Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 86: 277-304, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28654323

RESUMEN

Metabolites are the small biological molecules involved in energy conversion and biosynthesis. Studying metabolism is inherently challenging due to metabolites' reactivity, structural diversity, and broad concentration range. Herein, we review the common pitfalls encountered in metabolomics and provide concrete guidelines for obtaining accurate metabolite measurements, focusing on water-soluble primary metabolites. We show how seemingly straightforward sample preparation methods can introduce systematic errors (e.g., owing to interconversion among metabolites) and how proper selection of quenching solvent (e.g., acidic acetonitrile:methanol:water) can mitigate such problems. We discuss the specific strengths, pitfalls, and best practices for each common analytical platform: liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS), nuclear magnetic resonance (NMR), and enzyme assays. Together this information provides a pragmatic knowledge base for carrying out biologically informative metabolite measurements.


Asunto(s)
Cromatografía Liquida/normas , Cromatografía de Gases y Espectrometría de Masas/normas , Espectroscopía de Resonancia Magnética/normas , Espectrometría de Masas/normas , Metabolómica/normas , Adenosina Trifosfato/análisis , Animales , Glutatión/análisis , Guías como Asunto , Humanos , Microextracción en Fase Líquida/métodos , Metabolómica/instrumentación , Metabolómica/métodos , Ratones , NADP/análisis , Solventes
2.
Nat Methods ; 18(7): 747-756, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34239102

RESUMEN

Mass spectrometry-based metabolomics approaches can enable detection and quantification of many thousands of metabolite features simultaneously. However, compound identification and reliable quantification are greatly complicated owing to the chemical complexity and dynamic range of the metabolome. Simultaneous quantification of many metabolites within complex mixtures can additionally be complicated by ion suppression, fragmentation and the presence of isomers. Here we present guidelines covering sample preparation, replication and randomization, quantification, recovery and recombination, ion suppression and peak misidentification, as a means to enable high-quality reporting of liquid chromatography- and gas chromatography-mass spectrometry-based metabolomics-derived data.


Asunto(s)
Espectrometría de Masas/métodos , Metabolómica/métodos , Animales , Cromatografía Liquida , Cromatografía de Gases y Espectrometría de Masas , Humanos , Espectrometría de Masas/normas , Metabolómica/normas , Distribución Aleatoria , Manejo de Especímenes , Flujo de Trabajo
3.
Nat Methods ; 18(11): 1377-1385, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34711973

RESUMEN

Liquid chromatography-high-resolution mass spectrometry (LC-MS)-based metabolomics aims to identify and quantify all metabolites, but most LC-MS peaks remain unidentified. Here we present a global network optimization approach, NetID, to annotate untargeted LC-MS metabolomics data. The approach aims to generate, for all experimentally observed ion peaks, annotations that match the measured masses, retention times and (when available) tandem mass spectrometry fragmentation patterns. Peaks are connected based on mass differences reflecting adduction, fragmentation, isotopes, or feasible biochemical transformations. Global optimization generates a single network linking most observed ion peaks, enhances peak assignment accuracy, and produces chemically informative peak-peak relationships, including for peaks lacking tandem mass spectrometry spectra. Applying this approach to yeast and mouse data, we identified five previously unrecognized metabolites (thiamine derivatives and N-glucosyl-taurine). Isotope tracer studies indicate active flux through these metabolites. Thus, NetID applies existing metabolomic knowledge and global optimization to substantially improve annotation coverage and accuracy in untargeted metabolomics datasets, facilitating metabolite discovery.


Asunto(s)
Algoritmos , Curaduría de Datos/normas , Hígado/metabolismo , Metaboloma , Metabolómica/normas , Saccharomyces cerevisiae/metabolismo , Animales , Cromatografía Liquida/métodos , Curaduría de Datos/métodos , Metabolómica/métodos , Ratones , Espectrometría de Masas en Tándem/métodos
4.
Metabolomics ; 20(4): 73, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980450

RESUMEN

INTRODUCTION: During the Metabolomics 2023 conference, the Metabolomics Quality Assurance and Quality Control Consortium (mQACC) presented a QA/QC workshop for LC-MS-based untargeted metabolomics. OBJECTIVES: The Best Practices Working Group disseminated recent findings from community forums and discussed aspects to include in a living guidance document. METHODS: Presentations focused on reference materials, data quality review, metabolite identification/annotation and quality assurance. RESULTS: Live polling results and follow-up discussions offered a broad international perspective on QA/QC practices. CONCLUSIONS: Community input gathered from this workshop series is being used to shape the living guidance document, a continually evolving QA/QC best practices resource for metabolomics researchers.


Asunto(s)
Espectrometría de Masas , Metabolómica , Control de Calidad , Metabolómica/métodos , Metabolómica/normas , Cromatografía Liquida/métodos , Cromatografía Liquida/normas , Espectrometría de Masas/métodos , Humanos , Consenso , Cromatografía Líquida con Espectrometría de Masas
5.
Am J Physiol Cell Physiol ; 321(6): C947-C953, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34613842

RESUMEN

Cells regulate their cell volume, but cell volumes may change in response to metabolic and other perturbations. Many metabolomics experiments use cultured cells to measure changes in metabolites in response to physiological and other experimental perturbations, but the metabolomics workflow by mass spectrometry only determines total metabolite amounts in cell culture extracts. To convert metabolite amount to metabolite concentration requires knowledge of the number and volume of the cells. Measuring only metabolite amount can lead to incorrect or skewed results in cell culture experiments because cell size may change due to experimental conditions independent of change in metabolite concentration. We have developed a novel method to determine cell volume in cell culture experiments using a pair of stable isotopically labeled phenylalanine internal standards incorporated within the normal liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics workflow. This method relies on the flooding-dose technique where the intracellular concentration of a particular compound (in this case phenylalanine) is forced to equal its extracellular concentration. We illustrate the LC-MS/MS technique for two different mammalian cell lines. Although the method is applicable in general for determining cell volume, the major advantage of the method is its seamless incorporation within the normal metabolomics workflow.


Asunto(s)
Tamaño de la Célula , Células Dendríticas/metabolismo , Linfocitos/metabolismo , Metaboloma , Metabolómica , Fenilalanina/metabolismo , Animales , Biomarcadores/metabolismo , Línea Celular , Cromatografía Liquida , Metabolómica/normas , Ratones , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Factores de Tiempo , Flujo de Trabajo
6.
J Neurochem ; 158(5): 1007-1031, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33636013

RESUMEN

Post-mortem metabolism is widely recognized to cause rapid and prolonged changes in the concentrations of multiple classes of compounds in brain, that is, they are labile. Post-mortem changes from levels in living brain include components of pathways of metabolism of glucose and energy compounds, amino acids, lipids, signaling molecules, neuropeptides, phosphoproteins, and proteins. Methods that stop enzyme activity at brain harvest were developed almost 50 years ago and have been extensively used in studies of brain functions and diseases. Unfortunately, these methods are not commonly used to harvest brain tissue for mass spectrometry-based metabolomic studies or for imaging mass spectrometry studies (IMS, also called mass spectrometry imaging, MSI, or matrix-assisted laser desorption/ionization-MSI, MALDI-MSI). Instead these studies commonly kill animals, decapitate, dissect out brain and regions of interest if needed, then 'snap' freeze the tissue to stop enzymatic activity after harvest, with post-mortem intervals typically ranging from ~0.5 to 3 min. To increase awareness of the importance of stopping metabolism at harvest and preventing the unnecessary complications of not doing so, this commentary provides examples of labile metabolites and the magnitudes of their post-mortem changes in concentrations during brain harvest. Brain harvest methods that stop metabolism at harvest eliminate post-mortem enzymatic activities and can improve characterization of normal and diseased brain. In addition, metabolomic studies would be improved by reporting absolute units of concentration along with normalized peak areas or fold changes. Then reported values can be evaluated and compared with the extensive neurochemical literature to help prevent reporting of artifactual data.


Asunto(s)
Encéfalo/enzimología , Encéfalo/patología , Metabolómica/métodos , Preservación de Órganos/métodos , Cambios Post Mortem , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Metabolismo Energético/fisiología , Humanos , Metabolómica/normas , Preservación de Órganos/normas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/normas , Factores de Tiempo
7.
Am J Epidemiol ; 190(3): 459-467, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32959873

RESUMEN

Many epidemiologic studies use metabolomics for discovery-based research. The degree to which sample handling may influence findings, however, is poorly understood. In 2016, serum samples from 13 volunteers from the US Department of Agriculture's Beltsville Human Nutrition Research Center were subjected to different clotting (30 minutes/120 minutes) and refrigeration (0 minutes/24 hours) conditions, as well as different numbers (0/1/4) and temperatures (ice/refrigerator/room temperature) of thaws. The median absolute percent difference (APD) between metabolite levels and correlations between levels across conditions were estimated for 628 metabolites. The potential for handling artifacts to induce false-positive associations was estimated using variable hypothetical scenarios in which 1%-100% of case samples had different handling than control samples. All handling conditions influenced metabolite levels. Across metabolites, the median APD when extending clotting time was 9.08%. When increasing the number of thaws from 0 to 4, the median APD was 10.05% for ice and 5.54% for room temperature. Metabolite levels were correlated highly across conditions (all r's ≥ 0.84), indicating that relative ranks were preserved. However, if handling varied even modestly by case status, our hypotheticals showed that results can be biased and can result in false-positive findings. Sample handling affects levels of metabolites, and special care should be taken to minimize effects. Shorter room-temperature thaws should be preferred over longer ice thaws, and handling should be meticulously matched by case status.


Asunto(s)
Recolección de Muestras de Sangre/estadística & datos numéricos , Estudios Epidemiológicos , Metaboloma , Metabolómica/estadística & datos numéricos , Recolección de Muestras de Sangre/normas , Humanos , Metabolómica/normas , Proyectos Piloto , Temperatura , Factores de Tiempo
8.
Anal Chem ; 93(4): 1924-1933, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33448796

RESUMEN

Liquid chromatography-mass spectrometry (LC-MS) is a powerful and widely used technique for measuring the abundance of chemical species in living systems. Its sensitivity, analytical specificity, and direct applicability to biofluids and tissue extracts impart great promise for the discovery and mechanistic characterization of biomarker panels for disease detection, health monitoring, patient stratification, and treatment personalization. Global metabolic profiling applications yield complex data sets consisting of multiple feature measurements for each chemical species observed. While this multiplicity can be useful in deriving enhanced analytical specificity and chemical identities from LC-MS data, data set inflation and quantitative imprecision among related features is problematic for statistical analyses and interpretation. This Perspective provides a critical evaluation of global profiling data fidelity with respect to measurement linearity and the quantitative response variation observed among components of the spectra. These elements of data quality are widely overlooked in untargeted metabolomics yet essential for the generation of data that accurately reflect the metabolome. Advanced feature filtering informed by linear range estimation and analyte response factor assessment is advocated as an attainable means of controlling LC-MS data quality in global profiling studies and exemplified herein at both the feature and data set level.


Asunto(s)
Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Metabolómica/métodos , Metabolómica/normas , Control de Calidad , Metaboloma , Transcriptoma
9.
J Hum Genet ; 66(1): 93-102, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32385339

RESUMEN

Omics studies attempt to extract meaningful messages from large-scale and high-dimensional data sets by treating the data sets as a whole. The concept of treating data sets as a whole is important in every step of the data-handling procedures: the pre-processing step of data records, the step of statistical analyses and machine learning, translation of the outputs into human natural perceptions, and acceptance of the messages with uncertainty. In the pre-processing, the method by which to control the data quality and batch effects are discussed. For the main analyses, the approaches are divided into two types and their basic concepts are discussed. The first type is the evaluation of many items individually, followed by interpretation of individual items in the context of multiple testing and combination. The second type is the extraction of fewer important aspects from the whole data records. The outputs of the main analyses are translated into natural languages with techniques, such as annotation and ontology. The other technique for making the outputs perceptible is visualization. At the end of this review, one of the most important issues in the interpretation of omics data analyses is discussed. Omics studies have a large amount of information in their data sets, and every approach reveals only a very restricted aspect of the whole data sets. The understandable messages from these studies have unavoidable uncertainty.


Asunto(s)
Epigenómica/estadística & datos numéricos , Perfilación de la Expresión Génica/estadística & datos numéricos , Genómica/estadística & datos numéricos , Metabolómica/estadística & datos numéricos , Proteómica/estadística & datos numéricos , Interpretación Estadística de Datos , Epigenómica/métodos , Epigenómica/normas , Cromatografía de Gases y Espectrometría de Masas/métodos , Cromatografía de Gases y Espectrometría de Masas/normas , Cromatografía de Gases y Espectrometría de Masas/estadística & datos numéricos , Perfilación de la Expresión Génica/métodos , Perfilación de la Expresión Génica/normas , Genómica/métodos , Genómica/normas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Secuenciación de Nucleótidos de Alto Rendimiento/estadística & datos numéricos , Humanos , Metabolómica/métodos , Metabolómica/normas , Proteómica/métodos , Proteómica/normas , Control de Calidad
10.
Metabolomics ; 17(1): 2, 2021 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-33389209

RESUMEN

INTRODUCTION: Because of its ease of collection, urine is one of the most commonly used matrices for metabolomics studies. However, unlike other biofluids, urine exhibits tremendous variability that can introduce confounding inconsistency during result interpretation. Despite many existing techniques to normalize urine samples, there is still no consensus on either which method is most appropriate or how to evaluate these methods. OBJECTIVES: To investigate the impact of several methods and combinations of methods conventionally used in urine metabolomics on the statistical discrimination of two groups in a simple metabolomics study. METHODS: We applied 14 different strategies of normalization to forty urine samples analysed by liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS). To evaluate the impact of these different strategies, we relied on the ability of each method to reduce confounding variability while retaining variability of interest, as well as the predictability of statistical models. RESULTS: Among all tested normalization methods, osmolality-based normalization gave the best results. Moreover, we demonstrated that normalization using a specific dilution prior to the analysis outperformed post-acquisition normalization. We also demonstrated that the combination of various normalization methods does not necessarily improve statistical discrimination. CONCLUSIONS: This study re-emphasized the importance of normalizing urine samples for metabolomics studies. In addition, it appeared that the choice of method had a significant impact on result quality. Consequently, we suggest osmolality-based normalization as the best method for normalizing urine samples. TRIAL REGISTRATION NUMBER: NCT03335644.


Asunto(s)
Interpretación Estadística de Datos , Metabolómica/métodos , Concentración Osmolar , Urinálisis/métodos , Líquidos Corporales/metabolismo , Cromatografía Liquida , Humanos , Biopsia Líquida , Espectrometría de Masas , Metaboloma , Metabolómica/normas , Urinálisis/normas
11.
Metabolomics ; 17(1): 1, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33387070

RESUMEN

INTRODUCTION: Early diagnosis of periodontitis by means of a rapid, accurate and non-invasive method is highly desirable to reduce the individual and epidemiological burden of this largely prevalent disease. OBJECTIVES: The aims of the present systematic review were to examine potential salivary metabolic biomarkers and pathways associated to periodontitis, and to assess the accuracy of salivary untargeted metabolomics for the diagnosis of periodontal diseases. METHODS: Relevant studies identified from MEDLINE (PubMed), Embase and Scopus databases were systematically examined for analytical protocols, metabolic biomarkers and results from the multivariate analysis (MVA). Pathway analysis was performed using the MetaboAnalyst online software and quality assessment by means of a modified version of the QUADOMICS tool. RESULTS: Twelve studies met the inclusion criteria, with sample sizes ranging from 19 to 130 subjects. Compared to periodontally healthy individuals, valine, phenylalanine, isoleucine, tyrosine and butyrate were found upregulated in periodontitis patients in most studies; while lactate, pyruvate and N-acetyl groups were the most significantly expressed in healthy individuals. Metabolic pathways that resulted dysregulated are mainly implicated in inflammation, oxidative stress, immune activation and bacterial energetic metabolism. The findings from MVA revealed that periodontitis is characterized by a specific metabolic signature in saliva, with coefficients of determination ranging from 0.52 to 0.99. CONCLUSIONS: This systematic review summarizes candidate metabolic biomarkers and pathways related to periodontitis, which may provide opportunities for the validation of diagnostic or predictive models and the discovery of novel targets for monitoring and treating such a disease (PROSPERO CRD42020188482).


Asunto(s)
Biomarcadores , Metabolómica/métodos , Enfermedades Periodontales/diagnóstico , Enfermedades Periodontales/metabolismo , Saliva/metabolismo , Humanos , Biopsia Líquida/métodos , Biopsia Líquida/normas , Redes y Vías Metabólicas , Metabolómica/normas , Estrés Oxidativo , Enfermedades Periodontales/etiología , Valores de Referencia
12.
Chem Res Toxicol ; 34(9): 1946-1947, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34283584

RESUMEN

A growing body of evidence suggests that the post-mortem interval exerts a strong effect on the metabolome, independently of the biological matrix or the cause of death. A sound and shared approach in standardization is mandatory.


Asunto(s)
Medicina Legal/normas , Metaboloma/fisiología , Metabolómica/normas , Cambios Post Mortem , Humanos , Estándares de Referencia , Factores de Tiempo
13.
J Nat Prod ; 84(3): 824-835, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33666420

RESUMEN

Despite the value of mass spectrometry in modern natural products discovery workflows, it remains very difficult to compare data sets between laboratories. In this study we compared mass spectrometry data for the same sample set from two different laboratories (quadrupole time-of-flight and quadrupole-Orbitrap) and evaluated the similarity between these two data sets in terms of both mass spectrometry features and their ability to describe the chemical composition of the sample set. Somewhat surprisingly, the two data sets, collected with appropriate controls and replication, had very low feature overlap (25.7% of Laboratory A features overlapping 21.8% of Laboratory B features). Our data clearly demonstrate that differences in fragmentation, charge state, and adduct formation in the ionization source are a major underlying cause for these differences. Consistent with other recent literature, these findings challenge the conventional wisdom that electrospray ionization mass spectrometry (ESI-MS) yields a simple one-to-one correspondence between analytes in solution and features in the data set. Importantly, despite low overlap in feature lists, principal component analysis (PCA) generated qualitatively similar PCA plots. Overall, our findings demonstrate that comparing untargeted metabolomics data between laboratories is challenging, but that data sets with low feature overlap can yield the same qualitative description of a sample set using PCA.


Asunto(s)
Espectrometría de Masas/normas , Metabolómica/normas , Camellia sinensis/química , Exactitud de los Datos , Laboratorios , Extractos Vegetales/análisis , Análisis de Componente Principal , Reproducibilidad de los Resultados
14.
Prenat Diagn ; 41(6): 743-753, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33440021

RESUMEN

OBJECTIVE: Heart anomalies represent nearly one-third of all congenital anomalies. They are currently diagnosed using ultrasound. However, there is a strong need for a more accurate and less operator-dependent screening method. Here we report a metabolomics characterization of maternal serum in order to describe a metabolomic fingerprint representative of heart congenital anomalies. METHODS: Metabolomic profiles were obtained from serum of 350 mothers (280 controls and 70 cases). Nine classification models were built and optimized. An ensemble model was built based on the results from the individual models. RESULTS: The ensemble machine learning model correctly classified all cases and controls. Malonic, 3-hydroxybutyric and methyl glutaric acid, urea, androstenedione, fructose, tocopherol, leucine, and putrescine were determined as the most relevant metabolites in class separation. CONCLUSION: The metabolomic signature of second trimester maternal serum from pregnancies affected by a fetal heart anomaly is quantifiably different from that of a normal pregnancy. Maternal serum metabolomics is a promising tool for the accurate and sensitive screening of such congenital defects. Moreover, the revelation of the associated metabolites and their respective biochemical pathways allows a better understanding of the overall pathophysiology of affected pregnancies.


Asunto(s)
Cardiopatías Congénitas/diagnóstico , Metabolómica/métodos , Adulto , Femenino , Cardiopatías Congénitas/sangre , Cardiopatías Congénitas/epidemiología , Humanos , Italia/epidemiología , Metabolómica/normas , Metabolómica/estadística & datos numéricos , Pruebas Prenatales no Invasivas/métodos , Pruebas Prenatales no Invasivas/estadística & datos numéricos , Embarazo , Estudios Prospectivos
15.
Regul Toxicol Pharmacol ; 125: 105020, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34333066

RESUMEN

Omics methodologies are widely used in toxicological research to understand modes and mechanisms of toxicity. Increasingly, these methodologies are being applied to questions of regulatory interest such as molecular point-of-departure derivation and chemical grouping/read-across. Despite its value, widespread regulatory acceptance of omics data has not yet occurred. Barriers to the routine application of omics data in regulatory decision making have been: 1) lack of transparency for data processing methods used to convert raw data into an interpretable list of observations; and 2) lack of standardization in reporting to ensure that omics data, associated metadata and the methodologies used to generate results are available for review by stakeholders, including regulators. Thus, in 2017, the Organisation for Economic Co-operation and Development (OECD) Extended Advisory Group on Molecular Screening and Toxicogenomics (EAGMST) launched a project to develop guidance for the reporting of omics data aimed at fostering further regulatory use. Here, we report on the ongoing development of the first formal reporting framework describing the processing and analysis of both transcriptomic and metabolomic data for regulatory toxicology. We introduce the modular structure, content, harmonization and strategy for trialling this reporting framework prior to its publication by the OECD.


Asunto(s)
Metabolómica/normas , Organización para la Cooperación y el Desarrollo Económico/normas , Toxicogenética/normas , Toxicología/normas , Transcriptoma/fisiología , Documentación/normas , Humanos
16.
Int J Mol Sci ; 22(2)2021 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-33467107

RESUMEN

Flavonoids represent an important class of secondary metabolites because of their potential health benefits and functions in plants. We propose a novel method for the comprehensive flavonoid filtering and screening based on direct infusion mass spectrometry (DIMS) analysis. The recently invented data mining procedure, the multi-step mass-remainder analysis (M-MARA) technique is applied for the effective mass spectral filtering of the peak rich spectra of natural herb extracts. In addition, our flavonoid-filtering algorithm facilitates the determination of the elemental composition. M-MARA flavonoid-filtering uses simple mathematical and logical operations and thus, it can easily be implemented in a regular spreadsheet software. A huge benefit of our method is the high speed and the low demand for computing power and memory that enables the real time application even for tandem mass spectrometric analysis. Our novel method was applied for the electrospray ionization (ESI) DIMS spectra of various herb extract, and the filtered mass spectral data were subjected to chemometrics analysis using principal component analysis (PCA).


Asunto(s)
Flavonoides/química , Metabolómica/métodos , Extractos Vegetales/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Flavonoides/análisis , Metabolómica/normas , Análisis de Componente Principal , Espectrometría de Masas en Tándem/normas
17.
J Mol Cell Cardiol ; 142: 1-13, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32234390

RESUMEN

Mitochondria are the major source of cellular energy (ATP), as well as critical mediators of widespread functions such as cellular redox balance, apoptosis, and metabolic flux. The organelles play an especially important role in the maintenance of cardiac homeostasis; their inability to generate ATP following impairment due to ischemic damage has been directly linked to organ failure. Methods to quantify mitochondrial content are limited to low throughput immunoassays, measurement of mitochondrial DNA, or relative quantification by untargeted mass spectrometry. Here, we present a high throughput, reproducible and quantitative mass spectrometry multiple reaction monitoring based assay of 37 proteins critical to central carbon chain metabolism and overall mitochondrial function termed 'MitoPlex'. We coupled this protein multiplex with a parallel analysis of the central carbon chain metabolites (219 metabolite assay) extracted in tandem from the same sample, be it cells or tissue. In tests of its biological applicability in cells and tissues, "MitoPlex plus metabolites" indicated profound effects of HMG-CoA Reductase inhibition (e.g., statin treatment) on mitochondria of i) differentiating C2C12 skeletal myoblasts, as well as a clear opposite trend of statins to promote mitochondrial protein expression and metabolism in heart and liver, while suppressing mitochondrial protein and ii) aspects of metabolism in the skeletal muscle obtained from C57Bl6 mice. Our results not only reveal new insights into the metabolic effect of statins in skeletal muscle, but present a new high throughput, reliable MS-based tool to study mitochondrial dynamics in both cell culture and in vivo models.


Asunto(s)
Espectrometría de Masas , Metabolómica/métodos , Proteínas Mitocondriales/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Cromatografía Liquida/métodos , Ciclo del Ácido Cítrico/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Espectrometría de Masas/métodos , Espectrometría de Masas/normas , Metabolómica/normas , Ratones , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Reproducibilidad de los Resultados , Simvastatina/farmacología , Ubiquinona/farmacología
18.
Anal Chem ; 92(13): 8836-8844, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32490663

RESUMEN

Reference standardization was developed to address quantification and harmonization challenges for high-resolution metabolomics (HRM) data collected across different studies or analytical methods. Reference standardization relies on the concurrent analysis of calibrated pooled reference samples at predefined intervals and enables a single-step batch correction and quantification for high-throughput metabolomics. Here, we provide quantitative measures of approximately 200 metabolites for each of three pooled reference materials (220 metabolites for Qstd3, 211 metabolites for CHEAR, 204 metabolites for NIST1950) and show application of this approach for quantification supports harmonization of metabolomics data collected from 3677 human samples in 17 separate studies analyzed by two complementary HRM methods over a 17-month period. The results establish reference standardization as a method suitable for harmonizing large-scale metabolomics data and extending capabilities to quantify large numbers of known and unidentified metabolites detected by high-resolution mass spectrometry methods.


Asunto(s)
Metaboloma , Metabolómica/normas , Cromatografía Líquida de Alta Presión , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Quinurenina/análisis , Quinurenina/metabolismo , Quinurenina/normas , Espectrometría de Masas , Metabolómica/métodos , Estándares de Referencia , Reproducibilidad de los Resultados , Triptófano/análisis , Triptófano/metabolismo , Triptófano/normas
19.
Anal Chem ; 92(15): 10241-10245, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32603093

RESUMEN

Targeted quantitative mass spectrometry metabolite profiling is the workhorse of metabolomics research. Robust and reproducible data are essential for confidence in analytical results and are particularly important with large-scale studies. Commercial kits are now available which use carefully calibrated and validated internal and external standards to provide such reliability. However, they are still subject to processing and technical errors in their use and should be subject to a laboratory's routine quality assurance and quality control measures to maintain confidence in the results. We discuss important systematic and random measurement errors when using these kits and suggest measures to detect and quantify them. We demonstrate how wider analysis of the entire data set alongside standard analyses of quality control samples can be used to identify outliers and quantify systematic trends to improve downstream analysis. Finally, we present the MeTaQuaC software which implements the above concepts and methods for Biocrates kits and other target data sets and creates a comprehensive quality control report containing rich visualization and informative scores and summary statistics. Preliminary unsupervised multivariate analysis methods are also included to provide rapid insight into study variables and groups. MeTaQuaC is provided as an open source R package under a permissive MIT license and includes detailed user documentation.


Asunto(s)
Espectrometría de Masas/métodos , Metabolómica/métodos , Metabolómica/normas , Control de Calidad , Programas Informáticos
20.
Expert Rev Proteomics ; 17(2): 163-173, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32174200

RESUMEN

Introduction: Metaproteomics is an established method to obtain a comprehensive taxonomic and functional view of microbial communities. After more than a decade, we are now able to describe the promise, reality, and perspectives of metaproteomics and provide useful information about the choice of method, applications, and potential improvement strategies.Areas covered: In this article, we will discuss current challenges of species and proteome coverage, and also highlight functional aspects of metaproteomics analysis of microbial communities with different levels of complexity. To do this, we re-analyzed data from microbial communities with low to high complexity (8, 72, 200 and >300 species). High species diversity leads to a reduced number of protein group identifications in a complex community, and thus the number of species resolved is underestimated. Ultimately, low abundance species remain undiscovered in complex communities. However, we observed that the main functional categories were better represented within complex microbiomes when compared to species coverage.Expert opinion: Our findings showed that even with low species coverage, metaproteomics has the potential to reveal habitat-specific functional features. Finally, we exploit this information to highlight future research avenues that are urgently needed to enhance our understanding of taxonomic composition and functions of complex microbiomes.


Asunto(s)
Metabolómica/métodos , Metagenómica/métodos , Microbiota , Proteómica/métodos , Redes y Vías Metabólicas , Metabolómica/normas , Metagenoma , Metagenómica/normas , Proteoma/genética , Proteoma/metabolismo , Proteómica/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA