Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 19(12): e1011050, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38060519

RESUMEN

The notion that mitochondria cannot be lost was shattered with the report of an oxymonad Monocercomonoides exilis, the first eukaryote arguably without any mitochondrion. Yet, questions remain about whether this extends beyond the single species and how this transition took place. The Oxymonadida is a group of gut endobionts taxonomically housed in the Preaxostyla which also contains free-living flagellates of the genera Trimastix and Paratrimastix. The latter two taxa harbour conspicuous mitochondrion-related organelles (MROs). Here we report high-quality genome and transcriptome assemblies of two Preaxostyla representatives, the free-living Paratrimastix pyriformis and the oxymonad Blattamonas nauphoetae. We performed thorough comparisons among all available genomic and transcriptomic data of Preaxostyla to further decipher the evolutionary changes towards amitochondriality, endobiosis, and unstacked Golgi. Our results provide insights into the metabolic and endomembrane evolution, but most strikingly the data confirm the complete loss of mitochondria for all three oxymonad species investigated (M. exilis, B. nauphoetae, and Streblomastix strix), suggesting the amitochondriate status is common to a large part if not the whole group of Oxymonadida. This observation moves this unique loss to 100 MYA when oxymonad lineage diversified.


Asunto(s)
Eucariontes , Oxymonadida , Filogenia , Eucariontes/genética , Oxymonadida/genética , Oxymonadida/metabolismo , Mitocondrias/genética , Genómica
2.
Proc Natl Acad Sci U S A ; 116(39): 19675-19684, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31492817

RESUMEN

Lower termites harbor in their hindgut complex microbial communities that are involved in the digestion of cellulose. Among these are protists, which are usually associated with specific bacterial symbionts found on their surface or inside their cells. While these form the foundations of a classic system in symbiosis research, we still know little about the functional basis for most of these relationships. Here, we describe the complex functional relationship between one protist, the oxymonad Streblomastix strix, and its ectosymbiotic bacterial community using single-cell genomics. We generated partial assemblies of the host S. strix genome and Candidatus Ordinivivax streblomastigis, as well as a complex metagenome assembly of at least 8 other Bacteroidetes bacteria confirmed by ribosomal (r)RNA fluorescence in situ hybridization (FISH) to be associated with S. strix. Our data suggest that S. strix is probably not involved in the cellulose digestion, but the bacterial community on its surface secretes a complex array of glycosyl hydrolases, providing them with the ability to degrade cellulose to monomers and fueling the metabolism of S. strix In addition, some of the bacteria can fix nitrogen and can theoretically provide S. strix with essential amino acids and cofactors, which the protist cannot synthesize. On the contrary, most of the bacterial symbionts lack the essential glycolytic enzyme enolase, which may be overcome by the exchange of intermediates with S. strix This study demonstrates the value of the combined single-cell (meta)genomic and FISH approach for studies of complicated symbiotic systems.


Asunto(s)
Isópteros/microbiología , Oxymonadida/metabolismo , Animales , Bacterias/metabolismo , Bacteroidetes/genética , Celulosa/metabolismo , Sistema Digestivo/metabolismo , Eucariontes/metabolismo , Genoma , Isópteros/genética , Metagenómica/métodos , Filogenia , Análisis de la Célula Individual/métodos , Simbiosis
3.
Mol Biol Evol ; 35(11): 2712-2718, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30184127

RESUMEN

The oxymonad Monocercomonoides exilis was recently reported to be the first eukaryote that has completely lost the mitochondrial compartment. It was proposed that an important prerequisite for such a radical evolutionary step was the acquisition of the SUF Fe-S cluster assembly pathway from prokaryotes, making the mitochondrial ISC pathway dispensable. We have investigated genomic and transcriptomic data from six oxymonad species and their relatives, composing the group Preaxostyla (Metamonada, Excavata), for the presence and absence of enzymes involved in Fe-S cluster biosynthesis. None possesses enzymes of mitochondrial ISC pathway and all apparently possess the SUF pathway, composed of SufB, C, D, S, and U proteins, altogether suggesting that the transition from ISC to SUF preceded their last common ancestor. Interestingly, we observed that SufDSU were fused in all three oxymonad genomes, and in the genome of Paratrimastix pyriformis. The donor of the SUF genes is not clear from phylogenetic analyses, but the enzyme composition of the pathway and the presence of SufDSU fusion suggests Firmicutes, Thermotogae, Spirochaetes, Proteobacteria, or Chloroflexi as donors. The inventory of the downstream CIA pathway enzymes is consistent with that of closely related species that retain ISC, indicating that the switch from ISC to SUF did not markedly affect the downstream process of maturation of cytosolic and nuclear Fe-S proteins.


Asunto(s)
Evolución Molecular , Genoma de Protozoos , Proteínas Hierro-Azufre/genética , Oxymonadida/genética , Oxymonadida/metabolismo , Filogenia , Transcriptoma
4.
Curr Microbiol ; 76(6): 755-761, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29754180

RESUMEN

Termites are global pests and can cause serious damage to buildings, crops, and plantation forests. The symbiotic intestinal flora plays an important role in the digestion of cellulose and nitrogen in the life of termites. Termites and their symbiotic microbes in the gut form a synergistic system. These organism work together to digest lignocellulose to make the termites grow on nitrogen deficient food. In this paper, the diversity of symbiotic microorganisms in the gut of termites, including protozoan, spirochetes, actinomycetes, fungus and bacteria, and their role in the digestion of lignocellulose and also the biotechnological applications of these symbiotic microorganisms are discussed. The high efficiency lignocellulose degradation systems of symbiotic microbes in termite gut not only provided a new way of biological energy development, but also has immense prospect in the application of cellulase enzymes. In addition, the study on the symbiotic microorganisms in the gut of termites will also provide a new method for the biological control of termites by the endophytic bacteria in the gut of termites.


Asunto(s)
Bacterias/metabolismo , Biodiversidad , Biotecnología/métodos , Hongos/metabolismo , Isópteros/microbiología , Oxymonadida/metabolismo , Parabasalidea/metabolismo , Animales , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Hongos/clasificación , Hongos/crecimiento & desarrollo , Intestinos/microbiología , Intestinos/parasitología , Isópteros/parasitología , Lignina/metabolismo , Oxymonadida/clasificación , Oxymonadida/crecimiento & desarrollo , Parabasalidea/clasificación , Parabasalidea/crecimiento & desarrollo , Simbiosis
5.
J Biol Inorg Chem ; 23(4): 509-520, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29511832

RESUMEN

Iron-sulfur clusters are ubiquitous inorganic co-factors that contribute to a wide range of cell pathways including the maintenance of DNA integrity, regulation of gene expression and protein translation, energy production, and antiviral response. Specifically, the iron-sulfur cluster biogenesis pathways include several proteins dedicated to the maturation of apoproteins in different cell compartments. Given the complexity of the biogenesis process itself, the iron-sulfur research area constitutes a very challenging and interesting field with still many unaddressed questions. Mutations or malfunctions affecting the iron-sulfur biogenesis machinery have been linked with an increasing amount of disorders such as Friedreich's ataxia and various cardiomyopathies. This review aims to recap the recent discoveries both in the yeast and human iron-sulfur cluster arena, covering recent discoveries from chemistry to disease.


Asunto(s)
Enfermedad , Proteínas Hierro-Azufre/biosíntesis , Mitocondrias/metabolismo , Animales , Humanos , Hierro/metabolismo , Proteínas Hierro-Azufre/metabolismo , Oxymonadida/citología , Oxymonadida/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA