Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 783
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(33): e2405836121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39116128

RESUMEN

The 2011 discovery of the first rare earth-dependent enzyme in methylotrophic Methylobacterium extorquens AM1 prompted intensive research toward understanding the unique chemistry at play in these systems. This enzyme, an alcohol dehydrogenase (ADH), features a La3+ ion closely associated with redox-active coenzyme pyrroloquinoline quinone (PQQ) and is structurally homologous to the Ca2+-dependent ADH from the same organism. AM1 also produces a periplasmic PQQ-binding protein, PqqT, which we have now structurally characterized to 1.46-Å resolution by X-ray diffraction. This crystal structure reveals a Lys residue hydrogen-bonded to PQQ at the site analogously occupied by a Lewis acidic cation in ADH. Accordingly, we prepared K142A- and K142D-PqqT variants to assess the relevance of this site toward metal binding. Isothermal titration calorimetry experiments and titrations monitored by UV-Vis absorption and emission spectroscopies support that K142D-PqqT binds tightly (Kd = 0.6 ± 0.2 µM) to La3+ in the presence of bound PQQ and produces spectral signatures consistent with those of ADH enzymes. These spectral signatures are not observed for WT- or K142A-variants or upon addition of Ca2+ to PQQ ⸦ K142D-PqqT. Addition of benzyl alcohol to La3+-bound PQQ ⸦ K142D-PqqT (but not Ca2+-bound PQQ ⸦ K142D-PqqT, or La3+-bound PQQ ⸦ WT-PqqT) produces spectroscopic changes associated with PQQ reduction, and chemical trapping experiments reveal the production of benzaldehyde, supporting ADH activity. By creating a metal binding site that mimics native ADH enzymes, we present a rare earth-dependent artificial metalloenzyme primed for future mechanistic, biocatalytic, and biosensing applications.


Asunto(s)
Methylobacterium extorquens , Methylobacterium extorquens/enzimología , Methylobacterium extorquens/metabolismo , Metaloproteínas/química , Metaloproteínas/metabolismo , Alcohol Deshidrogenasa/metabolismo , Alcohol Deshidrogenasa/química , Cristalografía por Rayos X , Cofactor PQQ/metabolismo , Cofactor PQQ/química , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Metales de Tierras Raras/química , Metales de Tierras Raras/metabolismo , Modelos Moleculares , Lantano/química , Lantano/metabolismo
2.
Acc Chem Res ; 57(18): 2653-2664, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39192666

RESUMEN

ConspectusPhotoluminescence nanothermometry can detect the local temperature at the submicrometer scale with minimal contact with the object under investigation. Owing to its high spatial resolution, this technique shows great potential in biomedicine in both fundamental studies as well as preclinical research. Photoluminescence nanothermometry exploits the temperature-dependent optical properties of various nanoscale optical probes including organic fluorophores, quantum dots, and carbon nanostructures. At the vanguard of these diverse optical probes, rare-earth doped nanoparticles (RENPs) have demonstrated remarkable capabilities in photoluminescence nanothermometry. They distinguish themselves from other luminescent nanoprobes owning to their unparalleled and versatile optical properties that include narrow emission bandwidths, high photostability, tunable lifetimes from microseconds to milliseconds, multicolor emissions spanning the ultraviolet, visible, and near-infrared (NIR) regions, and the ability to undergo upconversion, all with excitation of a single, biologically friendly NIR wavelength. Recent advancements in the design of novel RENPs have led to new fundamental breakthroughs in photoluminescence nanothermometry. Moreover, driven by their excellent biocompatibility, both in vitro and in vivo, their implementation in biomedical applications has also gained significant traction. However, these nanoprobes face limitations caused by the complex biological environments, including absorption and scattering of various biomolecules as well as interference from different tissues, which limit the spatial resolution and detection sensitivity in RENP temperature sensing.Among existing approaches in RENP photoluminescence nanothermometry, the most prevalent implemented mechanisms either leverage the changes in the relative intensity ratio of two emission bands or exploit the lifetimes of various excited states. Photoluminescence intensity ratio (PLIR) nanothermometry has been the mainstream method owing to the readily available spectrometers for photoluminescence acquisition. Despite offering high temperature sensitivity and spatial resolution, this technique is restricted by tedious calibration and undesirable fluctuation in photoluminescence intensity ascribed to factors such as probe concentration, excitation power density, and biochemical surroundings. Lifetime-based nanothermometry uses the lifetime of a specific transition as the contrast mechanism to infer the temperature. This modality is less susceptible to various experimental factors and is compatible with a broader range of photoluminescence nanoprobes. However, due to relatively expensive and complex instrumentation, long data acquisition, and sophisticated data analysis, lifetime-based nanothermometry is still breaking ground with recently emerging techniques lightening its path.In this Account, we provide an overview of RENP nanothermometry and their applications in biomedicine. The architectures and luminescence mechanisms of RENPs are examined, followed by the principles of PLIR and lifetime-based nanothermometry. The in-depth description of each approach starts with its basic principle of accurate temperature sensing, followed by a critical discussion of the representative techniques, applications as well as their strengths and limitations. Special emphasis is given to the emerging modality of lifetime-based nanothermometry in light of the important new developments in the field. Finally, a summary and an outlook are provided to conclude this Account.


Asunto(s)
Mediciones Luminiscentes , Metales de Tierras Raras , Nanopartículas , Termometría , Animales , Humanos , Luminiscencia , Mediciones Luminiscentes/métodos , Metales de Tierras Raras/química , Nanopartículas/química , Temperatura , Termometría/métodos
3.
Chem Rev ; 123(1): 515-554, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36516409

RESUMEN

Among luminescent nanostructures actively investigated in the last couple of decades, rare earth (RE3+) doped nanoparticles (RENPs) are some of the most reported family of materials. The development of RENPs in the biomedical framework is quickly making its transition to the ∼800 nm excitation pathway, beneficial for both in vitro and in vivo applications to eliminate heating and facilitate higher penetration in tissues. Therefore, reports and investigations on RENPs containing the neodymium ion (Nd3+) greatly increased in number as the focus on ∼800 nm radiation absorbing Nd3+ ion gained traction. In this review, we cover the basics behind the RE3+ luminescence, the most successful Nd3+-RENP architectures, and highlight application areas. Nd3+-RENPs, particularly Nd3+-sensitized RENPs, have been scrutinized by considering the division between their upconversion and downshifting emissions. Aside from their distinctive optical properties, significant attention is paid to the diverse applications of Nd3+-RENPs, notwithstanding the pitfalls that are still to be addressed. Overall, we aim to provide a comprehensive overview on Nd3+-RENPs, discussing their developmental and applicative successes as well as challenges. We also assess future research pathways and foreseeable obstacles ahead, in a field, which we believe will continue witnessing an effervescent progress in the years to come.


Asunto(s)
Metales de Tierras Raras , Nanopartículas , Nanoestructuras , Neodimio/química , Metales de Tierras Raras/química , Nanopartículas/química , Nanoestructuras/química
4.
Nano Lett ; 24(32): 9946-9952, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39101944

RESUMEN

The utilization of biomaterials for the separation of rare earth elements (REEs) has attracted considerable interest due to their inherent advantages, including diverse molecular structures for selective binding and the use of eco-friendly materials for sustainable systems. We present a pioneering methodology for developing a safe virus to selectively bind REEs and facilitate their release through pH modulation. We engineered the major coat protein of M13 bacteriophage (phage) to incorporate a lanthanide-binding peptide. The engineered lanthanide-binding phage (LBPh), presenting ∼3300 copies of the peptide, serves as an effective biological template for REE separation. Our findings demonstrate the LBPh's preferential binding for heavy REEs over light REEs. Moreover, the LBPh exhibits remarkable robustness with excellent recyclability and stability across multiple cycles of separations. This study underscores the potential of genetically integrating virus templates with selective binding motifs for REE separation, offering a promising avenue for environmentally friendly and energy-efficient separation processes.


Asunto(s)
Bacteriófago M13 , Metales de Tierras Raras , Metales de Tierras Raras/química , Metales de Tierras Raras/aislamiento & purificación , Bacteriófago M13/química , Bacteriófago M13/genética , Elementos de la Serie de los Lantanoides/química , Proteínas de la Cápside/química , Proteínas de la Cápside/aislamiento & purificación , Proteínas de la Cápside/genética , Péptidos/química , Concentración de Iones de Hidrógeno
5.
Small ; 20(36): e2310957, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38698608

RESUMEN

The efficacy of traditional radiotherapy (RT) has been severely limited by its significant side effects, as well as tumor hypoxia. Here, the nanoscale cerium (Ce)-based metaloxo clusters (Ce(IV)6)-porphyrin (meso-tetra (4-carboxyphenyl) porphyrin, TCPP) framework loaded with L-arginine (LA) (denoted as LA@Ce(IV)6-TCPP) is developed to serve as a multifarious radio enhancer to heighten X-ray absorption and energy transfer accompanied by O2/NO generation for hypoxia-improved RT-radiodynamic therapy (RDT) and gas therapy. Within tumor cells, LA@Ce(IV)6-TCPP will first react with endogenous H2O2 and inducible NO synthase (iNOS) to produce O2 and NO to respectively increase the oxygen supply and reduce oxygen consumption, thus alleviating tumor hypoxia. Then upon X-ray irradiation, LA@Ce(IV)6-TCPP can significantly enhance hydroxyl radical (•OH) generation from Ce(IV)6 metaloxo clusters for RT and synchronously facilitate singlet oxygen (1O2) generation from adjacently-coordinated TCPP for RDT. Moreover, both the •OH and 1O2 can further react with NO to generate more toxic peroxynitrite anions (ONOO-) to inhibit tumor growth for gas therapy. Benefitting from the alleviation of tumor hypoxia and intensified RT-RDT synergized with gas therapy, LA@Ce(IV)6-TCPP elicited superior anticancer outcomes. This work provides an effective RT strategy by using low doses of X-rays to intensify tumor suppression yet reduce systemic toxicity.


Asunto(s)
Cerio , Óxido Nítrico , Oxígeno , Cerio/química , Oxígeno/química , Óxido Nítrico/metabolismo , Óxido Nítrico/química , Animales , Porfirinas/química , Porfirinas/farmacología , Línea Celular Tumoral , Humanos , Metaloporfirinas/química , Metaloporfirinas/farmacología , Ratones , Metales de Tierras Raras/química , Radioterapia/métodos , Gases/química , Arginina/química , Arginina/farmacología
6.
Microb Cell Fact ; 23(1): 248, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267051

RESUMEN

BACKGROUND: Rare-earth sulfide nanoparticles (NPs) could harness the optical and magnetic features of rare-earth ions for applications in nanotechnology. However, reports of their synthesis are scarce and typically require high temperatures and long synthesis times. RESULTS: Here we present a biosynthesis of terbium sulfide (TbS) NPs using microorganisms, identifying conditions that allow Escherichia coli to extracellularly produce TbS NPs in aqueous media at 37 °C by controlling cellular sulfur metabolism to produce a high concentration of sulfide ions. Electron microscopy revealed ultrasmall spherical NPs with a mean diameter of 4.1 ± 1.3 nm. Electron diffraction indicated a high degree of crystallinity, while elemental mapping confirmed colocalization of terbium and sulfur. The NPs exhibit characteristic absorbance and luminescence of terbium, with downshifting quantum yield (QY) reaching 28.3% and an emission lifetime of ~ 2 ms. CONCLUSIONS: This high QY and long emission lifetime is unusual in a neat rare-earth compound; it is typically associated with rare-earth ions doped into another crystalline lattice to avoid non-radiative cross relaxation. This suggests a reduced role of nonradiative processes in these terbium-based NPs. This is, to our knowledge, the first report revealing the advantage of biosynthesis over chemical synthesis for Rare Earth Element (REE) based NPs, opening routes to new REE-based nanocrystals.


Asunto(s)
Escherichia coli , Metales de Tierras Raras , Sulfuros , Terbio , Terbio/química , Terbio/metabolismo , Escherichia coli/metabolismo , Sulfuros/metabolismo , Sulfuros/química , Metales de Tierras Raras/metabolismo , Metales de Tierras Raras/química , Nanopartículas/química , Luminiscencia , Tecnología Química Verde/métodos
7.
Inorg Chem ; 63(29): 13223-13230, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38986039

RESUMEN

The Block V of the RTX domain of the adenylate cyclase protein from Bordetella pertussis is disordered, and upon binding eight calcium ions, it folds into a beta roll domain with a C-terminal capping group. Due to their similar ionic radii and coordination geometries, trivalent lanthanide ions have been used to probe and identify calcium-binding sites in many proteins. Here, we report using a FRET-based assay that the RTX domain can bind rare earth elements (REEs) with higher affinities than calcium. The apparent disassociation constants for lanthanide ions ranged from 20 to 75 µM, which are an order of magnitude higher than the affinity for calcium, with a higher selectivity toward heavy REEs over light REEs. Most proteins release bound ions at mildly acidic conditions (pH 5-6), and the high affinity REE-binding lanmodulin protein can bind 3-4 REE ions at pH as low as ∼2.5. Circular dichroism (CD) spectra of the RTX domain demonstrate pH-induced folding of the beta roll domain in the absence of ions, indicating that protonation of key amino acids enables structure formation in low pH solutions. The beta roll domain coordinates up to four ions in extreme pH conditions (pH < 1), as determined by equilibrium ultrafiltration experiments. Finally, to demonstrate a potential application of the RTX domain, REE ions (Nd3+ and Dy3+) were recovered from other non-REEs (Fe2+ and Co2+) in a NdFeB magnet simulant solution (at pH 6).


Asunto(s)
Metales de Tierras Raras , Metales de Tierras Raras/química , Concentración de Iones de Hidrógeno , Elementos de la Serie de los Lantanoides/química , Bordetella pertussis/enzimología , Bordetella pertussis/química , Sitios de Unión , Unión Proteica , Dominios Proteicos , Calcio/química , Calcio/metabolismo
8.
Chem Rev ; 122(6): 6040-6116, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35099940

RESUMEN

The number of rare earth (RE) starting materials used in synthesis is staggering, ranging from simple binary metal-halide salts to borohydrides and "designer reagents" such as alkyl and organoaluminate complexes. This review collates the most important starting materials used in RE synthetic chemistry, including essential information on their preparations and uses in modern synthetic methodologies. The review is divided by starting material category and supporting ligands (i.e., metals as synthetic precursors, halides, borohydrides, nitrogen donors, oxygen donors, triflates, and organometallic reagents), and in each section relevant synthetic methodologies and applications are discussed.


Asunto(s)
Metales de Tierras Raras , Borohidruros , Ligandos , Metales , Metales de Tierras Raras/química
9.
Chem Rev ; 122(6): 5519-5603, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-34989556

RESUMEN

Impurity doping is a promising method to impart new properties to various materials. Due to their unique optical, magnetic, and electrical properties, rare-earth ions have been extensively explored as active dopants in inorganic crystal lattices since the 18th century. Rare-earth doping can alter the crystallographic phase, morphology, and size, leading to tunable optical responses of doped nanomaterials. Moreover, rare-earth doping can control the ultimate electronic and catalytic performance of doped nanomaterials in a tunable and scalable manner, enabling significant improvements in energy harvesting and conversion. A better understanding of the critical role of rare-earth doping is a prerequisite for the development of an extensive repertoire of functional nanomaterials for practical applications. In this review, we highlight recent advances in rare-earth doping in inorganic nanomaterials and the associated applications in many fields. This review covers the key criteria for rare-earth doping, including basic electronic structures, lattice environments, and doping strategies, as well as fundamental design principles that enhance the electrical, optical, catalytic, and magnetic properties of the material. We also discuss future research directions and challenges in controlling rare-earth doping for new applications.


Asunto(s)
Metales de Tierras Raras , Nanoestructuras , Metales de Tierras Raras/química , Nanoestructuras/química
10.
Environ Sci Technol ; 58(32): 14565-14574, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39077826

RESUMEN

Transitioning to a low-carbon economy, necessary to mitigate the impacts of anthropogenic climate change, will lead to a significant increase in demand for critical minerals such as rare earth elements (REE). Meeting these raw materials requirements will be challenging, so there is increasing interest in new sources of REE including coal combustion byproducts (CCBs). Extraction of REE from CCBs can be advantageous as it involves reusing a waste product, thereby contributing to the circular economy. While a growing body of literature reports on the abundance of REE in CCBs globally, studies examining the key factors which control their recovery, including speciation and mode of occurrence, are lacking. This study employed synchrotron-based X-ray absorption spectroscopy to probe the speciation and local bonding environment of yttrium in coals and their associated CCBs. Linear Combination Fitting identified silicate and phosphate minerals as the dominant REE-bearing phases. Taken together with the results of extended X-ray absorption fine structure (EXAFS) curve fitting, we find there is minimal transformation in the REE host phase during combustion, indicating it is transferred in bulk from the coals to the CCBs. Accordingly, these findings can be incorporated into the development of an efficient, environmentally conscious recovery process.


Asunto(s)
Carbón Mineral , Metales de Tierras Raras , Espectroscopía de Absorción de Rayos X , Metales de Tierras Raras/química
11.
Environ Sci Technol ; 58(16): 7217-7227, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38588505

RESUMEN

The energy transition will have significant mineral demands and there is growing interest in recovering critical metals, including rare earth elements (REE), from secondary sources in aqueous and sedimentary environments. However, the role of clays in REE transport and deposition in these settings remains understudied. This work investigated REE adsorption to the clay minerals illite and kaolinite through pH adsorption experiments and extended X-ray absorption fine structure (EXAFS). Clay type, pH, and ionic strength (IS) affected adsorption, with decreased adsorption under acidic pH and elevated IS. Illite had a higher adsorption capacity than kaolinite; however, >95% adsorption was achieved at pH ∼7.5 regardless of IS or clay. These results were used to develop a surface complexation model with the derived binding constants used to predict REE speciation in the presence of competing sorbents. This demonstrated that clays become increasingly important as pH increases, and EXAFS modeling showed that REE can exist as both inner- and outer-sphere complexes. Together, this indicated that clays can be an important control on the transport and enrichment of REE in sedimentary systems. These findings can be applied to identify settings to target for resource extraction or to predict REE transport and fate as a contaminant.


Asunto(s)
Arcilla , Metales de Tierras Raras , Minerales , Adsorción , Metales de Tierras Raras/química , Arcilla/química , Minerales/química , Concentración de Iones de Hidrógeno , Silicatos de Aluminio/química
12.
Environ Sci Technol ; 58(31): 14013-14021, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39041953

RESUMEN

Large amounts of wastewater containing low-concentration (<10 ppm) rare-earth ions (REIs) are discharged annually in China's rare-earth mining and processing industry, resulting in severe environmental pollution and economic losses. Hence, achieving efficient selective recovery of low-concentration REIs from REIs-containing wastewater is essential for environmental protection and resource recovery. In this study, a pseudocapacitance system was designed for highly efficient capacitive selective recovery of REIs from wastewater using the titanium dioxide/P/C (TiO2/P/C) composite electrode, which exhibited over 99% recovery efficiency for REIs, such as Eu3+, Dy3+, Tb3+, and Lu3+ in mixed solution. This system maintained high efficiency and more than 90 times the enrichment concentration of REIs even after 100 cycles. Ti4+ of TiO2 was reduced to Ti3+ of Ti3O5 under forward voltage in the system, which trapped the electrons of phosphorus site and caused it to be oxidized to phosphate with a strong affinity for REIs, thus improving the selectivity of REIs. Under reverse voltage, Ti3O5 was oxidized to TiO2, which transferred electrons to phosphate and transformed to the phosphorus site, resulting in the desorption and enrichment of REIs and the regeneration of the electrode. This study provides a promising method for the efficient recovery of REIs from wastewater.


Asunto(s)
Electrodos , Metales de Tierras Raras , Fósforo , Titanio , Aguas Residuales , Aguas Residuales/química , Metales de Tierras Raras/química , Fósforo/química , Adsorción , Titanio/química , Contaminantes Químicos del Agua/química , Iones
13.
Macromol Rapid Commun ; 45(15): e2400122, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38831565

RESUMEN

Polymers with well-defined structures, synthesized through metal-catalyzed processes, and having end groups exhibiting different polarity and reactivity than the backbone, are gaining considerable attention in both scientific and industrial communities. These polymers show potential applications as fundamental building blocks and additives in the creation of innovative functional materials. Investigations are directed toward identifying the most optimal and uncomplicated synthetic approach by employing a combination of living coordination polymerization mediated by rare-earth metal complexes and C-H bond activation reaction by σ-bond metathesis. This combination directly yields catalysts with diverse functional groups from a single precursor, enabling the production of terminal-functionalized polymers without the need for sequential reactions, such as termination reactions. The utilization of this innovative methodology allows for precise control over end-group functionalities, providing a versatile approach to tailor the properties and applications of the resulting polymers. This perspective discusses the principles, challenges, and potential advancements associated with this synthetic strategy, highlighting its significance in advancing the interface of metalorganic chemistry, polymer chemistry, and materials science.


Asunto(s)
Complejos de Coordinación , Metales de Tierras Raras , Polimerizacion , Polímeros , Catálisis , Metales de Tierras Raras/química , Polímeros/química , Polímeros/síntesis química , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Estructura Molecular
14.
Bioorg Chem ; 143: 107040, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141331

RESUMEN

Rare earth elements (REEs) are a group of critical minerals and extensively employed in new material manufacturing. However, separation of lanthanides is difficult because of their similar chemical natures. Current lanthanide leaching and separation methods require hazardous compounds, resulting in severe environmental concerns. Bioprocessing of lanthanides offers an emerging class of tools for REE separation due to mild leaching conditions and highly selective separation scenarios. In the course of biopreparation, engineered microbes not only dissolve REEs from ores but also allow for selective separation of the lanthanides. In this review, we present an overview of recent advances in microbes and proteins used for the biomanufacturing of lanthanides and discuss high value-added applications of REE-derived biomaterials. We begin by introducing the fundamental interactions between natural microbes and REEs. Then we discuss the rational design of chassis microbes for bioleaching and biosorption. We also highlight the investigations on REE binding proteins and their applications in the synthesis of high value-added biomaterials. Finally, future opportunities and challenges for the development of next generation lanthanide-binding biological systems are discussed.


Asunto(s)
Elementos de la Serie de los Lantanoides , Metales de Tierras Raras , Metales de Tierras Raras/química
15.
J Nanobiotechnology ; 22(1): 185, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627717

RESUMEN

Rare earth nanomaterials (RE NMs), which are based on rare earth elements, have emerged as remarkable biomaterials for use in bone regeneration. The effects of RE NMs on osteogenesis, such as promoting the osteogenic differentiation of mesenchymal stem cells, have been investigated. However, the contributions of the properties of RE NMs to bone regeneration and their interactions with various cell types during osteogenesis have not been reviewed. Here, we review the crucial roles of the physicochemical and biological properties of RE NMs and focus on their osteogenic mechanisms. RE NMs directly promote the proliferation, adhesion, migration, and osteogenic differentiation of mesenchymal stem cells. They also increase collagen secretion and mineralization to accelerate osteogenesis. Furthermore, RE NMs inhibit osteoclast formation and regulate the immune environment by modulating macrophages and promote angiogenesis by inducing hypoxia in endothelial cells. These effects create a microenvironment that is conducive to bone formation. This review will help researchers overcome current limitations to take full advantage of the osteogenic benefits of RE NMs and will suggest a potential approach for further osteogenesis research.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas , Metales de Tierras Raras , Nanoestructuras , Osteogénesis , Osteogénesis/efectos de los fármacos , Metales de Tierras Raras/farmacología , Metales de Tierras Raras/química , Humanos , Animales , Nanoestructuras/química , Diferenciación Celular/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Proliferación Celular/efectos de los fármacos , Regeneración Ósea/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteoclastos/citología
16.
Luminescence ; 39(1): e4591, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37675627

RESUMEN

Cerium has been widely used as a dopant in luminescent materials due to its unique electronic configurations. It is generally anticipated that the luminescence properties of rare-earth-doped materials are closely related to the local environment of activators, especially for Ce3+ . In addition, it is convenient to modulate its emission wavelength by adjusting the composition and structure. In this study, we systematically analyzed the microstructure of the Ce-doped CaYAlO4 system at atomic resolution. The quantitive results indicated that the structure distortion greatly influenced the valence state of the Ce dopant, which is critical to its luminescence efficiency. In addition, valence variations also exist from surface to inner structure due to the big distortion area around the surface. Our results unravel the interplay of local structure and valence transitions in Ce-doped aluminate phosphors, which has the potential to be applied in other luminescent materials.


Asunto(s)
Cerio , Sustancias Luminiscentes , Metales de Tierras Raras , Luminiscencia , Sustancias Luminiscentes/química , Metales de Tierras Raras/química , Cerio/química
17.
Luminescence ; 39(1): e4612, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37927204

RESUMEN

Red and green rare-earth ion (RE3+ ) (RE = Eu, Tb):MgLa2 V2 O9 micro-powder phosphors were produced utilizing a standard solid-state chemical process. The X-ray diffraction examination performed on the phosphors showed that they were crystalline and had a monoclinic structure. The particles grouped together, as shown in the scanning electron microscopy (SEM) images. Powder phosphors were examined using a variety of spectroscopic techniques, including photoluminescence (PL), Fourier-transform infrared, and energy dispersive X-ray spectroscopy. Brilliant red emission at 615 nm (5 D0  â†’ 7 F2 ) having an excitation wavelength (λexci ) of 396 nm (7 F0  â†’ 5 L6 ) and green emission at 545 nm (5 D4  â†’ 7 F5 ) having an λexci  = 316 nm (5 D4  â†’ 7 F2 ) have both been seen in the emission spectra of Tb3+ :MgLa2 V2 O9 nano-phosphors. The emission mechanism that is raised in Eu3+ :MgLa2 V2 O9 and Tb3+ :MgLa2 V2 O9 powder phosphors has been explained in an energy level diagram.


Asunto(s)
Sustancias Luminiscentes , Metales de Tierras Raras , Sustancias Luminiscentes/química , Polvos , Metales de Tierras Raras/química , Microscopía Electrónica de Rastreo , Espectrometría por Rayos X
18.
Nano Lett ; 23(23): 11203-11210, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38088357

RESUMEN

Intravital luminescence imaging in the second near-infrared window (NIR-II) enables noninvasive deep-tissue imaging with high spatiotemporal resolution of live mammals because of the properties of suppressed light scattering and diminished autofluorescence in the long-wavelength region. Herein, we present the synthesis of a downconversion luminescence rare-earth nanocrystal with a core-shell-shell structure (NaYF4@NaYbF4:Er,Ce@NaYF4:Ca). The structure efficiently maximized the doping concentration of the sensitizers and increased Er3+ luminescence while preventing cross relaxation. Furthermore, Ce3+ doping in the middle layer efficiently limited the upconversion pathway and increased downconversion by 24-fold to produce bright 1550 nm luminescence under 975 nm excitation. Finally, optimizing the inert shell coating of NaYF4:Ca and liposome encapsulation reduced the luminescence quenching impact by water and improved biological metabolism. Thus, our synthesized biocompatible, ultrabright NIR-II probes provide high contrast and resolution for through-scalp and through-skull luminescence imaging of mice cerebral vasculature without craniotomy as well as imaging of mouse hindlimb microvessels.


Asunto(s)
Metales de Tierras Raras , Nanopartículas , Ratones , Animales , Metales de Tierras Raras/química , Diagnóstico por Imagen/métodos , Nanopartículas/química , Luminiscencia , Mamíferos
19.
J Environ Manage ; 368: 122211, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39182376

RESUMEN

The crucial role of Rare Earth Elements (REEs) in the development of hi-tech in addition to their limited availability have urged countries to develop sustainable alternatives to their conventional primary sources (ore mining). Sorption technologies using magnetic materials such as spinel ferrite nanoparticles provide efficient removal of REEs from contaminated solutions and ease of separation through application of an external magnetic field. However, there is still limited knowledge available regarding the optimal operational conditions in which to use these materials, especially in complex aqueous mixtures with different REEs. In this study, we have used Surface Response Methodology (SRM) applied to MnFe2O4 nanosorbents to identify their ideal sorption conditions of pH (4-8), REEs concentration (1-5 µM) and sorbent mass (20-180 mg L-1) in a mixture of nine REEs in water samples of distinct salinity (NaCl: 0-30 g L-1). Our results indicated that high pH favored REEs sorption because of the material's surface charge, which promoted interactions with REEs ions at pH 6-8. Yttrium was the least removed element, but total removal was achieved for lowest REEs concentration using 151 mg L-1 of sorbent. High removals were also obtained for the concentration of 5 µM (100 % removal, except for Y and La). Salinity did not impair sorption significantly (<10 %), which was owed to the high sorbent mass used in those assays. An increase in sorbent mass and initial REEs concentration also promoted faster kinetics. The spinel type MnFe2O4 nanoparticles showed great promise in a realistic application, which is the next proposed step in this line of research.


Asunto(s)
Compuestos Férricos , Compuestos de Manganeso , Metales de Tierras Raras , Metales de Tierras Raras/química , Compuestos Férricos/química , Compuestos de Manganeso/química , Adsorción , Nanopartículas/química , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno
20.
J Environ Manage ; 362: 121303, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38824885

RESUMEN

Spent phosphor is an important secondary resource for extracting rare earth elements. Microwave absorption properties and enhanced extraction of Eu from blue phosphor by microwave alkali roasting were studied. Dielectric properties of alkali roasting system were measured by resonator perturbation method. Dielectric constant increases linearly from 250 °C until it reaches a peak at 400 °C. The dielectric loss reaches a higher value at 400-550 °C, due to the strong microwave absorption properties of molten alkali and roasted products. Effects of roasting temperature, roasting time and alkali addition amount on Eu leaching were investigated. The phosphor was completely decomposed into Eu2O3, BaCO3 and MgO at 400 °C. The alkaline decomposition process of phosphor is more consistent with diffusion control model with Eα being 28.9 kJ/mol. Effects of the main leaching conditions on Eu leaching were investigated. The leaching kinetic of Eu was in line with diffusion control model with Eα being 5.74 kJ/mol. The leaching rules of rare earths in the mixed phosphor were studied. The results showed that the presence of red and green phosphor affected the recovery of blue phosphor. The optimum process parameters of rare earth recovery in single blue phosphor and mixed phosphor were obtained, and the recovery of Eu were 97.81% and 94.80%, respectively. Microwave alkali roasting promoted the dissociation of phosphor and leaching of rare earths. The results can provide reference for the efficient and selective recovery of rare earths in phosphors.


Asunto(s)
Álcalis , Metales de Tierras Raras , Microondas , Metales de Tierras Raras/química , Álcalis/química , Europio/química , Reciclaje , Fósforo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA