Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(32): e2322096121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39078674

RESUMEN

Many bacteria secrete metallophores, low-molecular-weight organic compounds that bind ions with high selectivity and affinity, in order to access essential metals from the environment. Previous work has elucidated the structures and biosynthetic machinery of metallophores specific for iron, zinc, nickel, molybdenum, and copper. No physiologically relevant lanthanide-binding metallophore has been discovered despite the knowledge that lanthanide metals (Ln) have been revealed to be essential cofactors for certain alcohol dehydrogenases across a diverse range of phyla. Here, we report the biosynthetic machinery, the structure, and the physiological relevance of a lanthanophore, methylolanthanin. The structure of methylolanthanin exhibits a unique 4-hydroxybenzoate moiety which has not previously been described in other metallophores. We find that production of methylolanthanin is required for normal levels of Ln accumulation in the methylotrophic bacterium Methylobacterium extorquens AM1, while overexpression of the molecule greatly increases bioaccumulation and adsorption. Our results provide a clearer understanding of how Ln-utilizing bacteria sense, scavenge, and store Ln; essential processes in the environment where Ln are poorly bioavailable. More broadly, the identification of this lanthanophore opens doors for study of how biosynthetic gene clusters are repurposed for additional functions and the complex relationship between metal homeostasis and fitness.


Asunto(s)
Elementos de la Serie de los Lantanoides , Methylobacterium extorquens , Elementos de la Serie de los Lantanoides/metabolismo , Elementos de la Serie de los Lantanoides/química , Methylobacterium extorquens/metabolismo , Methylobacterium extorquens/genética
2.
Proc Natl Acad Sci U S A ; 121(33): e2405836121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39116128

RESUMEN

The 2011 discovery of the first rare earth-dependent enzyme in methylotrophic Methylobacterium extorquens AM1 prompted intensive research toward understanding the unique chemistry at play in these systems. This enzyme, an alcohol dehydrogenase (ADH), features a La3+ ion closely associated with redox-active coenzyme pyrroloquinoline quinone (PQQ) and is structurally homologous to the Ca2+-dependent ADH from the same organism. AM1 also produces a periplasmic PQQ-binding protein, PqqT, which we have now structurally characterized to 1.46-Å resolution by X-ray diffraction. This crystal structure reveals a Lys residue hydrogen-bonded to PQQ at the site analogously occupied by a Lewis acidic cation in ADH. Accordingly, we prepared K142A- and K142D-PqqT variants to assess the relevance of this site toward metal binding. Isothermal titration calorimetry experiments and titrations monitored by UV-Vis absorption and emission spectroscopies support that K142D-PqqT binds tightly (Kd = 0.6 ± 0.2 µM) to La3+ in the presence of bound PQQ and produces spectral signatures consistent with those of ADH enzymes. These spectral signatures are not observed for WT- or K142A-variants or upon addition of Ca2+ to PQQ ⸦ K142D-PqqT. Addition of benzyl alcohol to La3+-bound PQQ ⸦ K142D-PqqT (but not Ca2+-bound PQQ ⸦ K142D-PqqT, or La3+-bound PQQ ⸦ WT-PqqT) produces spectroscopic changes associated with PQQ reduction, and chemical trapping experiments reveal the production of benzaldehyde, supporting ADH activity. By creating a metal binding site that mimics native ADH enzymes, we present a rare earth-dependent artificial metalloenzyme primed for future mechanistic, biocatalytic, and biosensing applications.


Asunto(s)
Methylobacterium extorquens , Methylobacterium extorquens/enzimología , Methylobacterium extorquens/metabolismo , Metaloproteínas/química , Metaloproteínas/metabolismo , Alcohol Deshidrogenasa/metabolismo , Alcohol Deshidrogenasa/química , Cristalografía por Rayos X , Cofactor PQQ/metabolismo , Cofactor PQQ/química , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Metales de Tierras Raras/química , Metales de Tierras Raras/metabolismo , Modelos Moleculares , Lantano/química , Lantano/metabolismo
3.
Appl Environ Microbiol ; 90(7): e0209023, 2024 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-38534142

RESUMEN

Low nutrient availability is a key characteristic of the phyllosphere (the aerial surface of plants). Phyllospheric bacteria utilize a wide array of carbon sources generated by plant hosts. Glycine betaine (GB) is a plant-derived compound that can be metabolized by certain members of the phyllosphere microbiota. Metabolism of glycine betaine generates formaldehyde, an intermediate of methylotrophic metabolism, leading us to investigate how the ubiquitous plant colonizing bacterium Methylorubrum extorquens PA1 might metabolize GB encountered in its native environment. M. extorquens PA1 cannot utilize GB as a sole carbon source. Through suppressor mutation analysis, we show that M. extorquens PA1 encodes a conserved GB utilization pathway that can be activated by single point mutations conferring GB utilization as a carbon source. We identified the gene cluster encoding the GB catabolic enzymes and found that gene expression was induced in the presence of GB. We show that utilization of GB is conserved among representative Methylobacterium species and generates the one-carbon metabolism intermediate formaldehyde, which M. extorquens utilizes as a source of energy. Our results support a model where suppressor mutations in Mext_3745 or ftsH (Mext_4840) prevent the degradation of the dimethylglycine dehydrogenase subunit DgcB by the membrane integral protease FtsH, conferring the ability to utilize GB by either (i) restoring stable membrane topology of DgcB or (ii) decreasing FtsH protease activity, respectively. Both mutations alleviate the bottleneck at the second step of GB degradation catalyzed by DgcAB.IMPORTANCEOvercoming low nutrient availability is a challenge many bacteria encounter in the environment. Facultative methylotrophs are able to utilize one-carbon and multi-carbon compounds as carbon and energy sources. The utilization of plant-derived glycine betaine (GB) represents a possible source of multi-carbon and one-carbon substrates. The metabolism of glycine betaine produces formaldehyde and glycine, which may be used simultaneously by facultative methylotrophs. However, the genes required for the utilization of GB in the ubiquitous plant-associated bacterium Methylorubrum extorquens have yet to be identified or described. Our work identifies and validates the genes required for glycine betaine metabolism in M. extorquens and shows that it directly intersects with methylotrophic metabolism through the production of formaldehyde.


Asunto(s)
Proteínas Bacterianas , Betaína , Betaína/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Methylobacterium extorquens/metabolismo , Methylobacterium extorquens/genética , Methylobacterium extorquens/enzimología
4.
Appl Environ Microbiol ; 90(7): e0031024, 2024 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-38934615

RESUMEN

Integration of metabolites into the overall metabolic network of a cell requires careful coordination dependent upon the ultimate usage of the metabolite. Different stoichiometric needs, and thus pathway fluxes, must exist for compounds destined for diverse uses, such as carbon sources, nitrogen sources, or stress-protective agents. Herein, we expand upon our previous work that highlighted the nature of glycine betaine (GB) metabolism in Methylobacteria to examine the utilization of GB-derivative compounds dimethylglycine (DMG) and sarcosine into Methylorubrum extorquens in different metabolic capacities, including as sole nitrogen and/or carbon sources. We isolated gain-of-function mutations that allowed M. extorquens PA1 to utilize dimethylglycine as a carbon source and dimethylglycine and sarcosine as nitrogen source. Characterization of mutants demonstrated selection for variants of the AraC-like regulator Mext_3735 that confer constitutive expression of the GB metabolic gene cluster, allowing direct utilization of the downstream GB derivatives. Finally, among the distinct isolates examined, we found that catabolism of the osmoprotectant used for selection (GB or dimethylglycine) enhanced osmotic stress resistance provided in the presence of that particular osmolyte. Thus, access to the carbon and nitrogen and osmoprotective effects of GB and DMG are made readily accessible through adaptive mutations. In M. extorquens PA1, the limitations to exploiting this group of compounds appear to exist predominantly at the levels of gene regulation and functional activity, rather than being constrained by transport or toxicity.IMPORTANCEOsmotic stress is a common challenge for bacteria colonizing the phyllosphere, where glycine betaine (GB) can be found as a prevalent osmoprotectant. Though Methylorubrum extorquens PA1 cannot use GB or its demethylation products, dimethylglycine (DMG) and sarcosine, as a sole carbon source, utilization is highly selectable via single nucleotide changes for both GB and DMG growth. The innate inability to use these compounds is due to limited flux through steps in the pathway and regulatory constraints. Herein, the characterization of the transcriptional regulator, Mext_3735 (GbdR), expands our understanding of the various roles in which GB derivatives can be used in M. extorquens PA1. Interestingly, increased catabolism of GB and derivatives does not interfere with, but rather improves, the ability of cells to thrive under increased salt stress conditions, suggesting that metabolic flux improves stress tolerance rather than providing a distinct tension between uses.


Asunto(s)
Betaína , Presión Osmótica , Sarcosina , Betaína/metabolismo , Sarcosina/análogos & derivados , Sarcosina/metabolismo , Methylobacterium extorquens/metabolismo , Methylobacterium extorquens/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbono/metabolismo
5.
PLoS Biol ; 19(5): e3001208, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34038406

RESUMEN

Normal cellular processes give rise to toxic metabolites that cells must mitigate. Formaldehyde is a universal stressor and potent metabolic toxin that is generated in organisms from bacteria to humans. Methylotrophic bacteria such as Methylorubrum extorquens face an acute challenge due to their production of formaldehyde as an obligate central intermediate of single-carbon metabolism. Mechanisms to sense and respond to formaldehyde were speculated to exist in methylotrophs for decades but had never been discovered. Here, we identify a member of the DUF336 domain family, named efgA for enhanced formaldehyde growth, that plays an important role in endogenous formaldehyde stress response in M. extorquens PA1 and is found almost exclusively in methylotrophic taxa. Our experimental analyses reveal that EfgA is a formaldehyde sensor that rapidly arrests growth in response to elevated levels of formaldehyde. Heterologous expression of EfgA in Escherichia coli increases formaldehyde resistance, indicating that its interaction partners are widespread and conserved. EfgA represents the first example of a formaldehyde stress response system that does not involve enzymatic detoxification. Thus, EfgA comprises a unique stress response mechanism in bacteria, whereby a single protein directly senses elevated levels of a toxic intracellular metabolite and safeguards cells from potential damage.


Asunto(s)
Formaldehído/metabolismo , Methylobacterium extorquens/metabolismo , Bacterias/metabolismo , Formaldehído/toxicidad , Methylobacterium/genética , Methylobacterium/metabolismo , Methylobacterium extorquens/genética , Methylobacterium extorquens/crecimiento & desarrollo , Estrés Fisiológico/fisiología
6.
Antonie Van Leeuwenhoek ; 116(12): 1285-1294, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37751033

RESUMEN

Methylorubrum extorquens is an important model methylotroph and has enormous potential for the development of C1-based microbial cell factories. During strain construction, regulated promoters with a low background expression level are important genetic tools for expression of potentially toxic genes. Here we present an accordingly optimised promoter, which can be used for that purpose. During construction and testing of terpene production strains harbouring a recombinant mevalonate pathway, strong growth defects were observed which made strain development impossible. After isolation and characterisation of suppressor mutants, we discovered a variant of the cumate-inducible promoter PQ2148 used in this approach. Deletion of 28 nucleotides resulted in an extremely low background expression level, but also reduced the maximal expression strength to about 30% of the original promoter. This tightly repressed promoter version is a powerful module for controlled expression of potentially toxic genes in M. extorquens.


Asunto(s)
Methylobacterium extorquens , Regiones Promotoras Genéticas , Methylobacterium extorquens/genética , Methylobacterium extorquens/metabolismo , Metanol/metabolismo
7.
Antonie Van Leeuwenhoek ; 116(5): 393-413, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36719530

RESUMEN

The impact of periplasmic localisation on the functioning of the XoxF protein was evaluated in the well-studied dichloromethane-utilising methylotroph Methylorubrum extorquens DM4, which harbors only one paralogue of the xoxF gene. It was found that the cytoplasmic targeting of XoxF by expression of the corresponding gene without the sequence encoding the N-terminal signal peptide does not impair the activation and lanthanide-dependent regulation of the MxaFI-methanol dehydrogenase genes. Analysis of the viability of ΔxoxF cells complemented with the full-length and truncated xoxF gene also showed that the expression of cytoplasmically targeted XoxF even increases the resistance to acids. These results contradict the proposed function of the XoxF protein as an extracytoplasmic signal sensor. At the same time, the observed dynamics of growth with methanol, as well as with dichloromethane of strains expressing cytoplasmic-targeted XoxF, indicate the probable enzymatic activity of lanthanide-dependent methanol dehydrogenase in this compartment. Herewith, the only available substrate for this enzyme in cells growing with dichloromethane was formaldehyde, which is produced during the primary metabolism of the mentioned halogenated toxicant directly in the cytosol. These findings suggest that the maturation of XoxF-methanol dehydrogenase may occur already in the cytoplasm, while the factors changing affinity of this enzyme for formaldehyde are apparently absent there. Together with the demonstrated functioning of an enhancer-like upstream activating sequence in the promoter region of the xoxF gene in M. extorquens DM4, the obtained information enriches our understanding of the regulation, synthesis and role of the XoxF protein.


Asunto(s)
Elementos de la Serie de los Lantanoides , Methylobacterium extorquens , Citosol , Cloruro de Metileno/metabolismo , Methylobacterium extorquens/genética , Methylobacterium extorquens/metabolismo , Metanol/metabolismo , Proteínas Bacterianas/metabolismo , Elementos de la Serie de los Lantanoides/metabolismo , Formaldehído/metabolismo , Oxidorreductasas de Alcohol/metabolismo
8.
Angew Chem Int Ed Engl ; 62(31): e202303669, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37074219

RESUMEN

Certain f-block elements-the lanthanides-have biological relevance in the context of methylotrophic bacteria. The respective strains incorporate these 4 f elements into the active site of one of their key metabolic enzymes, a lanthanide-dependent methanol dehydrogenase. In this study, we investigated whether actinides, the radioactive 5 f elements, can replace the essential 4 f elements in lanthanide-dependent bacterial metabolism. Growth studies with Methylacidiphilum fumariolicum SolV and the Methylobacterium extorquens AM1 ΔmxaF mutant demonstrate that americium and curium support growth in the absence of lanthanides. Moreover, strain SolV favors these actinides over late lanthanides when presented with a mixture of equal amounts of lanthanides together with americium and curium. Our combined in vivo and in vitro results establish that methylotrophic bacteria can utilize actinides instead of lanthanides to sustain their one-carbon metabolism if they possess the correct size and a +III oxidation state.


Asunto(s)
Elementos de la Serie de los Lantanoides , Methylobacterium extorquens , Elementos de la Serie de los Lantanoides/metabolismo , Americio , Curio , Metanol/metabolismo , Methylobacterium extorquens/metabolismo , Proteínas Bacterianas/metabolismo
9.
J Biol Chem ; 296: 100682, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33894199

RESUMEN

Methylofuran (MYFR) is a formyl-carrying coenzyme essential for the oxidation of formaldehyde in most methylotrophic bacteria. In Methylorubrum extorquens, MYFR contains a large and branched polyglutamate side chain of up to 24 glutamates. These glutamates play an essential role in interfacing the coenzyme with the formyltransferase/hydrolase complex, an enzyme that generates formate. To date, MYFR has not been identified in other methylotrophs, and it is unknown whether its structural features are conserved. Here, we examined nine bacterial strains for the presence and structure of MYFR using high-resolution liquid chromatography-mass spectrometry (LC-MS). Two of the strains produced MYFR as present in M. extorquens, while a modified MYFR containing tyramine instead of tyrosine in its core structure was detected in six strains. When M. extorquens was grown in the presence of tyramine, the compound was readily incorporated into MYFR, indicating that the biosynthetic enzymes are unable to discriminate tyrosine from tyramine. Using gene deletions in combination with LC-MS analyses, we identified three genes, orf5, orfY, and orf17 that are essential for MYFR biosynthesis. Notably, the orfY and orf5 mutants accumulated short MYFR intermediates with only one and two glutamates, respectively, suggesting that these enzymes catalyze glutamate addition. Upon homologous overexpression of orf5, a drastic increase in the number of glutamates in MYFR was observed (up to 40 glutamates), further corroborating the function of Orf5 as a glutamate ligase. We thus renamed OrfY and Orf5 to MyfA and MyfB to highlight that these enzymes are specifically involved in MYFR biosynthesis.


Asunto(s)
Coenzimas/química , Coenzimas/metabolismo , Furanos/química , Furanos/metabolismo , Ácido Poliglutámico/biosíntesis , Ácido Poliglutámico/química , Formaldehído/metabolismo , Ácido Glutámico/metabolismo , Hidrolasas/metabolismo , Transferasas de Hidroximetilo y Formilo/metabolismo , Methylobacterium extorquens/enzimología
10.
Mol Microbiol ; 116(4): 1064-1078, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34387371

RESUMEN

Hopanoids and carotenoids are two of the major isoprenoid-derived lipid classes in prokaryotes that have been proposed to have similar membrane ordering properties as sterols. Methylobacterium extorquens contains hopanoids and carotenoids in their outer membrane, making them an ideal system to investigate the role of isoprenoid lipids in surface membrane function and cellular fitness. By genetically knocking out hpnE and crtB we disrupted the production of squalene and phytoene in M. extorquens PA1, which are the presumed precursors for hopanoids and carotenoids respectively. Deletion of hpnE revealed that carotenoid biosynthesis utilizes squalene as a precursor resulting in pigmentation with a C30 backbone, rather than the previously predicted canonical C40 phytoene-derived pathway. Phylogenetic analysis suggested that M. extorquens may have acquired the C30 pathway through lateral gene transfer from Planctomycetes. Surprisingly, disruption of carotenoid synthesis did not generate any major growth or membrane biophysical phenotypes, but slightly increased sensitivity to oxidative stress. We further demonstrated that hopanoids but not carotenoids are essential for growth at higher temperatures, membrane permeability and tolerance of low divalent cation concentrations. These observations show that hopanoids and carotenoids serve diverse roles in the outer membrane of M. extorquens PA1.


Asunto(s)
Membrana Externa Bacteriana/metabolismo , Carotenoides/metabolismo , Geranilgeranil-Difosfato Geranilgeraniltransferasa/genética , Methylobacterium extorquens/genética , Methylobacterium extorquens/metabolismo , Oxidorreductasas/genética , Escualeno/metabolismo , Vías Biosintéticas , Técnicas de Silenciamiento del Gen , Geranilgeranil-Difosfato Geranilgeraniltransferasa/metabolismo , Methylobacterium extorquens/crecimiento & desarrollo , Estrés Oxidativo , Oxidorreductasas/metabolismo , Filogenia , Planctomicetos/genética , Eliminación de Secuencia , Escualeno/análogos & derivados
11.
Metab Eng ; 72: 150-160, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35301124

RESUMEN

Violacein, a blue-violet compound with a wide range of beneficial bioactivities, is an attractive product for microbial production. Currently, violacein production has been demonstrated in several sugar heterotrophs through metabolic engineering; however, the cost of production remains an obstacle for business ventures. To address this issue, the development of host strains that can utilize inexpensive alternative substrates to reduce production costs would enable the commercialization of violacein. In this study, we engineered a facultative methylotroph, Methylorubrum extorquens AM1, to develop a methanol-based platform for violacein production. By optimizing expression vectors as well as inducer concentrations, 11.7 mg/L violacein production was first demonstrated using methanol as the sole substrate. Considering that unidentified bottlenecks for violacein biosynthesis in the shikimate pathway of M. extorquens AM1 would be difficult to address using generic metabolic engineering approaches, random mutagenesis and site-directed mutagenesis were implemented, and a 2-fold improvement in violacein production was achieved. Finally, by co-utilization of methanol and acetate, a remarkable enhancement of violacein production to 118 mg/L was achieved. Our results establish a platform strain for violacein production from non-sugar feedstocks, which may contribute to the development of an economically efficient large-scale fermentation system for violacein production.


Asunto(s)
Metanol , Methylobacterium extorquens , Acetatos/metabolismo , Indoles/metabolismo , Metanol/metabolismo , Methylobacterium extorquens/genética , Methylobacterium extorquens/metabolismo
12.
Metab Eng ; 74: 191-205, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36328297

RESUMEN

Formate is a promising, water-soluble C1 feedstock for biotechnology that can be efficiently produced from CO2-but formatotrophy has been engineered in only a few industrially-relevant microbial hosts. We addressed the challenge of expanding the feedstock range of bacterial hosts by adopting Pseudomonas putida as a robust platform for synthetic formate assimilation. Here, the metabolism of a genome-reduced variant of P. putida was radically rewired to establish synthetic auxotrophies that could be functionally complemented by expressing components of the reductive glycine (rGly) pathway. We adopted a modular engineering approach, dividing C1 assimilation in segments composed of both heterologous activities (sourced from Methylobacterium extorquens) and native biochemical reactions. Modular expression of rGly pathway elements enabled growth on formate as carbon source and acetate (predominantly for energy supply), and adaptive laboratory evolution of two lineages of engineered P. putida formatotrophs lead to doubling times of ca. 15 h. We likewise identified emergent metabolic features for assimilation of C1 units in these evolved P. putida populations. Taken together, our results consolidate the landscape of useful microbial platforms that can be implemented for C1-based biotechnological production towards a formate bioeconomy.


Asunto(s)
Methylobacterium extorquens , Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Ingeniería Metabólica/métodos , Formiatos/metabolismo , Methylobacterium extorquens/genética , Glicina/metabolismo
13.
Appl Microbiol Biotechnol ; 106(19-20): 6713-6731, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36104545

RESUMEN

The methylotrophic bacterium Methylorubrum extorquens AM1 has the potential to become a platform organism for methanol-driven biotechnology. Its ethylmalonyl-CoA pathway (EMCP) is essential during growth on C1 compounds and harbors several CoA-activated dicarboxylic acids. Those acids could serve as precursor molecules for various polymers. In the past, two dicarboxylic acid products, namely mesaconic acid and 2-methylsuccinic acid, were successfully produced with heterologous thioesterase YciA from Escherichia coli, but the yield was reduced by product reuptake. In our study, we conducted extensive research on the uptake mechanism of those dicarboxylic acid products. By using 2,2-difluorosuccinic acid as a selection agent, we isolated a dicarboxylic acid import mutant. Analysis of the genome of this strain revealed a deletion in gene dctA2, which probably encodes an acid transporter. By testing additional single, double, and triple deletions, we were able to rule out the involvement of the two other DctA transporter homologs and the ketoglutarate transporter KgtP. Uptake of 2-methylsuccinic acid was significantly reduced in dctA2 mutants, while the uptake of mesaconic acid was completely prevented. Moreover, we demonstrated M. extorquens-based synthesis of citramalic acid and a further 1.4-fold increase in product yield using a transport-deficient strain. This work represents an important step towards the development of robust M. extorquens AM1 production strains for dicarboxylic acids. KEY POINTS: • 2,2-Difluorosuccinic acid is used to select for dicarboxylic acid uptake mutations. • Deletion of dctA2 leads to reduction of dicarboxylic acid uptake. • Transporter-deficient strains show improved production of citramalic acid.


Asunto(s)
Metanol , Methylobacterium extorquens , Ácidos Dicarboxílicos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fumaratos , Malatos , Maleatos , Metanol/metabolismo , Methylobacterium extorquens/genética , Polímeros/metabolismo , Succinatos
14.
PLoS Genet ; 15(11): e1008458, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31710603

RESUMEN

While microbiologists often make the simplifying assumption that genotype determines phenotype in a given environment, it is becoming increasingly apparent that phenotypic heterogeneity (in which one genotype generates multiple phenotypes simultaneously even in a uniform environment) is common in many microbial populations. The importance of phenotypic heterogeneity has been demonstrated in a number of model systems involving binary phenotypic states (e.g., growth/non-growth); however, less is known about systems involving phenotype distributions that are continuous across an environmental gradient, and how those distributions change when the environment changes. Here, we describe a novel instance of phenotypic diversity in tolerance to a metabolic toxin within wild-type populations of Methylobacterium extorquens, a ubiquitous phyllosphere methylotroph capable of growing on the methanol periodically released from plant leaves. The first intermediate in methanol metabolism is formaldehyde, a potent cellular toxin that is lethal in high concentrations. We have found that at moderate concentrations, formaldehyde tolerance in M. extorquens is heterogeneous, with a cell's minimum tolerance level ranging between 0 mM and 8 mM. Tolerant cells have a distinct gene expression profile from non-tolerant cells. This form of heterogeneity is continuous in terms of threshold (the formaldehyde concentration where growth ceases), yet binary in outcome (at a given formaldehyde concentration, cells either grow normally or die, with no intermediate phenotype), and it is not associated with any detectable genetic mutations. Moreover, tolerance distributions within the population are dynamic, changing over time in response to growth conditions. We characterized this phenomenon using bulk liquid culture experiments, colony growth tracking, flow cytometry, single-cell time-lapse microscopy, transcriptomics, and genome resequencing. Finally, we used mathematical modeling to better understand the processes by which cells change phenotype, and found evidence for both stochastic, bidirectional phenotypic diversification and responsive, directed phenotypic shifts, depending on the growth substrate and the presence of toxin.


Asunto(s)
Heterogeneidad Genética , Variación Genética/genética , Metanol/metabolismo , Methylobacterium extorquens/genética , Tolerancia a Medicamentos/genética , Formaldehído/química , Formaldehído/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Genotipo , Methylobacterium extorquens/metabolismo , Fenotipo , Hojas de la Planta/química
15.
Proc Natl Acad Sci U S A ; 116(51): 25583-25590, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31776258

RESUMEN

Methylotrophy, the ability of microorganisms to grow on reduced one-carbon substrates such as methane or methanol, is a feature of various bacterial species. The prevailing oxidation pathway depends on tetrahydromethanopterin (H4MPT) and methylofuran (MYFR), an analog of methanofuran from methanogenic archaea. Formyltransferase/hydrolase complex (Fhc) generates formate from formyl-H4MPT in two consecutive reactions where MYFR acts as a carrier of one-carbon units. Recently, we chemically characterized MYFR from the model methylotroph Methylorubrum extorquens and identified an unusually long polyglutamate side chain of up to 24 glutamates. Here, we report on the crystal structure of Fhc to investigate the function of the polyglutamate side chain in MYFR and the relatedness of the enzyme complex with the orthologous enzymes in archaea. We identified MYFR as a prosthetic group that is tightly, but noncovalently, bound to Fhc. Surprisingly, the structure of Fhc together with MYFR revealed that the polyglutamate side chain of MYFR is branched and contains glutamates with amide bonds at both their α- and γ-carboxyl groups. This negatively charged and branched polyglutamate side chain interacts with a cluster of conserved positively charged residues of Fhc, allowing for strong interactions. The MYFR binding site is located equidistantly from the active site of the formyltransferase (FhcD) and metallo-hydrolase (FhcA). The polyglutamate serves therefore an additional function as a swinging linker to shuttle the one-carbon carrying amine between the two active sites, thereby likely increasing overall catalysis while decreasing the need for high intracellular MYFR concentrations.


Asunto(s)
Proteínas Bacterianas , Furanos , Transferasas de Hidroximetilo y Formilo , Metano , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Coenzimas/química , Coenzimas/metabolismo , Cristalografía , Formiatos/química , Formiatos/metabolismo , Furanos/química , Furanos/metabolismo , Transferasas de Hidroximetilo y Formilo/química , Transferasas de Hidroximetilo y Formilo/genética , Transferasas de Hidroximetilo y Formilo/metabolismo , Metano/química , Metano/metabolismo , Metanol/química , Metanol/metabolismo , Methylobacterium extorquens/enzimología , Methylobacterium extorquens/genética , Ácido Poliglutámico/química , Ácido Poliglutámico/metabolismo
16.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36142248

RESUMEN

(Ca2+)-dependent pyrroloquinolinequinone (PQQ)-dependent methanol dehydrogenase (MDH) (EC: 1.1.2.7) is one of the key enzymes of primary C1-compound metabolism in methylotrophy. PQQ-MDH is a promising catalyst for electrochemical biosensors and biofuel cells. However, the large-scale use of PQQ-MDH in bioelectrocatalysis is not possible due to the low yield of the native enzyme. Homologously overexpressed MDH was obtained from methylotrophic bacterium Methylorubrum extorquens AM1 by cloning the gene of only one subunit, mxaF. The His-tagged enzyme was easily purified by immobilized metal ion affinity chromatography (36% yield). A multimeric form (α6ß6) of recombinant PQQ-MDH possessing enzymatic activity (0.54 U/mg) and high stability was demonstrated for the first time. pH-optimum of the purified protein was about 9-10; the enzyme was activated by ammonium ions. It had the highest affinity toward methanol (KM = 0.36 mM). The recombinant MDH was used for the fabrication of an amperometric biosensor. Its linear range for methanol concentrations was 0.002-0.1 mM, the detection limit was 0.7 µM. The properties of the invented biosensor are competitive to the analogs, meaning that this enzyme is a promising catalyst for industrial methanol biosensors. The developed simplified technology for PQQ-MDH production opens up new opportunities for the development of bioelectrocatalytic systems.


Asunto(s)
Compuestos de Amonio , Methylobacterium extorquens , Oxidorreductasas de Alcohol/metabolismo , Iones , Metanol/metabolismo , Methylobacterium extorquens/genética
17.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36077196

RESUMEN

Herein, a novel laccase gene, Melac13220, was amplified from Methylobacterium extorquens and successfully expressed in Escherichia coli with a molecular weight of approximately 50 kDa. The purified Melac13220 had no absorption peak at 610 nm and remained silent within electron paramagnetic resonance spectra, suggesting that Melac13220 belongs to the non-blue laccase group. Both inductively coupled plasma spectroscopy/optical emission spectrometry (ICP-OES) and isothermal titration calorimetry (ITC) indicated that one molecule of Melac13220 can interact with two iron ions. Furthermore, the optimal temperature of Melac13220 was 65 °C. It also showed a high thermolability, and its half-life at 65 °C was 80 min. Melac13220 showed a very good acid environment tolerance; its optimal pH was 1.5. Cu2+ and Co2+ can slightly increase enzyme activity, whereas Fe2+ could increase Melac13220's activity five-fold. Differential scanning calorimetry (DSC) indicated that Fe2+ could also stabilize Melac13220. Unlike most laccases, Melac13220 can efficiently decolorize Congo Red and Indigo Carmine dyes even in the absence of a redox mediator. Thus, the non-blue laccase from Methylobacterium extorquens shows potential application value and may be valuable for environmental protection, especially in the degradation of dyes at low pH.


Asunto(s)
Lacasa , Methylobacterium extorquens , Colorantes/química , Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Carmin de Índigo , Lacasa/metabolismo , Methylobacterium extorquens/metabolismo , Temperatura
18.
J Biol Chem ; 295(24): 8272-8284, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32366463

RESUMEN

The lanthanide elements (Ln3+), those with atomic numbers 57-63 (excluding promethium, Pm3+), form a cofactor complex with pyrroloquinoline quinone (PQQ) in bacterial XoxF methanol dehydrogenases (MDHs) and ExaF ethanol dehydrogenases (EDHs), expanding the range of biological elements and opening novel areas of metabolism and ecology. Other MDHs, known as MxaFIs, are related in sequence and structure to these proteins, yet they instead possess a Ca2+-PQQ cofactor. An important missing piece of the Ln3+ puzzle is defining what features distinguish enzymes that use Ln3+-PQQ cofactors from those that do not. Here, using XoxF1 MDH from the model methylotrophic bacterium Methylorubrum extorquens AM1, we investigated the functional importance of a proposed lanthanide-coordinating aspartate residue. We report two crystal structures of XoxF1, one with and another without PQQ, both with La3+ bound in the active-site region and coordinated by Asp320 Using constructs to produce either recombinant XoxF1 or its D320A variant, we show that Asp320 is needed for in vivo catalytic function, in vitro activity, and La3+ coordination. XoxF1 and XoxF1 D320A, when produced in the absence of La3+, coordinated Ca2+ but exhibited little or no catalytic activity. We also generated the parallel substitution in ExaF to produce ExaF D319S and found that this variant loses the capacity for efficient ethanol oxidation with La3+ These results provide evidence that a Ln3+-coordinating aspartate is essential for the enzymatic functions of XoxF MDHs and ExaF EDHs, supporting the notion that sequences of these enzymes, and the genes that encode them, are markers for Ln3+ metabolism.


Asunto(s)
Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/metabolismo , Ácido Aspártico/metabolismo , Elementos de la Serie de los Lantanoides/farmacología , Sustitución de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Biocatálisis/efectos de los fármacos , Calcio/farmacología , Cristalografía por Rayos X , Metanol/farmacología , Methylobacterium extorquens/efectos de los fármacos , Methylobacterium extorquens/enzimología , Methylobacterium extorquens/crecimiento & desarrollo , Oxidación-Reducción , Relación Estructura-Actividad
19.
J Am Chem Soc ; 143(38): 15769-15783, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34542285

RESUMEN

Anthropogenic radionuclides, including long-lived heavy actinides such as americium and curium, represent the primary long-term challenge for management of nuclear waste. The potential release of these wastes into the environment necessitates understanding their interactions with biogeochemical compounds present in nature. Here, we characterize the interactions between the heavy actinides, Am3+ and Cm3+, and the natural lanthanide-binding protein, lanmodulin (LanM). LanM is produced abundantly by methylotrophic bacteria, including Methylorubrum extorquens, that are widespread in the environment. We determine the first stability constant for an Am3+-protein complex (Am3LanM) and confirm the results with Cm3LanM, indicating a ∼5-fold higher affinity than that for lanthanides with most similar ionic radius, Nd3+ and Sm3+, and making LanM the strongest known heavy actinide-binding protein. The protein's high selectivity over 243Am's daughter nuclide 239Np enables lab-scale actinide-actinide separations as well as provides insight into potential protein-driven mobilization for these actinides in the environment. The luminescence properties of the Cm3+-LanM complex, and NMR studies of Gd3+-LanM, reveal that lanmodulin-bound f-elements possess two coordinated solvent molecules across a range of metal ionic radii. Finally, we show under a wide range of environmentally relevant conditions that lanmodulin effectively outcompetes desferrioxamine B, a hydroxamate siderophore previously proposed to be important in trivalent actinide mobility. These results suggest that natural lanthanide-binding proteins such as lanmodulin may play important roles in speciation and mobility of actinides in the environment; it also suggests that protein-based biotechnologies may provide a new frontier in actinide remediation, detection, and separations.


Asunto(s)
Americio/química , Proteínas Bacterianas/química , Complejos de Coordinación/química , Curio/química , Iones/química , Elementos de la Serie de los Lantanoides/química , Mediciones Luminiscentes , Sustancias Macromoleculares , Methylobacterium extorquens/química , Conformación Molecular , Unión Proteica , Relación Estructura-Actividad
20.
Metab Eng ; 64: 95-110, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33493644

RESUMEN

Methanol is assimilated through the serine cycle to generate acetyl-CoA without carbon loss. However, a highly active serine cycle requires high consumption of reducing equivalents and ATP, thereby leading to the impaired efficiency of methanol conversion to reduced chemicals. In the present study, a genome-scale flux balance analysis (FBA) predicted that the introduction of the heterologous ribulose monophosphate (RuMP) cycle, a more energy-efficient pathway for methanol assimilation, could theoretically increase growth rate by 31.3% for the model alphaproteobacterial methylotroph Methylorubrum extorquens AM1. Based on this analysis, we constructed a novel synergistic assimilation pathway in vivo by incorporating the RuMP cycle into M. extroquens metabolism with the intrinsic serine cycle. We demonstrated that the operation of the synergistic pathway could increase cell growth rate by 16.5% and methanol consumption rate by 13.1%. This strategy rewired the central methylotrophic metabolism through adjusting core gene transcription, leading to a pool size increase of C2 to C5 central intermediates by 1.2- to 3.6-fold and an NADPH cofactor improvement by 1.3-fold. The titer of 3-hydroxypropionic acid (3-HP), a model product in the newly engineered chassis of M. extorquens AM1, was increased to 91.2 mg/L in shake-flask culture, representing a 3.1-fold increase compared with the control strain with only the serine cycle. The final titer of 3-HP was significantly improved to 0.857 g/L in the fed-batch bioreactor, which was more competitive compared with the other 3-HP producers using methane and CO2 as C1 sources. Collectively, our current study demonstrated that engineering the synergistic methanol assimilation pathway was a promising strategy to increase the carbon assimilation and the yields of reduced chemicals in diverse host strains for C1 microbial cell factories.


Asunto(s)
Metanol , Methylobacterium extorquens , Acetilcoenzima A , Methylobacterium extorquens/genética , Pentosas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA