Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
BMC Plant Biol ; 24(1): 531, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862885

RESUMEN

BACKGROUND: This study examines the impact of titanium dioxide nanoparticles (TiO2NPs) on gene expression associated with menthol biosynthesis and selected biochemical parameters in peppermint plants (Mentha piperita L.). Menthol, the active ingredient in peppermint, is synthesized through various pathways involving key genes like geranyl diphosphate synthase, menthone reductase, and menthofuran synthase. Seedlings were treated with different concentrations of TiO2NPs (50, 100, 200, and 300 ppm) via foliar spray. After three weeks of treatment, leaf samples were gathered and kept at -70 °C for analysis. RESULTS: According to our findings, there was a significant elevation (P ≤ 0.05) in proline content at concentrations of 200 and 300 ppm in comparison with the control. Specifically, the highest proline level was registered at 200 ppm, reaching 259.64 ± 33.33 µg/g FW. Additionally, hydrogen peroxide and malondialdehyde content exhibited a decreasing trend following nanoparticle treatments. Catalase activity was notably affected by varying TiO2NP concentrations, with a significant decrease observed at 200 and 300 ppm compared to the control (P ≤ 0.05). Conversely, at 100 ppm, catalase activity significantly increased (11.035 ± 1.12 units/mg of protein/min). Guaiacol peroxidase activity decreased across all nanoparticle concentrations. Furthermore, RT-qPCR analysis indicated increased expression of the studied genes at 300 ppm concentration. CONCLUSIONS: Hence, it can be inferred that at the transcript level, this nanoparticle exhibited efficacy in influencing the biosynthetic pathway of menthol.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Mentha piperita , Mentol , Nanopartículas , Titanio , Titanio/farmacología , Mentha piperita/efectos de los fármacos , Mentha piperita/metabolismo , Mentha piperita/genética , Mentol/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Nanopartículas del Metal , Genes de Plantas , Peróxido de Hidrógeno/metabolismo
2.
J Sci Food Agric ; 98(1): 43-50, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28503740

RESUMEN

BACKGROUND: 'Minor crops' such as spearmint and peppermint are high added value crops, despite the fact that their production area is comparably small worldwide. The main limiting factor in mint commercial cultivation is weed competition. Thus, field experiments were carried out to evaluate the effects of weed interference on growth, biomass and essential oil yield in peppermint and spearmint under different herbicide treatments. RESULTS: The application of pendimethalin and oxyfluorfen provided better control of annual weeds resulting in higher crop yield. Additionally, when treated with herbicides both crops were more competitive against annual weeds in the second year than in the first year. All pre-emergence herbicides increased biomass yield, since pendimethalin, linuron and oxyfluorfen reduced the density of annual weeds by 71-92%, 63-74% and 86-95%, respectively. Weed interference and herbicide application had no effect on essential oil content; however, a relatively strong impact on essential oil production per cultivated area unit was observed, mainly due to the adverse effect of weed interference on plant growth. CONCLUSION: Considering that pendimethalin and oxyfluorfen were effective against annual weeds in both spearmint and peppermint crops, these herbicides should be included in integrated weed management systems for better weed management in mint crops. © 2017 Society of Chemical Industry.


Asunto(s)
Herbicidas/farmacología , Mentha piperita/crecimiento & desarrollo , Mentha spicata/crecimiento & desarrollo , Aceites Volátiles/análisis , Extractos Vegetales/análisis , Malezas/efectos de los fármacos , Compuestos de Anilina/farmacología , Cruzamiento , Éteres Difenilos Halogenados/farmacología , Mentha piperita/química , Mentha piperita/efectos de los fármacos , Mentha piperita/genética , Mentha spicata/química , Mentha spicata/efectos de los fármacos , Mentha spicata/genética , Malezas/crecimiento & desarrollo , Control de Malezas
3.
Plant Physiol Biochem ; 139: 578-586, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31030025

RESUMEN

Water stress is a worldwide agricultural challenge that limits crop growth and quality. Chemical compounds that promote tolerance to water stress, such as omeprazole showed recently promising results. The present study investigates the effect of weekly drenching applications of 0, 10, 50, 100, or 200 µM omeprazole on Mentha piperita (peppermint) subjected to water stress by watering at 100%, 70%, and 50% of container substrate capacity for 7 weeks in an experiment that spanned two seasons. Peppermint that received higher doses of omeprazole showed increased plant height, leaf number, leaf area, and dry weight under normal and water stress conditions. The amounts of chlorophyll and proline in the leaves as well as gas exchange increased in omeprazole-treated plants relative to the control plants. Omeprazole treatment also resulted in increased activity of the enzymes catalase and ascorbate peroxidase, reduced accumulation of the reactive oxygen species hydrogen peroxide, increase in the essential oil ratio, and improvement in essential oil composition. Omeprazole-treated plants showed higher ratios of menthol and menthone composition relative to the control plants. The changes in essential oil composition were associated with increased expression of genes associated with the menthol biosynthesis pathway. These findings indicate that omeprazole can ameliorate water stress in peppermint by increasing vegetative and root growth; increasing chlorophyll amount, photosynthetic rate, and gas exchange; reducing water loss by boosting leaf water potential and relative water content; increasing proline content; and modulating the gene expression of secondary metabolites.


Asunto(s)
Mentha piperita/efectos de los fármacos , Mentha piperita/metabolismo , Mentol/metabolismo , Omeprazol/farmacología , Agua/metabolismo , Antioxidantes/metabolismo
4.
Protoplasma ; 253(6): 1541-1556, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26631016

RESUMEN

Peppermint (Mentha × piperita L.) is an important and commonly used flavoring agent worldwide, and salinity is a major stress that limits plant growth and reduces crop productivity. This work demonstrated the metabolic responses of essential oil production including the yield and component composition, gene expression, enzyme activity, and protein activation in a salt-tolerant peppermint Keyuan-1 with respect to NaCl stress. Our results showed that Keyuan-1 maintained normal growth and kept higher yield and content of essential oils under NaCl stress than wild-type (WT) peppermint.Gas chromatography-mass spectrometry (GC-MS) and qPCR results showed that compared to WT seedlings, a 150-mM NaCl stress exerted no obvious changes in essential oil composition, transcriptional level of enzymes related to essential oil metabolism, and activity of pulegone reductase (Pr) in Keyuan-1 peppermint which preserved the higher amount of menthol and menthone as well as the lower content of menthofuran upon the 150-mM NaCl stress. Furthermore, it was noticed that a mitogen-activated protein kinase (MAPK) protein exhibited a time-dependent activation in the Keyuan-1 peppermint and primarily involved in the modulation of the essential oil metabolism in the transcript and enzyme levels during the 12-day treatment of 150 mM NaCl. In all, our data elucidated the effect of NaCl on metabolic responses of essential oil production, and demonstrated the MAPK-dependent regulation mechanism of essential oil biosynthesis in the salt-tolerant peppermint, providing scientific basis for the economic and ecological utilization of peppermint in saline land.


Asunto(s)
Mentha piperita/enzimología , Mentha piperita/crecimiento & desarrollo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Aceites Volátiles/metabolismo , Tolerancia a la Sal/efectos de los fármacos , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Western Blotting , Activación Enzimática/efectos de los fármacos , Flavonoides/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Mentha piperita/efectos de los fármacos , Mentha piperita/genética , Metabolómica , Monoterpenos/farmacología , Aceites Volátiles/química , Desarrollo de la Planta/efectos de los fármacos , Tolerancia a la Sal/genética , Estrés Fisiológico/genética , Transcripción Genética/efectos de los fármacos
5.
Plant Physiol Biochem ; 105: 174-184, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27107175

RESUMEN

The present study investigated whether osmotic stress induced by the exposure of peppermint (Mentha x piperita L.) to moderate and severe stress for short periods of time changes the plant's physiological parameters, leaf anatomy and ultrastructure and essential oil. Plants were exposed to two levels of polyethyleneglycol (50 g L(-1) and 100 g L(-1) of PEG) in a hydroponic experiment. The plants exposed to 50 g L(-1) maintained metabolic functions similar to those of the control group (0 g L(-1)) without changes in gas exchange or structural characteristics. The increase in antioxidant enzyme activity reduced the presence of free radicals and protected membranes, including chloroplasts and mitochondria. In contrast, the osmotic stress caused by 100 g L(-1) of PEG inhibited leaf gas exchange, reduced the essential oil content and changed the oil composition, including a decrease in menthone and an increase in menthofuran. These plants also showed an increase in peroxidase activity, but this increase was not sufficient to decrease the lipid peroxidation level responsible for damaging the membranes of organelles. Morphological changes were correlated with the evaluated physiological features: plants exposed to 100 g L(-1) of PEG showed areas with collapsed cells, increases in mesophyll thickness and the area of the intercellular space, cuticle shrinkage, morphological changes in plastids, and lysis of mitochondria. In summary, our results revealed that PEG-induced osmotic stress in M. x piperita depends on the intensity level of the osmotic stress applied; severe osmotic stress changed the structural characteristics, caused damage at the cellular level, and reduced the essential oil content and quality.


Asunto(s)
Mentha piperita/anatomía & histología , Mentha piperita/metabolismo , Presión Osmótica/efectos de los fármacos , Polietilenglicoles/farmacología , Estrés Fisiológico/efectos de los fármacos , Antioxidantes/metabolismo , Carbohidratos/análisis , Peroxidación de Lípido/efectos de los fármacos , Mentha piperita/efectos de los fármacos , Mentha piperita/enzimología , Aceites Volátiles/metabolismo , Fotosíntesis/efectos de los fármacos , Estomas de Plantas/citología , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Estomas de Plantas/ultraestructura , Transpiración de Plantas/efectos de los fármacos , Solubilidad , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Fracciones Subcelulares/ultraestructura , Agua/metabolismo
6.
Protoplasma ; 252(3): 885-99, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25388000

RESUMEN

Salinity is a major stress that adversely affects plant growth and crop production. Understanding the cellular responses and molecular mechanisms by which plants perceive and adopt salinity stress is of fundamental importance. In this work, some of the cellular signaling events including cell death, reactive oxygen species (ROS) generation, and the behaviors of organelles were analyzed in a salt-tolerant species (Keyuan-1) of peppermint (Mentha × piperita L.) under NaCl treatment. Our results showed that 200 mM NaCl treatment elicited a distinct progress of cell death with chromatin condensation and caspase-3-like activation and a dramatic burst of ROS which was required for the execution of cell death. The major ROS accumulation occurred in the mitochondria and chloroplasts, which were the sources of ROS production under NaCl stress. Moreover, mitochondrial activity and photosynthetic capacity also exhibited the obvious decrease in the ROS-dependent manner under 200 mM NaCl stress. Furthermore, the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), and dehydroascorbate reductase (DHAR) as well as the contents of ascorbate and glutathione changed in the concentration-dependent manner under NaCl stress. Altogether, our data showed the execution of programmed cell death (PCD), the ROS dynamics, and the behaviors of organelles especially mitochondria and chloroplasts in the cellular responses of peppermint to NaCl stress which can be used for the tolerance screening, and contributed to the understanding of the cellular responses and molecular mechanisms of peppermint to salinity stress, providing the theoretic basis for the further development and utilization of peppermint in saline areas.


Asunto(s)
Mentha piperita/fisiología , Salinidad , Cloruro de Sodio/farmacología , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Supervivencia Celular/efectos de los fármacos , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Cromatina/metabolismo , Activación Enzimática/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Malondialdehído/metabolismo , Mentha piperita/citología , Mentha piperita/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fotosíntesis/efectos de los fármacos , Protoplastos/efectos de los fármacos , Protoplastos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/efectos de los fármacos , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Factores de Tiempo
7.
Plant Physiol Biochem ; 49(10): 1177-82, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21843946

RESUMEN

Volatile organic compounds (VOCs), characterized by low molecular weight and high vapor pressure, are produced by all organisms as part of normal metabolism, and play important roles in communication within and between organisms. We examined the effects of VOCs released by three species of plant growth-promoting rhizobacteria (Pseudomonas fluorescens, Bacillus subtilis, Azospirillum brasilense) on growth parameters and composition of essential oils (EO) in the aromatic plant Mentha piperita (peppermint). The bacteria and plants were grown on the same Petri dish, but were separated by a physical barrier such that the plants were exposed only to VOCs but not to solutes from the bacteria. Growth parameters of plants exposed to VOCs of P. fluorescens or B. subtilis were significantly higher than those of controls or A. brasilense-treated plants. Production of EOs (monoterpenes) was increased 2-fold in P. fluorescens-treated plants. Two major EOs, (+)pulegone and (-)menthone, showed increased biosynthesis in P. fluorescens-treated plants. Menthol in A. brasilense-treated plants was the only major EO that showed a significant decrease. These findings suggest that VOCs of rhizobacteria, besides inducing biosynthesis of secondary metabolites, affect pathway flux or specific steps of monoterpene metabolism. Bacterial VOCs are a rich source for new natural compounds that may increase crop productivity and EO yield of this economically important plant species.


Asunto(s)
Mentha piperita/efectos de los fármacos , Mentha piperita/crecimiento & desarrollo , Aceites Volátiles/metabolismo , Compuestos Orgánicos Volátiles/farmacología , Azospirillum brasilense/química , Bacillus subtilis/química , Vías Biosintéticas/efectos de los fármacos , Medios de Cultivo , Técnicas de Cultivo , Monoterpenos Ciclohexánicos , Mentha piperita/metabolismo , Mentol/metabolismo , Monoterpenos/metabolismo , Pseudomonas fluorescens/química
8.
Protoplasma ; 231(3-4): 215-26, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17603746

RESUMEN

Successful cryopreservation of plant shoot tips is dependent upon effective desiccation through osmotic or physical processes. Microscopy techniques were used to determine the extent of cellular damage and plasmolysis that occurs in peppermint (Mentha x piperita) shoot tips during the process of cryopreservation, using the cryoprotectant plant vitrification solution 2 (PVS2) (30% glycerol, 15% dimethyl sulfoxide, 15% ethylene glycol, 0.4 M sucrose) prior to liquid-nitrogen exposure. The meristem cells were the smallest and least plasmolyzed cell type of the shoot tips, while the large, older leaf and lower cortex cells were the most damaged. When treated with cryoprotectant solutions, meristem cells exhibited concave plasmolysis, suggesting that this cell type has a highly viscous protoplasm, and protoplasts have many cell wall attachment sites. Shoot tip cells were most severely plasmolyzed after PVS2 treatment, liquid-nitrogen exposure, and warming in 1.2 M sucrose. Successful recovery may be dependent upon surviving the plasmolytic conditions induced by warming and diluting treated shoot tips in 1.2 M sucrose solutions. In peppermint shoot tips, clumps of young meristem or young leaf cells survive the cryopreservation process and regenerate plants containing many shoots. Cryoprotective treatments that favor survival of small, meristematic cells and young leaf cells are most likely to produce high survival rates after liquid-nitrogen exposure.


Asunto(s)
Criopreservación/métodos , Crioprotectores/farmacología , Mentha piperita/citología , Brotes de la Planta/citología , Mentha piperita/efectos de los fármacos , Mentha piperita/ultraestructura , Meristema/citología , Meristema/efectos de los fármacos , Meristema/ultraestructura , Microscopía Electrónica de Transmisión , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/ultraestructura , Estructuras de las Plantas/citología , Estructuras de las Plantas/efectos de los fármacos , Estructuras de las Plantas/ultraestructura
9.
Proc Natl Acad Sci U S A ; 100(24): 14481-6, 2003 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-14623962

RESUMEN

(+)-Pulegone is a central intermediate in the biosynthesis of (-)-menthol, the most significant component of peppermint essential oil. Depending on environmental conditions, this branch point metabolite may be reduced to (-)-menthone en route to menthol, by pulegone reductase (PR), or oxidized to (+)-menthofuran, by menthofuran synthase (MFS). To elucidate regulation of pulegone metabolism, we modified the expression of mfs under control of the CaMV 35S promoter in transformed peppermint plants. Overexpression and cosuppression of mfs resulted in the respective increase or decrease in the production of menthofuran, indicating that the control of MFS resides primarily at the level of transcription. Significantly, in both WT peppermint as well as in all transformed plants, the flux of (+)-pulegone through PR correlated negatively with the essential oil content of menthofuran, such that menthofuran, and pulegone increased, or decreased, in concert. These results suggested that menthofuran itself might influence the reduction of pulegone. Although (+)-menthofuran did not inhibit (+)-PR activity, stem feeding with menthofuran selectively decreased pr transcript levels in immature leaves, thereby accounting for decreased reductase activity and increased pulegone content. These data demonstrate that the metabolic fate of (+)-pulegone is controlled through transcriptional regulation of mfs and that menthofuran, either directly or indirectly, influences this process by down-regulating transcription from pr and/or decreasing pr message stability. The ability to reduce both menthofuran and pulegone levels is of commercial significance in improving essential oil quality; however, the physiological rationale for such complex regulation is presently unclear.


Asunto(s)
Mentha piperita/efectos de los fármacos , Mentha piperita/metabolismo , Monoterpenos/farmacología , Oxidorreductasas/metabolismo , Monoterpenos Ciclohexánicos , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Expresión Génica , Genes de Plantas , Mentha piperita/genética , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Monoterpenos/metabolismo , Oxidorreductasas/genética , Aceites de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA