Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 554(7690): 128-132, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29364879

RESUMEN

Folates enable the activation and transfer of one-carbon units for the biosynthesis of purines, thymidine and methionine. Antifolates are important immunosuppressive and anticancer agents. In proliferating lymphocytes and human cancers, mitochondrial folate enzymes are particularly strongly upregulated. This in part reflects the need for mitochondria to generate one-carbon units and export them to the cytosol for anabolic metabolism. The full range of uses of folate-bound one-carbon units in the mitochondrial compartment itself, however, has not been thoroughly explored. Here we show that loss of the catalytic activity of the mitochondrial folate enzyme serine hydroxymethyltransferase 2 (SHMT2), but not of other folate enzymes, leads to defective oxidative phosphorylation in human cells due to impaired mitochondrial translation. We find that SHMT2, presumably by generating mitochondrial 5,10-methylenetetrahydrofolate, provides methyl donors to produce the taurinomethyluridine base at the wobble position of select mitochondrial tRNAs. Mitochondrial ribosome profiling in SHMT2-knockout human cells reveals that the lack of this modified base causes defective translation, with preferential mitochondrial ribosome stalling at certain lysine (AAG) and leucine (UUG) codons. This results in the impaired expression of respiratory chain enzymes. Stalling at these specific codons also occurs in certain inborn errors of mitochondrial metabolism. Disruption of whole-cell folate metabolism, by either folate deficiency or antifolate treatment, also impairs the respiratory chain. In summary, mammalian mitochondria use folate-bound one-carbon units to methylate tRNA, and this modification is required for mitochondrial translation and thus oxidative phosphorylation.


Asunto(s)
Ácido Fólico/metabolismo , Mitocondrias/metabolismo , Biosíntesis de Proteínas , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Aminohidrolasas/metabolismo , Biocatálisis , Proteínas Portadoras/metabolismo , Codón/genética , Transporte de Electrón , Antagonistas del Ácido Fólico/farmacología , Proteínas de Unión al GTP/metabolismo , Glicina Hidroximetiltransferasa/deficiencia , Glicina Hidroximetiltransferasa/metabolismo , Guanosina/metabolismo , Células HCT116 , Células HEK293 , Humanos , Leucina/genética , Lisina/genética , Metilación/efectos de los fármacos , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Enzimas Multifuncionales/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , ARN de Transferencia/genética , Proteínas de Unión al ARN , Ribosomas/metabolismo , Sarcosina/metabolismo , Tetrahidrofolatos/metabolismo , Nucleótidos de Timina/biosíntesis
2.
J Biol Chem ; 298(5): 101903, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35398092

RESUMEN

The sugars streptose and dihydrohydroxystreptose (DHHS) are unique to the bacteria Streptomyces griseus and Coxiella burnetii, respectively. Streptose forms the central moiety of the antibiotic streptomycin, while DHHS is found in the O-antigen of the zoonotic pathogen C. burnetii. Biosynthesis of these sugars has been proposed to follow a similar path to that of TDP-rhamnose, catalyzed by the enzymes RmlA, RmlB, RmlC, and RmlD, but the exact mechanism is unclear. Streptose and DHHS biosynthesis unusually requires a ring contraction step that could be performed by orthologs of RmlC or RmlD. Genome sequencing of S. griseus and C. burnetii has identified StrM and CBU1838 proteins as RmlC orthologs in these respective species. Here, we demonstrate that both enzymes can perform the RmlC 3'',5'' double epimerization activity necessary to support TDP-rhamnose biosynthesis in vivo. This is consistent with the ring contraction step being performed on a double epimerized substrate. We further demonstrate that proton exchange is faster at the 3''-position than the 5''-position, in contrast to a previously studied ortholog. We additionally solved the crystal structures of CBU1838 and StrM in complex with TDP and show that they form an active site highly similar to those of the previously characterized enzymes RmlC, EvaD, and ChmJ. These results support the hypothesis that streptose and DHHS are biosynthesized using the TDP pathway and that an RmlD paralog most likely performs ring contraction following double epimerization. This work will support the elucidation of the full pathways for biosynthesis of these unique sugars.


Asunto(s)
Antígenos Bacterianos/biosíntesis , Carbohidrato Epimerasas , Coxiella burnetii/enzimología , Streptomyces griseus/enzimología , Carbohidrato Epimerasas/genética , Azúcares de Nucleósido Difosfato/biosíntesis , Nucleótidos de Timina/biosíntesis
3.
Mol Microbiol ; 111(4): 951-964, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30600561

RESUMEN

Biosynthesis of the nucleotide sugar precursor dTDP-L-rhamnose is critical for the viability and virulence of many human pathogenic bacteria, including Streptococcus pyogenes (Group A Streptococcus; GAS), Streptococcus mutans and Mycobacterium tuberculosis. Streptococcal pathogens require dTDP-L-rhamnose for the production of structurally similar rhamnose polysaccharides in their cell wall. Via heterologous expression in S. mutans, we confirmed that GAS RmlB and RmlC are critical for dTDP-L-rhamnose biosynthesis through their action as dTDP-glucose-4,6-dehydratase and dTDP-4-keto-6-deoxyglucose-3,5-epimerase enzymes respectively. Complementation with GAS RmlB and RmlC containing specific point mutations corroborated the conservation of previous identified catalytic residues. Bio-layer interferometry was used to identify and confirm inhibitory lead compounds that bind to GAS dTDP-rhamnose biosynthesis enzymes RmlB, RmlC and GacA. One of the identified compounds, Ri03, inhibited growth of GAS, other rhamnose-dependent streptococcal pathogens as well as M. tuberculosis with an IC50 of 120-410 µM. Importantly, we confirmed that Ri03 inhibited dTDP-L-rhamnose formation in a concentration-dependent manner through a biochemical assay with recombinant rhamnose biosynthesis enzymes. We therefore conclude that inhibitors of dTDP-L-rhamnose biosynthesis, such as Ri03, affect streptococcal and mycobacterial viability and can serve as lead compounds for the development of a new class of antibiotics that targets dTDP-rhamnose biosynthesis in pathogenic bacteria.


Asunto(s)
Antibacterianos/aislamiento & purificación , Hidroliasas/metabolismo , Azúcares de Nucleósido Difosfato/biosíntesis , Racemasas y Epimerasas/metabolismo , Streptococcus/enzimología , Nucleótidos de Timina/biosíntesis , Antibacterianos/farmacología , Vías Biosintéticas , Hidroliasas/genética , Concentración 50 Inhibidora , Racemasas y Epimerasas/genética , Streptococcus/efectos de los fármacos
4.
J Biol Chem ; 290(4): 2034-41, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25505243

RESUMEN

The primary pathway of TTP synthesis in the heart requires thymidine salvage by mitochondrial thymidine kinase 2 (TK2). However, the compartmentalization of this pathway and the transport of thymidine nucleotides are not well understood. We investigated the metabolism of [(3)H]thymidine or [(3)H]TMP as precursors of [(3)H]TTP in isolated intact or broken mitochondria from the rat heart. The results demonstrated that [(3)H]thymidine was readily metabolized by the mitochondrial salvage enzymes to TTP in intact mitochondria. The equivalent addition of [(3)H]TMP produced far less [(3)H]TTP than the amount observed with [(3)H]thymidine as the precursor. Using zidovudine to inhibit TK2, the synthesis of [(3)H]TTP from [(3)H]TMP was effectively blocked, demonstrating that synthesis of [(3)H]TTP from [(3)H]TMP arose solely from the dephosphorysynthase pathway that includes deoxyuridine triphosphatelation of [(3)H]TMP to [(3)H]thymidine. To determine the role of the membrane in TMP metabolism, mitochondrial membranes were disrupted by freezing and thawing. In broken mitochondria, [(3)H]thymidine was readily converted to [(3)H]TMP, but further phosphorylation was prevented even though the energy charge was well maintained by addition of oligomycin A, phosphocreatine, and creatine phosphokinase. The failure to synthesize TTP in broken mitochondria was not related to a loss of membrane potential or inhibition of the electron transport chain, as confirmed by addition of carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone and potassium cyanide, respectively, in intact mitochondria. In summary, these data, taken together, suggest that the thymidine salvage pathway is compartmentalized so that TMP kinase prefers TMP synthesized by TK2 over medium TMP and that this is disrupted in broken mitochondria.


Asunto(s)
Mitocondrias Cardíacas/metabolismo , Miocardio/metabolismo , Timidina Quinasa/metabolismo , Timidina Monofosfato/biosíntesis , Nucleótidos de Timina/biosíntesis , Animales , Carbonil Cianuro m-Clorofenil Hidrazona/análogos & derivados , Carbonil Cianuro m-Clorofenil Hidrazona/química , Creatina Quinasa/química , Citosol/metabolismo , Transporte de Electrón , Femenino , Potencial de la Membrana Mitocondrial , Oligomicinas/química , Fosfocreatina/química , Fosforilación , Cianuro de Potasio/química , Ratas , Ratas Sprague-Dawley , Timidina/metabolismo , Zidovudina/farmacología
5.
Mol Microbiol ; 98(5): 946-62, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26278404

RESUMEN

The sugar nucleotide dTDP-L-rhamnose is critical for the biosynthesis of the Group A Carbohydrate, the molecular signature and virulence determinant of the human pathogen Group A Streptococcus (GAS). The final step of the four-step dTDP-L-rhamnose biosynthesis pathway is catalyzed by dTDP-4-dehydrorhamnose reductases (RmlD). RmlD from the Gram-negative bacterium Salmonella is the only structurally characterized family member and requires metal-dependent homo-dimerization for enzymatic activity. Using a biochemical and structural biology approach, we demonstrate that the only RmlD homologue from GAS, previously renamed GacA, functions in a novel monomeric manner. Sequence analysis of 213 Gram-negative and Gram-positive RmlD homologues predicts that enzymes from all Gram-positive species lack a dimerization motif and function as monomers. The enzymatic function of GacA was confirmed through heterologous expression of gacA in a S. mutans rmlD knockout, which restored attenuated growth and aberrant cell division. Finally, analysis of a saturated mutant GAS library using Tn-sequencing and generation of a conditional-expression mutant identified gacA as an essential gene for GAS. In conclusion, GacA is an essential monomeric enzyme in GAS and representative of monomeric RmlD enzymes in Gram-positive bacteria and a subset of Gram-negative bacteria. These results will help future screens for novel inhibitors of dTDP-L-rhamnose biosynthesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Deshidrogenasas de Carbohidratos/genética , Deshidrogenasas de Carbohidratos/metabolismo , Streptococcus pyogenes/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Deshidrogenasas de Carbohidratos/química , Carbohidrato Epimerasas/metabolismo , Clonación Molecular , Bacterias Grampositivas/enzimología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Modelos Moleculares , Mutación , Azúcares de Nucleósido Difosfato/biosíntesis , Estructura Terciaria de Proteína , Ramnosa/análogos & derivados , Ramnosa/biosíntesis , Ramnosa/metabolismo , Alineación de Secuencia , Streptococcus pyogenes/genética , Nucleótidos de Timina/biosíntesis , Nucleótidos de Timina/metabolismo
6.
Nucleic Acids Res ; 42(8): 4972-84, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24561807

RESUMEN

In quiescent fibroblasts, the expression levels of cytosolic enzymes for thymidine triphosphate (dTTP) synthesis are down-regulated, causing a marked reduction in the dTTP pool. In this study, we provide evidence that mitochondrial thymidylate synthesis via thymidine kinase 2 (TK2) is a limiting factor for the repair of ultraviolet (UV) damage in the nuclear compartment in quiescent fibroblasts. We found that TK2 deficiency causes secondary DNA double-strand breaks formation in the nuclear genome of quiescent cells at the late stage of recovery from UV damage. Despite slower repair of quiescent fibroblast deficient in TK2, DNA damage signals eventually disappeared, and these cells were capable of re-entering the S phase after serum stimulation. However, these cells displayed severe genome stress as revealed by the dramatic increase in 53BP1 nuclear body in the G1 phase of the successive cell cycle. Here, we conclude that mitochondrial thymidylate synthesis via TK2 plays a role in facilitating the quality repair of UV damage for the maintenance of genome integrity in the cells that are temporarily arrested in the quiescent state.


Asunto(s)
Núcleo Celular/genética , Reparación del ADN , Mitocondrias/enzimología , Estrés Fisiológico/genética , Timidina Quinasa/fisiología , Nucleótidos de Timina/biosíntesis , Ciclo Celular , Línea Celular , Roturas del ADN de Doble Cadena , Daño del ADN , Desoxirribonucleótidos/metabolismo , Genoma , Humanos , Péptidos y Proteínas de Señalización Intracelular/análisis , Timidina Quinasa/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53 , Rayos Ultravioleta
7.
Proc Natl Acad Sci U S A ; 108(37): 15163-8, 2011 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-21876188

RESUMEN

The de novo and salvage dTTP pathways are essential for maintaining cellular dTTP pools to ensure the faithful replication of both mitochondrial and nuclear DNA. Disregulation of dTTP pools results in mitochondrial dysfunction and nuclear genome instability due to an increase in uracil misincorporation. In this study, we identified a de novo dTMP synthesis pathway in mammalian mitochondria. Mitochondria purified from wild-type Chinese hamster ovary (CHO) cells and HepG2 cells converted dUMP to dTMP in the presence of NADPH and serine, through the activities of mitochondrial serine hydroxymethyltransferase (SHMT2), thymidylate synthase (TYMS), and a novel human mitochondrial dihydrofolate reductase (DHFR) previously thought to be a pseudogene known as dihydrofolate reductase-like protein 1 (DHFRL1). Human DHFRL1, SHMT2, and TYMS were localized to mitochondrial matrix and inner membrane, confirming the presence of this pathway in mitochondria. Knockdown of DHFRL1 using siRNA eliminated DHFR activity in mitochondria. DHFRL1 expression in CHO glyC, a previously uncharacterized mutant glycine auxotrophic cell line, rescued the glycine auxotrophy. De novo thymidylate synthesis activity was diminished in mitochondria isolated from glyA CHO cells that lack SHMT2 activity, as well as mitochondria isolated from wild-type CHO cells treated with methotrexate, a DHFR inhibitor. De novo thymidylate synthesis in mitochondria prevents uracil accumulation in mitochondrial DNA (mtDNA), as uracil levels in mtDNA isolated from glyA CHO cells was 40% higher than observed in mtDNA isolated from wild-type CHO cells. These data indicate that unlike other nucleotides, de novo dTMP synthesis occurs within mitochondria and is essential for mtDNA integrity.


Asunto(s)
Vías Biosintéticas , Mamíferos/metabolismo , Mitocondrias/metabolismo , Nucleótidos de Timina/biosíntesis , Secuencia de Aminoácidos , Animales , Células CHO , Cricetinae , Cricetulus , ADN Mitocondrial/metabolismo , Regulación de la Expresión Génica , Glicina/metabolismo , Humanos , Mitocondrias/enzimología , Datos de Secuencia Molecular , Transporte de Proteínas , Alineación de Secuencia , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Timidina Monofosfato/biosíntesis , Timidilato Sintasa/metabolismo , Uracilo/metabolismo
9.
Biochemistry ; 51(46): 9375-83, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23116432

RESUMEN

Unusual deoxy sugars are often attached to natural products such as antibiotics, antifungals, and chemotherapeutic agents. One such sugar is mycinose, which has been found on the antibiotics chalcomycin and tylosin. An intermediate in the biosynthesis of mycinose is dTDP-6-deoxy-D-allose. Four enzymes are required for the production of dTDP-6-deoxy-D-allose in Streptomyces bikiniensis, a soil-dwelling microbe first isolated from the Bikini and Rongelap atolls. Here we describe a combined structural and functional study of the enzyme ChmJ, which reportedly catalyzes the third step in the pathway leading to dTDP-6-deoxy-D-allose formation. Specifically, it has been proposed that ChmJ is a 3'-epimerase that converts dTDP-4-keto-6-deoxyglucose to dTDP-4-keto-6-deoxyallose. This activity, however, has never been verified in vitro. As reported here, we demonstrate using (1)H nuclear magnetic resonance that ChmJ, indeed, functions as a 3'-epimerase. In addition, we determined the structure of ChmJ complexed with dTDP-quinovose to 2.0 Å resolution. The structure of ChmJ shows that it belongs to the well-characterized "cupin" superfamily. Two active site residues, His 60 and Tyr 130, were subsequently targeted for study via site-directed mutagenesis and kinetic analyses, and the three-dimensional architecture of the H60N/Y130F mutant protein was determined to 1.6 Å resolution. Finally, the structure of the apoenzyme was determined to 2.2 Å resolution. It has been previously suggested that the position of a conserved tyrosine, Tyr 130 in the case of ChmJ, determines whether an enzyme in this superfamily functions as a mono- or diepimerase. Our results indicate that the orientation of the tyrosine residue in ChmJ is a function of the ligand occupying the active site cleft.


Asunto(s)
Azúcares de Nucleósido Difosfato/biosíntesis , Racemasas y Epimerasas/metabolismo , Nucleótidos de Timina/biosíntesis , Secuencia de Bases , Cristalografía por Rayos X , Cartilla de ADN , Cinética , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Racemasas y Epimerasas/química
10.
Glycobiology ; 22(3): 332-44, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22002973

RESUMEN

Pasteurella multocida strains are classified into 16 different lipopolysaccharide (LPS) serovars using the Heddleston serotyping scheme. Ongoing studies in our laboratories on the LPS aim to determine the core oligosaccharide (OS) structures expressed by each of the Heddleston type strains and identify the genes and transferases required for the biosynthesis of the serovar-specific OSs. In this study, we have determined the core OS of the LPS expressed by the Heddleston serovar 9 type strain, P2095. Structural information was established by a combination of monosaccharide and methylation analyses, nuclear magnetic resonance spectroscopy and mass spectrometry revealing the following structure: . The serovar 9 OS contains an inner core that is conserved among P. multocida strains with an elaborate outer core extension containing rhamnose (Rha), a D-glycero-D-manno isomer of heptose, and the unusual deoxyamino sugar, 3-acetamido-3,6-dideoxy-α-D-glucose (Qui3NAc). Genetic analyses of the LPS outer core biosynthesis locus revealed that in addition to the glycosyltransferases predicted to transfer the sugars to the nascent LPS molecule, the locus also contained the complete set of genes required for the biosynthesis of the nucleotide sugar donors dTDP-Rha and dTDP-Qui3NAc. One of the genes identified as part of the dTDP-Qui3NAc biosynthesis pathway, qdtD, encodes a proposed bi-functional enzyme with N-terminal amino acid identity to dTDP-4-oxo-6-deoxy-D-glucose-3,4-oxoisomerase and C-terminal amino acid identity to dTDP-3-oxo-6-deoxy-α-D-glucose transacetylase.


Asunto(s)
Proteínas Bacterianas/genética , Desoxiazúcares/biosíntesis , Lipopolisacáridos/química , Pasteurella multocida/enzimología , Nucleótidos de Timina/biosíntesis , Secuencia de Aminoácidos , Conformación de Carbohidratos , Secuencia de Carbohidratos , Genes Bacterianos , Sitios Genéticos , Glicosiltransferasas/genética , Espectrometría de Masas , Datos de Secuencia Molecular , Pasteurella multocida/genética , Homología de Secuencia de Aminoácido
11.
Microbiology (Reading) ; 158(Pt 4): 908-916, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22262098

RESUMEN

Pseudomonas aeruginosa produces as biosurfactants rhamnolipids, containing one (mono-rhamnolipid) or two (di-rhamnolipid) l-rhamnose molecules. The rhamnosyltransferase RhlB catalyses the synthesis of mono-rhamnolipid using as precursors dTDP-l-rhamnose and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) produced by RhlA, while the rhamnosyltransferase RhlC synthesizes di-rhamnolipid using mono-rhamnolipid and dTDP-l-rhamnose as substrates. The Las and Rhl quorum-sensing systems coordinately regulate the production of these surfactants, as well as that of other exoproducts involved in bacterial virulence, at the transcriptional level in a cell density-dependent manner. In this work we study the transcriptional regulation of the rmlBDAC operon, encoding the enzymes involved in the production of dTDP-l-rhamnose, the substrate of both rhamnosyltransferases, RhlB and RhlC, and also a component of P. aeruginosa lipopolysaccharide. Here we show that the rmlBDAC operon possesses three promoters. One of these transcriptional start sites (P2) is responsible for most of its expression and is dependent on the stationary phase sigma factor σ(S) and on RhlR/C(4)-HSL through its binding to an atypical 'las box'.


Asunto(s)
Proteínas Bacterianas/metabolismo , Operón , Pseudomonas aeruginosa/genética , Percepción de Quorum/genética , Factor sigma/metabolismo , Proteínas Bacterianas/genética , Secuencia de Bases , Regulación Bacteriana de la Expresión Génica , Datos de Secuencia Molecular , Azúcares de Nucleósido Difosfato/biosíntesis , Regiones Promotoras Genéticas , Pseudomonas aeruginosa/enzimología , Factor sigma/genética , Nucleótidos de Timina/biosíntesis , Sitio de Iniciación de la Transcripción
12.
Nucleic Acids Res ; 38(21): e196, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20864450

RESUMEN

Uracil may occur in DNA due to either cytosine deamination or thymine replacing incorporation. Its quantitative characterization is important in assessing DNA damages in cells with perturbed thymidylate metabolism or within different DNA segments involved in immunoglobulin gene diversification. The archaeal DNA polymerase from Pyrococcus furiosus binds strongly to the deaminated base uracil and stalls on uracil-containing templates. Here, we present a straightforward method for quantitative assessment of uracil in DNA within specific genomic segments. We use wild-type P. furiosus polymerase in parallel with its point mutant version which lacks the uracil-binding specificity on synthetic and genomic DNA samples to quantify the uracil content in a single-step real-time PCR assay. Quantification of the PCR results is based on an approach analogous to template copy number determination in comparing different samples. Data obtained on synthetic uracil-containing templates are verified by direct isotopic measurements. The method is also tested on physiological DNA samples from Escherichia coli and mouse cell lines with perturbed thymidylate biosynthesis. The present PCR-based method is easy to use and measures the uracil content within a genomic segment defined by the primers. Using distinct sets of primers, the method allows the analysis of heterogeneity of uracil distribution within the genome.


Asunto(s)
ADN/química , Reacción en Cadena de la Polimerasa/métodos , Uracilo/análisis , Animales , Línea Celular , ADN Bacteriano/química , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Desoxiuridina/análisis , Escherichia coli/genética , Genoma Bacteriano , Ratones , Plásmidos/genética , Mutación Puntual , Pyrococcus furiosus/enzimología , Nucleótidos de Timina/biosíntesis
13.
J Nutr Biochem ; 97: 108796, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34102282

RESUMEN

Disturbed deoxythymidine triphosphate biosynthesis due to the inhibition of thymidylate synthase (TS) can lead to uracil accumulation in DNA, eventually, lead to neurocytes apoptosis and cognitive decline. Folic acid supplementation delayed cognitive decline and neurodegeneration in senescence-accelerated mouse prone 8 (SAMP8). Whether folic acid, one of nutrition factor, the effect on the expression of TS is unknown. The study aimed to determine if folic acid supplementation could alleviate age-related cognitive decline and apoptosis of neurocytes by increasing TS expression in SAMP8 mice. According to folic acid concentration in diet, four-month-old male SAMP8 mice were randomly divided into three different diet groups by baseline body weight in equal numbers. Moreover, to evaluate the role of TS, a TS inhibitor was injected intraperitoneal. Cognitive test, apoptosis rates of neurocytes, expression of TS, relative uracil level in telomere, and telomere length in brain tissue were detected. The results showed that folic acid supplementation decreased deoxyuridine monophosphate accumulation, uracil misincorporation in telomere, alleviated telomere length shorting, increased expression of TS, then decreased apoptosis rates of neurocytes, and alleviated cognitive performance in SAMP8 mice. Moreover, at the same concentration of folic acid, TS inhibitor raltitrexed increased deoxyuridine monophosphate accumulation, uracil misincorporation in telomere, and exacerbated telomere length shorting, decreased expression of TS, then increased apoptosis rates of neurocytes, and decreased cognitive performance in SAMP8 mice. In conclusion, folic acid supplementation alleviated age-related cognitive decline and inhibited apoptosis of neurocytes by increasing TS expression in SAMP8 mice.


Asunto(s)
Envejecimiento , Encéfalo/metabolismo , Disfunción Cognitiva/dietoterapia , Suplementos Dietéticos , Ácido Fólico/administración & dosificación , Neuronas/fisiología , Nucleótidos de Timina/biosíntesis , Animales , Apoptosis , Ácido Fólico/sangre , Ácido Fólico/metabolismo , Masculino , Memoria , Ratones , Prueba del Laberinto Acuático de Morris , Quinazolinas/farmacología , Acortamiento del Telómero , Tiofenos/farmacología , Timidilato Sintasa/antagonistas & inhibidores , Timidilato Sintasa/genética , Timidilato Sintasa/metabolismo , Uracilo/metabolismo
14.
PLoS Biol ; 5(2): e45, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17298179

RESUMEN

Macrolide antibiotics such as erythromycin are clinically important polyketide natural products. We have engineered a recombinant strain of Escherichia coli that produces small but measurable quantities of the bioactive macrolide 6-deoxyerythromycin D. Bioassay-guided evolution of this strain led to the identification of an antibiotic-overproducing mutation in the mycarose biosynthesis and transfer pathway that was detectable via a colony-based screening assay. This high-throughput assay was then used to evolve second-generation mutants capable of enhanced precursor-directed biosynthesis of macrolide antibiotics. The availability of a screen for macrolide biosynthesis in E. coli offers a fundamentally new approach in dissecting modular megasynthase mechanisms as well as engineering antibiotics with novel pharmacological properties.


Asunto(s)
Antibacterianos/biosíntesis , Bioensayo , Evolución Molecular Dirigida , Eritromicina/análogos & derivados , Escherichia coli/genética , Amino Azúcares/biosíntesis , Amino Azúcares/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Farmacorresistencia Bacteriana Múltiple/fisiología , Eritromicina/biosíntesis , Eritromicina/química , Eritromicina/metabolismo , Genes Bacterianos , Glicosilación , Hexosas/biosíntesis , Hexosas/genética , Mutación , Azúcares de Nucleósido Difosfato , Organismos Modificados Genéticamente , Nucleótidos de Timina/biosíntesis , Nucleótidos de Timina/metabolismo
15.
Biochemistry ; 48(7): 1553-61, 2009 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-19178182

RESUMEN

3-Acetamido-3,6-dideoxy-alpha-d-glucose or Quip3NAc is an unusual deoxyamino sugar found in the O-antigens of some Gram-negative bacteria and in the S-layers of Gram-positive bacteria. It is synthesized in these organisms as a dTDP-linked sugar via the action of five enzymes. The focus of this investigation is on QdtB from Thermoanaerobacterium thermosaccharolyticum E207-71, a PLP-dependent aminotransferase that catalyzes the penultimate step in the production of dTDP-Quip3NAc. For this analysis, the enzyme was crystallized in the presence of its product, dTDP-Quip3N, and the structure was solved and refined to 2.15 A resolution. QdtB is a dimer, and its overall fold places it into the well-characterized aspartate aminotransferase superfamily. Electron density corresponding to the bound product reveals the presence of a Schiff base between C-4' of the PLP cofactor and the amino nitrogen of the sugar. Those amino acid side chains involved in binding the dTDP-sugar into the active site include Tyr 183, His 309, and Tyr 310 from subunit 1 and Lys 219 from subunit 2. Notably there is a decided lack of interactions between the pyranosyl C-4' hydroxyl of the dTDP-sugar and the protein. In keeping with this observation, we show that QdtB can also turn over dTDP-3-acetamido-3,6-dideoxy-alpha-d-galactose. This investigation represents the first structural analysis of a sugar-modifying aminotransferase with a bound product in its active site that functions at the C-3' rather than the C-4' position of the hexose.


Asunto(s)
Desoxiazúcares/biosíntesis , Nucleótidos de Timina/biosíntesis , Transaminasas/química , Cristalización , Cristalografía por Rayos X , Enlace de Hidrógeno , Modelos Moleculares , Conformación Proteica , Bases de Schiff , Espectrometría de Masa por Ionización de Electrospray , Thermoanaerobacterium/enzimología , Transaminasas/metabolismo
16.
Genes Cells ; 13(7): 679-89, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18498354

RESUMEN

Mitochondrial DNA synthesis requires the supply of thymidine triphosphate (dTTP) independent of nuclear DNA replication. In resting and differentiating cells that withdraw from the cell cycle, mitochondrial thymidine kinase 2 (TK2) mediates thymidine monophosphate (dTMP) formation for the dTTP biosynthesis in mitochondria. However, a thymidine monophosphate kinase (TMPK) that phosphorylates dTMP to form thymidine diphosphate (dTDP) in mitochondria remains undefined. Here, we identified an expressed sequence tag cDNA, which encodes a TMPK with a mitochondrial import sequence at its N-terminus designated as TMPK2. HeLa cells expressing TMPK2 fused to green fluorescent protein (GFP) displayed green fluorescence in mitochondria. Over-expression of TMPK2 increased the steady-state level of cellular dTTP and promoted the conversion of radioactive labeled-thymidine and -dTMP to dTDP and dTTP in mitochondria. TMPK2 RNA was detected in several tissues and erythroblastoma cell lines. We also generated TMPK2 antibody and used it for immunofluorescence staining to demonstrate endogenous expression of TMPK2 in mitochondria of erythroblastoma cells. Finally, we showed that TMPK2 protein expression was upregulated in monocyte/macrophage differentiating cells, suggesting the coordinated regulation of TMPK2 expression with the terminal differentiation program.


Asunto(s)
Diferenciación Celular/fisiología , Macrófagos/citología , Mitocondrias/enzimología , Monocitos/citología , Nucleósido-Fosfato Quinasa/fisiología , Secuencia de Aminoácidos , Línea Celular , Clonación Molecular , Células HeLa , Humanos , Macrófagos/enzimología , Datos de Secuencia Molecular , Monocitos/enzimología , Nucleósido-Fosfato Quinasa/genética , Nucleótidos de Timina/biosíntesis
17.
Science ; 212(4494): 549-51, 1981 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-7209549

RESUMEN

When the incorporation of tritiated thymidine into acid insoluble material was measured, ribavirin appeared to be a potent inhibitor of DNA synthesis in KB cells and human lymphocytes. Inhibition was nearly 100-fold less, however, when DNA synthesis was measured by incorporation of phosphorus-32-labeled phosphate or by DNA fluorescence. The potent inhibition detected by incorporation of tritiated thymidine into DNA actually was the result of a potent effect on the labeling of deoxythymidine triphosphate, not on the synthesis of DNA.


Asunto(s)
Replicación del ADN/efectos de los fármacos , ADN/biosíntesis , Ribavirina/farmacología , Ribonucleósidos/farmacología , Timidina/metabolismo , Células Cultivadas , Humanos , Linfocitos/metabolismo , Fosfatos/metabolismo , Nucleótidos de Timina/biosíntesis
18.
Org Biomol Chem ; 7(8): 1705-8, 2009 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-19343260

RESUMEN

Biosynthetic genes encoding proteins involved in the first steps of deoxyhexose biosynthesis from D-glucose-1-phosphate were expressed in Saccharopolyspora erythraea. The resulting mutant was able to accumulate and utilise TDP-L-olivose. Co-expression of the spinosyn glycosyl transferase SpnP in the resulting mutant endowed upon it the ability to biotransform exogenously added spinosyn aglycones to yield novel spinosyn analogues.


Asunto(s)
Desoxiazúcares/biosíntesis , Insecticidas/síntesis química , Insecticidas/farmacología , Macrólidos/síntesis química , Saccharopolyspora/genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Desoxiazúcares/farmacología , Regulación Bacteriana de la Expresión Génica , Glicosilación , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Insectos/efectos de los fármacos , Insectos/fisiología , Insecticidas/química , Dosificación Letal Mediana , Macrólidos/farmacología , Saccharopolyspora/enzimología , Nucleótidos de Timina/biosíntesis
19.
Biochem J ; 410(1): 187-94, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-17941826

RESUMEN

Derivatives of 3-amino-3,6-dideoxyhexoses are widespread in Nature. They are part of the repeating units of lipopolysaccharide O-antigens, of the glycan moiety of S-layer (bacterial cell surface layer) glycoproteins and also of many antibiotics. In the present study, we focused on the elucidation of the biosynthesis pathway of dTDP-alpha-D-Quip3NAc (dTDP-3-acetamido-3,6-dideoxy-alpha-D-glucose) from the Gram-positive, anaerobic, thermophilic organism Thermoanaerobacterium thermosaccharolyticum E207-71, which carries Quip3NAc in its S-layer glycan. The biosynthesis of dTDP-alpha-D-Quip3NAc involves five enzymes, namely a transferase, a dehydratase, an isomerase, a transaminase and a transacetylase, and follows a pathway similar to that of dTDP-alpha-D-Fucp3NAc (dTDP-3-acetamido-3,6-dideoxy-alpha-D-galactose) biosynthesis in Aneurinibacillus thermoaerophilus L420-91(T). The ORFs (open reading frames) of interest were cloned, overexpressed in Escherichia coli and purified. To elucidate the enzymatic cascade, the different products were purified by HPLC and characterized by NMR spectroscopy. The initiating reactions catalysed by the glucose-1-phosphate thymidylyltransferase RmlA and the dTDP-D-glucose-4,6-dehydratase RmlB are well established. The subsequent isomerase was shown to be capable of forming a dTDP-3-oxo-6-deoxy-D-glucose intermediate from the RmlB product dTDP-4-oxo-6-deoxy-D-glucose, whereas the isomerase involved in the dTDP-alpha-D-Fucp3NAc pathway synthesizes dTDP-3-oxo-6-deoxy-D-galactose. The subsequent reaction steps of either pathway involve a transaminase and a transacetylase, leading to the specific production of nucleotide-activated 3-acetamido-3,6-dideoxy-alpha-D-glucose and 3-acetamido-3,6-dideoxy-alpha-D-galactose respectively. Sequence comparison of the ORFs responsible for the biosynthesis of dTDP-alpha-D-Quip3NAc revealed homologues in Gram-negative as well as in antibiotic-producing Gram-positive bacteria. There is strong evidence that the elucidated biosynthesis pathway may also be valid for LPS (lipopolysaccharide) O-antigen structures and antibiotic precursors.


Asunto(s)
Desoxiazúcares/sangre , Nucleótidos de Timina/biosíntesis , Acetilación , Secuencia de Bases , Catálisis , Cromatografía Líquida de Alta Presión , Clonación Molecular , Cartilla de ADN , ADN Bacteriano , Desoxiazúcares/biosíntesis , Enzimas/metabolismo , Escherichia coli/genética , Resonancia Magnética Nuclear Biomolecular , Reacción en Cadena de la Polimerasa , Especificidad por Sustrato , Thermoanaerobacterium/enzimología
20.
J Bacteriol ; 189(23): 8626-35, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17905981

RESUMEN

O-antigen variation due to the presence of different types of sugars and sugar linkages is important for the survival of bacteria threatened by host immune systems. The O antigens of Shigella dysenteriae type 7 and Escherichia coli O7 contain 4-(N-acetylglycyl)amino-4,6-dideoxy-d-glucose (d-Qui4NGlyAc) and 4-acetamido-4,6-dideoxy-d-glucose (d-Qui4NAc), respectively, which are sugars not often found in studied polysaccharides. In this study, we characterized the biosynthetic pathways for dTDP-d-Qui4N and dTDP-d-Qui4NAc (the nucleotide-activated precursors of d-Qui4NGlyAc and d-Qui4NAc in O antigens). Predicted genes involved in the synthesis of the two sugars were cloned, and the gene products were overexpressed and purified as His-tagged fusion proteins. In vitro enzymatic reactions were carried out using the purified proteins, and the reaction products were analyzed by capillary electrophoresis, electrospray ionization-mass spectrometry, and nuclear magnetic resonance spectroscopy. It is shown that in S. dysenteriae type 7 and E. coli O7, dTDP-d-Qui4N is synthesized from alpha-d-glucose-1-phosphate in three reaction steps catalyzed by glucose-1-phosphate thymidyltransferase (RmlA), dTDP-d-glucose 4,6-dehydratase (RmlB), and dTDP-4-keto-6-deoxy-d-glucose aminotransferase (VioA). An additional acetyltransferase (VioB) catalyzes the conversion of dTDP-d-Qui4N into dTDP-d-Qui4NAc in E. coli O7. Kinetic parameters and some other properties of VioA and VioB are described and differences between VioA proteins from S. dysenteriae type 7 (VioA(D7)) and E. coli O7 (VioA(O7)) discussed. To our knowledge, this is the first time that functions of VioA and VioB have been biochemically characterized. This study provides valuable enzyme sources for the production of dTDP-d-Qui4N and dTDP-d-Qui4NAc, which are potentially useful in the pharmaceutical industry for drug development.


Asunto(s)
Desoxiazúcares/biosíntesis , Escherichia coli/metabolismo , Glucosa/análogos & derivados , Glucosa/biosíntesis , Shigella dysenteriae/metabolismo , Nucleótidos de Timina/biosíntesis , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Conformación de Carbohidratos , Desoxiazúcares/química , Estabilidad de Enzimas , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Glucosa/química , Cinética , Espectrometría de Masas , Datos de Secuencia Molecular , Antígenos O/genética , Shigella dysenteriae/genética , Temperatura , Nucleótidos de Timina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA