , Factor de Crecimiento Transformador beta2/metabolismo
14.
Exp Eye Res ; 241: 109853, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38453038

RESUMEN

High myopia is a risk factor for primary open angle glaucoma (POAG). The pathological mechanism of high myopia induced POAG occurrence is not fully understood. In this study, we successfully established the guinea pig model of ocular hypertension with high myopia, and demonstrated the susceptibility of high myopia for the occurrence of microbead-induced glaucoma compared with non-myopia group and the effect of YAP/TGF-ß signaling pathway in TM pathogenesis induced by high myopia. Moreover, we performed stretching treatment on primary trabecular meshwork (TM) cells to simulate the mechanical environment of high myopia. It was found that stretching treatment disrupted the cytoskeleton, decreased phagocytic function, enhanced ECM remodeling, and promoted cell apoptosis. The experiments of mechanics-induced human TM cell lines appeared the similar trend. Mechanically, the differential expressed genes of TM cells caused by stretch treatment enriched YAP/TGF-ß signaling pathway. To inhibit YAP/TGF-ß signaling pathway effectively reversed mechanics-induced TM damage. Together, this study enriches mechanistic insights of high myopia induced POAG susceptibility and provides a potential target for the prevention of POAG with high myopia.


Asunto(s)
Glaucoma de Ángulo Abierto , Hipertensión Ocular , Humanos , Animales , Cobayas , Factor de Crecimiento Transformador beta/metabolismo , Malla Trabecular/metabolismo , Glaucoma de Ángulo Abierto/prevención & control , Glaucoma de Ángulo Abierto/genética , Hipertensión Ocular/metabolismo , Factores de Riesgo , Células Cultivadas
15.
Exp Eye Res ; 241: 109859, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38467175

RESUMEN

It is known that the actin cytoskeleton and its associated cellular interactions in the trabecular meshwork (TM) and juxtacanalicular tissues mainly contribute to the formation of resistance to aqueous outflow of the eye. Fibulin-3, encoded by EFEMP1 gene, has a role in extracellular matrix (ECM) modulation, and interacts with enzymatic ECM regulators, but the effects of fibulin-3 on TM cells has not been explored. Here, we report a stop codon variant (c.T1480C, p.X494Q) of EFEMP1 that co-segregates with primary open angle glaucoma (POAG) in a Chinese pedigree. In the human TM cells, overexpression of wild-type fibulin-3 reduced intracellular actin stress fibers formation and the extracellular fibronectin levels by inhibiting Rho/ROCK signaling. TGFß1 up-regulated fibulin-3 protein levels in human TM cells by activating Rho/ROCK signaling. In rat eyes, overexpression of wild-type fibulin-3 decreased the intraocular pressure and the fibronectin expression of TM, however, overexpression of mutant fibulin-3 (c.T1480C, p.X494Q) showed opposite effects in cells and rat eyes. Taken together, the EFEMP1 variant may impair the regulatory capacity of fibulin-3 which has a role for modulating the cell contractile activity and ECM synthesis in TM cells, and in turn may maintain normal resistance of aqueous humor outflow. This study contributes to the understanding of the important role of fibulin-3 in TM pathophysiology and provides a new possible POAG therapeutic approach.


Asunto(s)
Humor Acuoso , Glaucoma de Ángulo Abierto , Humanos , Humor Acuoso/metabolismo , Fibronectinas/metabolismo , Glaucoma de Ángulo Abierto/metabolismo , Codón de Terminación/metabolismo , Malla Trabecular/metabolismo , Presión Intraocular , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo
16.
Exp Eye Res ; 241: 109855, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38453040

RESUMEN

Transgenic C57BL/6 mice expressing human myocilinY437 (Tg-MYOCY437H) are a well-established model for primary open-angle glaucoma (POAG). While the reduced trabecular meshwork (TM) cellularity due to severe endoplasmic reticulum (ER) stress has been characterized as the etiology of this model, there is a limited understanding of how glaucomatous phenotypes evolve over the lifespan of Tg-MyocY437H mice. In this study, we compiled the model's intraocular pressure (IOP) data recorded in our laboratory from 2017 to 2023 and selected representative eyes to measure the outflow facility (Cr), a critical parameter indicating the condition of the conventional TM pathway. We found that Tg-MYOCY437H mice aged 4-12 months exhibited significantly higher IOPs than age-matched C57BL/6 mice. Notably, a decline in IOP was observed in Tg-MYOCY437H mice at 17-24 months of age, a phenomenon not attributable to the gene dosage of mutant myocilin. Measurements of the Cr of Tg-MYOCY437H mice indicated that the age-related IOP reduction was not a result of ongoing TM damage. Instead, Hematoxylin and Eosin staining, immunohistochemistry analysis, and transmission electron microscopic examination revealed that this reduction might be induced by degenerations of the non-pigmented epithelium in the ciliary body of aged Tg-MYOCY437H mice. Overall, our findings provide a comprehensive profile of mutant myocilin-induced ocular changes over the Tg-MYOCY437H mouse lifespan and suggest a specific temporal window of elevated IOP that may be ideal for experimental purposes.


Asunto(s)
Glaucoma de Ángulo Abierto , Glaucoma , Animales , Humanos , Ratones , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Glaucoma/metabolismo , Glaucoma de Ángulo Abierto/genética , Glaucoma de Ángulo Abierto/metabolismo , Presión Intraocular , Longevidad , Ratones Endogámicos C57BL , Malla Trabecular/metabolismo
17.
Exp Eye Res ; 241: 109835, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38373629

RESUMEN

The etiology of elevated intraocular pressure (IOP), a major risk factor for glaucoma (optic nerve atrophy), is poorly understood despite continued efforts. Although the gene variant of CACNA2D1 (encoding α2δ1), a calcium voltage-gated channel auxiliary subunit, has been reported to be associated with primary open-angle glaucoma, and the pharmacological mitigation of α2δ1 activity by pregabalin lowers IOP, the cellular basis for α2δ1 role in the modulation of IOP remains unclear. Our recent findings reveled readily detectable levels of α2δ1 and its ligand thrombospondin in the cytoskeletome fraction of human trabecular meshwork (TM) cells. To understand the direct role of α2δ1 in the modulation of IOP, we evaluated α2δ1 null mice for changes in IOP and found a moderate (∼10%) but significant decrease in IOP compared to littermate wild type control mice. Additionally, to gain cellular insights into α2δ1 antagonist (pregabalin) induced IOP changes, we assessed pregabalin's effects on human TM cell actin cytoskeletal organization and cell adhesive interactions in comparison with a Rho kinase inhibitor (Y27632), a known ocular hypotensive agent. Unlike Y27632, pregabalin did not have overt effects on cell morphology, actin cytoskeletal organization, or cell adhesion in human TM cells. These results reveal a modest but significant decrease in IOP in α2δ1 deficient mice, and this response appears to be not associated with the contractile and cell adhesive characteristics of TM cells based on the findings of pregabalin effects on isolated TM cells. Therefore, the mechanism by which pregabalin lowers IOP remains elusive.


Asunto(s)
Amidas , Glaucoma de Ángulo Abierto , Glaucoma , Piridinas , Animales , Humanos , Ratones , Actinas/metabolismo , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Glaucoma/metabolismo , Glaucoma de Ángulo Abierto/genética , Glaucoma de Ángulo Abierto/metabolismo , Presión Intraocular , Pregabalina , Malla Trabecular/metabolismo
18.
Exp Eye Res ; 240: 109806, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272381

RESUMEN

Primary open-angle glaucoma (POAG) is the most common type of glaucoma leading to blindness. The search for ways to prevent/treat this entity is one of the main challenges of today's ophthalmology. One of such solution seems to be biologically active substances of natural origin, such as genistein (GEN), which can affect the function of isolated trabecular meshwork by the inhibition of protein tyrosine kinase. However, the role of GEN in viability as well as myofibroblastic transformation in human trabecular meshwork cells stimulated by TGF-ß is unknown. Using human trabecular meshwork cells (HTMCs) we investigated the effect of genistein on cell viability and myofibroblastic transformation stimulated by TGF-ß1 and TGF-ß2. Using Real-Time PCR, western blot and immunofluorescence we determined the effect on the expression changes of αSMA, TIMP1, collagen 1 and 3 at mRNA and protein level. We found that genistein increases the viability of HTMCs (1, 2, 3 µg/ml; P < 0.05 and 4, 5, 10, 15, 20 µg/ml; P < 0.01). Moreover, we found that addition of 10, 15 and 20 µg/ml is able to prevent myofibroblastic transformation of HTMCs by decreasing αSMA, TIMP1, collagen 1 and 3 mRNA and protein expression (P < 0.01). Based on the obtained results, we can conclude that genistein is a potential factor that can prevent the myofibroblastic transformation of HTMCs accompanying glaucoma. Describing GEN influence on myofibroblastic transformation processes in HTMC allows us to conclude that it can be considered a potential therapeutic agent or a substance supporting treatment in patients with glaucoma.


Asunto(s)
Glaucoma de Ángulo Abierto , Glaucoma , Humanos , Genisteína/farmacología , Glaucoma de Ángulo Abierto/tratamiento farmacológico , Glaucoma de Ángulo Abierto/prevención & control , Glaucoma de Ángulo Abierto/genética , Malla Trabecular/metabolismo , Células Cultivadas , Factor de Crecimiento Transformador beta2/farmacología , Factor de Crecimiento Transformador beta2/metabolismo , Glaucoma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Colágeno/metabolismo
19.
FASEB J ; 37(4): e22873, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36929360

RESUMEN

Trabecular meshwork (TM) cell dysfunction is the leading cause of elevated intraocular pressure (IOP) and glaucoma. The long non-coding RNA (lncRNA) small nucleolar RNA host gene 11 (SNHG11) is associated with cell proliferation and apoptosis, but its biological functions and role in glaucoma pathogenesis remain unclear. In the present study, we investigated the role of SNHG11 in TM cells using immortalized human TM and glaucomatous human TM (GTM3 ) cells and an acute ocular hypertension mouse model. SNHG11 expression was depleted using siRNA targeting SNHG11. Transwell assays, quantitative real-time PCR analysis (qRT-PCR), western blotting, and CCK-8 assay were used to evaluate cell migration, apoptosis, autophagy, and proliferation. Wnt/ß-catenin pathway activity was inferred from qRT-PCR, western blotting, immunofluorescence, and luciferase reporter and TOPFlash reporter assays. The expression of Rho kinases (ROCKs) was detected using qRT-PCR and western blotting. SNHG11 was downregulated in GTM3 cells and mice with acute ocular hypertension. In TM cells, SNHG11 knockdown inhibited cell proliferation and migration, activated autophagy, and apoptosis, repressing the Wnt/ß-catenin signaling pathway, and activated Rho/ROCK. Wnt/ß-catenin signaling pathway activity increased in TM cells treated with ROCK inhibitor. SNHG11 regulated Wnt/ß-catenin signaling through Rho/ROCK by increasing GSK-3ß expression and ß-catenin phosphorylation at Ser33/37/Thr41 while decreasing ß-catenin phosphorylation at Ser675. We demonstrate that the lncRNA SNHG11 regulates Wnt/ß-catenin signaling through Rho/ROCK via ß-catenin phosphorylation at Ser675 or GSK-3ß-mediated phosphorylation at Ser33/37/Thr41, affecting cell proliferation, migration, apoptosis, and autophagy. Through its effects on Wnt/ß-catenin signaling, SNHG11 is implicated in glaucoma pathogenesis and is a potential therapeutic target.


Asunto(s)
Glaucoma , Hipertensión Ocular , ARN Largo no Codificante , Humanos , Animales , Ratones , Vía de Señalización Wnt/fisiología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Malla Trabecular/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proliferación Celular/genética , Glaucoma/genética , Glaucoma/metabolismo , Hipertensión Ocular/metabolismo , Línea Celular Tumoral
20.
J Pharmacol Sci ; 154(2): 52-60, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38246728

RESUMEN

Many glaucoma treatments focus on lowering intraocular pressure (IOP), with novel drugs continuing to be developed. One widely used model involves raising IOP by applying a laser to the trabecular iris angle (TIA) of cynomolgus monkeys to damage the trabecular meshwork. This model, however, presents challenges such as varying IOP values, potential trabecular meshwork damage, and risk of animal distress. This study investigated whether animals with naturally high IOP (>25 mmHg) could be used to effectively evaluate IOP-lowering drugs, thereby possibly replacing laser-induced models. Relationships between TIA size, IOP, and pupil diameter were also examined. Three representative IOP-lowering drugs (latanoprost, timolol, ripasudil) were administered, followed by multiple IOP measurements and assessment of corneal thickness, TIA, and pupil diameter via anterior segment optical coherence tomography (AS-OCT). There was a positive correlation was noted between IOP and corneal thickness before instillation, and a negative correlation between IOP and TIA before instillation. Our findings suggest animals with naturally high IOP could be beneficial for glaucoma research and development as a viable replacement for the laser-induced model and that measuring TIA using AS-OCT along with IOP yields a more detailed evaluation.


Asunto(s)
Glaucoma , Presión Intraocular , Animales , Macaca fascicularis , Timolol/farmacología , Malla Trabecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA