Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.858
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 174(2): 285-299.e12, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29887374

RESUMEN

Visceral adipose tissue (VAT) hosts a population of regulatory T (Treg) cells, with a unique phenotype, that controls local and systemic inflammation and metabolism. Generation of a T cell receptor transgenic mouse line, wherein VAT Tregs are highly enriched, facilitated study of their provenance, dependencies, and activities. We definitively established a role for T cell receptor specificity, uncovered an unexpected function for the primordial Treg transcription-factor, Foxp3, evidenced a cell-intrinsic role for interleukin-33 receptor, and ordered these dependencies within a coherent scenario. Genesis of the VAT-Treg phenotype entailed a priming step in the spleen, permitting them to exit the lymphoid organs and surveil nonlymphoid tissues, and a final diversification process within VAT, in response to microenvironmental cues. Understanding the principles of tissue-Treg biology is a prerequisite for precision-targeting strategies.


Asunto(s)
Grasa Intraabdominal/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T Reguladores/metabolismo , Animales , Ensamble y Desensamble de Cromatina , Factores de Transcripción Forkhead/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/genética , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Grasa Intraabdominal/inmunología , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , PPAR gamma/genética , PPAR gamma/metabolismo , Fenotipo , ARN/química , ARN/aislamiento & purificación , ARN/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Interleucina/metabolismo , Análisis de la Célula Individual , Bazo/inmunología , Bazo/metabolismo , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/inmunología , Transcriptoma
2.
Cell ; 162(1): 16-7, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26140587

RESUMEN

Personalizing treatments to account for genetically mediated differences in drug responses is an exciting opportunity to improve patient outcomes. In this issue, Soccio et al. reveal new mechanisms by which non-coding variants alter the activity of the anti-diabetic drug rosiglitazone.


Asunto(s)
Hipoglucemiantes/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Polimorfismo de Nucleótido Simple , Animales , Humanos
3.
Cell ; 162(1): 33-44, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26140591

RESUMEN

SNPs affecting disease risk often reside in non-coding genomic regions. Here, we show that SNPs are highly enriched at mouse strain-selective adipose tissue binding sites for PPARγ, a nuclear receptor for anti-diabetic drugs. Many such SNPs alter binding motifs for PPARγ or cooperating factors and functionally regulate nearby genes whose expression is strain selective and imbalanced in heterozygous F1 mice. Moreover, genetically determined binding of PPARγ accounts for mouse strain-specific transcriptional effects of TZD drugs, providing proof of concept for personalized medicine related to nuclear receptor genomic occupancy. In human fat, motif-altering SNPs cause differential PPARγ binding, provide a molecular mechanism for some expression quantitative trait loci, and are risk factors for dysmetabolic traits in genome-wide association studies. One PPARγ motif-altering SNP is associated with HDL levels and other metabolic syndrome parameters. Thus, natural genetic variation in PPARγ genomic occupancy determines individual disease risk and drug response.


Asunto(s)
Hipoglucemiantes/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Polimorfismo de Nucleótido Simple , Tejido Adiposo , Animales , Expresión Génica , Humanos , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Factores de Transcripción/metabolismo
4.
Genes Dev ; 36(5-6): 300-312, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35273075

RESUMEN

Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor that is a vital regulator of adipogenesis, insulin sensitivity, and lipid metabolism. Activation of PPARγ by antidiabetic thiazolidinediones (TZD) reverses insulin resistance but also leads to weight gain that limits the use of these drugs. There are two main PPARγ isoforms, but the specific functions of each are not established. Here we generated mouse lines in which endogenous PPARγ1 and PPARγ2 were epitope-tagged to interrogate isoform-specific genomic binding, and mice deficient in either PPARγ1 or PPARγ2 to assess isoform-specific gene regulation. Strikingly, although PPARγ1 and PPARγ2 contain identical DNA binding domains, we uncovered isoform-specific genomic binding sites in addition to shared sites. Moreover, PPARγ1 and PPARγ2 regulated a different set of genes in adipose tissue depots, suggesting distinct roles in adipocyte biology. Indeed, mice with selective deficiency of PPARγ1 maintained body temperature better than wild-type or PPARγ2-deficient mice. Most remarkably, although TZD treatment improved glucose tolerance in mice lacking either PPARγ1 or PPARγ2, the PPARγ1-deficient mice were protected from TZD-induced body weight gain compared with PPARγ2-deficient mice. Thus, PPARγ isoforms have specific and separable metabolic functions that may be targeted to improve therapy for insulin resistance and diabetes.


Asunto(s)
Resistencia a la Insulina , Tiazolidinedionas , Adipocitos/metabolismo , Animales , Regulación de la Expresión Génica , Resistencia a la Insulina/genética , Ratones , PPAR gamma/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
5.
Immunity ; 52(4): 620-634.e6, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32268121

RESUMEN

Innate lymphoid cells (ILCs) play an important role in the control and maintenance of barrier immunity. However, chronic activation of ILCs results in immune-mediated pathology. Here, we show that tissue-resident type 2 ILCs (ILC2s) display a distinct metabolic signature upon chronic activation. In the context of allergen-driven airway inflammation, ILC2s increase their uptake of both external lipids and glucose. Externally acquired fatty acids are transiently stored in lipid droplets and converted into phospholipids to promote the proliferation of ILC2s. This metabolic program is imprinted by interleukin-33 (IL-33) and regulated by the genes Pparg and Dgat1, which are both controlled by glucose availability and mTOR signaling. Restricting dietary glucose by feeding mice a ketogenic diet largely ablated ILC2-mediated airway inflammation by impairing fatty acid metabolism and the formation of lipid droplets. Together, these results reveal that pathogenic ILC2 responses require lipid metabolism and identify ketogenic diet as a potent intervention strategy to treat airway inflammation.


Asunto(s)
Alérgenos/administración & dosificación , Asma/dietoterapia , Diacilglicerol O-Acetiltransferasa/inmunología , Dieta Cetogénica/métodos , Interleucina-33/inmunología , Gotas Lipídicas/metabolismo , Subgrupos de Linfocitos T/inmunología , Alternaria/química , Animales , Asma/inducido químicamente , Asma/inmunología , Asma/patología , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Linaje de la Célula/inmunología , Citocinas/administración & dosificación , Diacilglicerol O-Acetiltransferasa/genética , Modelos Animales de Enfermedad , Ácidos Grasos/inmunología , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica , Glucosa/inmunología , Glucosa/metabolismo , Inmunidad Innata , Interleucina-33/administración & dosificación , Interleucina-33/genética , Interleucinas/administración & dosificación , Gotas Lipídicas/inmunología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , PPAR gamma/genética , PPAR gamma/inmunología , Papaína/administración & dosificación , Fosfolípidos/inmunología , Fosfolípidos/metabolismo , Cultivo Primario de Células , Subgrupos de Linfocitos T/clasificación , Subgrupos de Linfocitos T/efectos de los fármacos , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/inmunología , Linfopoyetina del Estroma Tímico
6.
Cell ; 156(1-2): 343-58, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24439387

RESUMEN

Genome-wide association studies have revealed numerous risk loci associated with diverse diseases. However, identification of disease-causing variants within association loci remains a major challenge. Divergence in gene expression due to cis-regulatory variants in noncoding regions is central to disease susceptibility. We show that integrative computational analysis of phylogenetic conservation with a complexity assessment of co-occurring transcription factor binding sites (TFBS) can identify cis-regulatory variants and elucidate their mechanistic role in disease. Analysis of established type 2 diabetes risk loci revealed a striking clustering of distinct homeobox TFBS. We identified the PRRX1 homeobox factor as a repressor of PPARG2 expression in adipose cells and demonstrate its adverse effect on lipid metabolism and systemic insulin sensitivity, dependent on the rs4684847 risk allele that triggers PRRX1 binding. Thus, cross-species conservation analysis at the level of co-occurring TFBS provides a valuable contribution to the translation of genetic association signals to disease-related molecular mechanisms.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Polimorfismo de Nucleótido Simple , Animales , Línea Celular , Células Cultivadas , Secuencia Conservada , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Proteínas de Homeodominio/metabolismo , Humanos , Resistencia a la Insulina , PPAR gamma/genética , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo
7.
Genes Dev ; 35(21-22): 1461-1474, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34620682

RESUMEN

Energy-storing white adipocytes maintain their identity by suppressing the energy-burning thermogenic gene program of brown and beige adipocytes. Here, we reveal that the protein-protein interaction between the transcriptional coregulator ZFP423 and brown fat determination factor EBF2 is essential for restraining the thermogenic phenotype of white adipose tissue (WAT). Disruption of the ZFP423-EBF2 protein interaction through CRISPR-Cas9 gene editing triggers widespread "browning" of WAT in adult mice. Mechanistically, ZFP423 recruits the NuRD corepressor complex to EBF2-bound thermogenic gene enhancers. Loss of adipocyte Zfp423 induces an EBF2 NuRD-to-BAF coregulator switch and a shift in PPARγ occupancy to thermogenic genes. This shift in PPARγ occupancy increases the antidiabetic efficacy of the PPARγ agonist rosiglitazone in obesity while diminishing the unwanted weight-gaining effect of the drug. These data indicate that ZFP423 controls EBF2 coactivator recruitment and PPARγ occupancy to determine the thermogenic plasticity of adipocytes and highlight the potential of therapeutically targeting transcriptional brakes to induce beige adipocyte biogenesis in obesity.


Asunto(s)
PPAR gamma , Termogénesis , Adipocitos Marrones/metabolismo , Adipocitos Blancos , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN , Ratones , PPAR gamma/genética , Termogénesis/genética , Factores de Transcripción
8.
Immunity ; 49(4): 615-626.e6, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30332629

RESUMEN

Macrophages polarize into distinct phenotypes in response to complex environmental cues. We found that the nuclear receptor PPARγ drove robust phenotypic changes in macrophages upon repeated stimulation with interleukin (IL)-4. The functions of PPARγ on macrophage polarization in this setting were independent of ligand binding. Ligand-insensitive PPARγ bound DNA and recruited the coactivator P300 and the architectural protein RAD21. This established a permissive chromatin environment that conferred transcriptional memory by facilitating the binding of the transcriptional regulator STAT6 and RNA polymerase II, leading to robust production of enhancer and mRNAs upon IL-4 re-stimulation. Ligand-insensitive PPARγ binding controlled the expression of an extracellular matrix remodeling-related gene network in macrophages. Expression of these genes increased during muscle regeneration in a mouse model of injury, and this increase coincided with the detection of IL-4 and PPARγ in the affected tissue. Thus, a predominantly ligand-insensitive PPARγ:RXR cistrome regulates progressive and/or reinforcing macrophage polarization.


Asunto(s)
Epigénesis Genética/inmunología , Epigenómica/métodos , Regulación de la Expresión Génica/inmunología , Activación de Macrófagos/inmunología , Macrófagos/inmunología , PPAR gamma/inmunología , Animales , Línea Celular , Células Cultivadas , Interleucina-4/inmunología , Interleucina-4/farmacología , Ligandos , Activación de Macrófagos/genética , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , PPAR gamma/genética , PPAR gamma/metabolismo
9.
Nat Immunol ; 15(11): 1026-37, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25263125

RESUMEN

Tissue-resident macrophages constitute heterogeneous populations with unique functions and distinct gene-expression signatures. While it has been established that they originate mostly from embryonic progenitor cells, the signals that induce a characteristic tissue-specific differentiation program remain unknown. We found that the nuclear receptor PPAR-γ determined the perinatal differentiation and identity of alveolar macrophages (AMs). In contrast, PPAR-γ was dispensable for the development of macrophages located in the peritoneum, liver, brain, heart, kidneys, intestine and fat. Transcriptome analysis of the precursors of AMs from newborn mice showed that PPAR-γ conferred a unique signature, including several transcription factors and genes associated with the differentiation and function of AMs. Expression of PPAR-γ in fetal lung monocytes was dependent on the cytokine GM-CSF. Therefore, GM-CSF has a lung-specific role in the perinatal development of AMs through the induction of PPAR-γ in fetal monocytes.


Asunto(s)
Diferenciación Celular/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Macrófagos Alveolares/citología , Monocitos/citología , PPAR gamma/biosíntesis , Animales , Antígeno CD11c/genética , Antígeno CD11c/inmunología , Diferenciación Celular/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Pulmón/citología , Pulmón/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , PPAR gamma/genética
10.
Proc Natl Acad Sci U S A ; 120(42): e2303774120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37816052

RESUMEN

Although robustly expressed in the disease-free (DF) breast stroma, CD36 is consistently absent from the stroma surrounding invasive breast cancers (IBCs). In this study, we primarily observed CD36 expression in adipocytes and intralobular capillaries within the DF breast. Larger vessels concentrated in interlobular regions lacked CD36 and were instead marked by the expression of CD31. When evaluated in perilesional capillaries surrounding ductal carcinoma in situ, a nonobligate IBC precursor, CD36 loss was more commonly observed in lesions associated with subsequent IBC. Peroxisome proliferator-activated receptor γ (PPARγ) governs the expression of CD36 and genes involved in differentiation, metabolism, angiogenesis, and inflammation. Coincident with CD36 loss, we observed a dramatic suppression of PPARγ and its target genes in capillary endothelial cells (ECs) and pericytes, which typically surround and support the stability of the capillary endothelium. Factors present in conditioned media from malignant cells repressed PPARγ and its target genes not only in cultured ECs and pericytes but also in adipocytes, which require PPARγ for proper differentiation. In addition, we identified a role for PPARγ in opposing the transition of pericytes toward a tumor-supportive myofibroblast phenotype. In mouse xenograft models, early intervention with rosiglitazone, a PPARγ agonist, demonstrated significant antitumor effects; however, following the development of a palpable tumor, the antitumor effects of rosiglitazone were negated by the repression of PPARγ in the mouse stroma. In summary, PPARγ activity in healthy tissues places several stromal cell types in an antitumorigenic state, directly inhibiting EC proliferation, maintaining adipocyte differentiation, and suppressing the transition of pericytes into tumor-supportive myofibroblasts.


Asunto(s)
Neoplasias de la Mama , Animales , Femenino , Humanos , Ratones , Adipocitos/metabolismo , Neoplasias de la Mama/patología , Células Endoteliales/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Rosiglitazona/farmacología
11.
Genes Dev ; 32(15-16): 1035-1044, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30006480

RESUMEN

The nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) is known to regulate lipid metabolism in many tissues, including macrophages. Here we report that peritoneal macrophage respiration is enhanced by rosiglitazone, an activating PPARγ ligand, in a PPARγ-dependent manner. Moreover, PPARγ is required for macrophage respiration even in the absence of exogenous ligand. Unexpectedly, the absence of PPARγ dramatically affects the oxidation of glutamine. Both glutamine and PPARγ have been implicated in alternative activation (AA) of macrophages, and PPARγ was required for interleukin 4 (IL4)-dependent gene expression and stimulation of macrophage respiration. Indeed, unstimulated macrophages lacking PPARγ contained elevated levels of the inflammation-associated metabolite itaconate and express a proinflammatory transcriptome that, remarkably, phenocopied that of macrophages depleted of glutamine. Thus, PPARγ functions as a checkpoint, guarding against inflammation, and is permissive for AA by facilitating glutamine metabolism. However, PPARγ expression is itself markedly increased by IL4. This suggests that PPARγ functions at the center of a feed-forward loop that is central to AA of macrophages.


Asunto(s)
Glutamina/metabolismo , Activación de Macrófagos , Macrófagos/metabolismo , PPAR gamma/fisiología , Animales , Respiración de la Célula , Células Cultivadas , Ácidos Grasos/metabolismo , Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Interleucina-4/fisiología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , PPAR gamma/genética , Rosiglitazona , Tiazolidinedionas/farmacología
12.
J Biol Chem ; 300(1): 105486, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992807

RESUMEN

Testis angiotensin-converting enzyme (tACE) plays a critical role in male fertility, but the mechanism is unknown. By using ACE C-domain KO (CKO) mice which lack tACE activity, we found that ATP in CKO sperm was 9.4-fold lower than WT sperm. Similarly, an ACE inhibitor (ACEi) reduced ATP production in mouse sperm by 72%. Metabolic profiling showed that tACE inactivation severely affects oxidative metabolism with decreases in several Krebs cycle intermediates including citric acid, cis-aconitic acid, NAD, α-ketoglutaric acid, succinate, and L-malic acid. We found that sperms lacking tACE activity displayed lower levels of oxidative enzymes (CISY, ODO1, MDHM, QCR2, SDHA, FUMH, CPT2, and ATPA) leading to a decreased mitochondrial respiration rate. The reduced energy production in CKO sperms leads to defects in their physiological functions including motility, acrosine activity, and fertilization in vitro and in vivo. Male mice treated with ACEi show severe impairment in reproductive capacity when mated with female mice. In contrast, an angiotensin II receptor blocker (ARB) had no effect. CKO sperms express significantly less peroxisome proliferators-activated receptor gamma (PPARγ) transcription factor, and its blockade eliminates the functional differences between CKO and WT sperms, indicating PPARγ might mediate the effects of tACE on sperm metabolism. Finally, in a cohort of human volunteers, in vitro treatment with the ramipril or a PPARγ inhibitor reduced ATP production in human sperm and hence its motility and acrosine activity. These findings may have clinical significance since millions of people take ACEi daily, including men who are reproductively active.


Asunto(s)
Fertilización , PPAR gamma , Peptidil-Dipeptidasa A , Espermatozoides , Animales , Femenino , Humanos , Masculino , Ratones , Adenosina Trifosfato/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Fertilización/genética , PPAR gamma/genética , PPAR gamma/metabolismo , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo , Testículo/enzimología , Ratones Endogámicos C57BL , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Proteínas Mitocondriales/genética , Técnicas de Inactivación de Genes , Fosforilación Oxidativa
13.
Circulation ; 150(2): 132-150, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38557054

RESUMEN

BACKGROUND: An imbalance of antiproliferative BMP (bone morphogenetic protein) signaling and proliferative TGF-ß (transforming growth factor-ß) signaling is implicated in the development of pulmonary arterial hypertension (PAH). The posttranslational modification (eg, phosphorylation and ubiquitination) of TGF-ß family receptors, including BMPR2 (bone morphogenetic protein type 2 receptor)/ALK2 (activin receptor-like kinase-2) and TGF-ßR2/R1, and receptor-regulated Smads significantly affects their activity and thus regulates the target cell fate. BRCC3 modifies the activity and stability of its substrate proteins through K63-dependent deubiquitination. By modulating the posttranslational modifications of the BMP/TGF-ß-PPARγ pathway, BRCC3 may play a role in pulmonary vascular remodeling, hence the pathogenesis of PAH. METHODS: Bioinformatic analyses were used to explore the mechanism by which BRCC3 deubiquitinates ALK2. Cultured pulmonary artery smooth muscle cells (PASMCs), mouse models, and specimens from patients with idiopathic PAH were used to investigate the rebalance between BMP and TGF-ß signaling in regulating ALK2 phosphorylation and ubiquitination in the context of pulmonary hypertension. RESULTS: BRCC3 was significantly downregulated in PASMCs from patients with PAH and animals with experimental pulmonary hypertension. BRCC3, by de-ubiquitinating ALK2 at Lys-472 and Lys-475, activated receptor-regulated Smad1/5/9, which resulted in transcriptional activation of BMP-regulated PPARγ, p53, and Id1. Overexpression of BRCC3 also attenuated TGF-ß signaling by downregulating TGF-ß expression and inhibiting phosphorylation of Smad3. Experiments in vitro indicated that overexpression of BRCC3 or the de-ubiquitin-mimetic ALK2-K472/475R attenuated PASMC proliferation and migration and enhanced PASMC apoptosis. In SM22α-BRCC3-Tg mice, pulmonary hypertension was ameliorated because of activation of the ALK2-Smad1/5-PPARγ axis in PASMCs. In contrast, Brcc3-/- mice showed increased susceptibility of experimental pulmonary hypertension because of inhibition of the ALK2-Smad1/5 signaling. CONCLUSIONS: These results suggest a pivotal role of BRCC3 in sustaining pulmonary vascular homeostasis by maintaining the integrity of the BMP signaling (ie, the ALK2-Smad1/5-PPARγ axis) while suppressing TGF-ß signaling in PASMCs. Such rebalance of BMP/TGF-ß pathways is translationally important for PAH alleviation.


Asunto(s)
Hipertensión Pulmonar , Músculo Liso Vascular , Miocitos del Músculo Liso , Animales , Humanos , Masculino , Ratones , Receptores de Activinas Tipo II/metabolismo , Receptores de Activinas Tipo II/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , PPAR gamma/metabolismo , PPAR gamma/genética , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/patología , Hipertensión Arterial Pulmonar/genética , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Transducción de Señal , Ubiquitinación , Remodelación Vascular
14.
Hum Mol Genet ; 32(13): 2219-2228, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37017334

RESUMEN

Cachexia occurrence and development are associated with loss of white adipose tissues, which may be involved with cancer-derived exosomes. This study attempted to characterize the functional mechanisms of breast cancer (BC) cell-derived exosome-loaded microRNA (miR)-155 in cancer cachexia-related fat loss. Exosomes were incubated with preadipocytes and cellular lipid droplet accumulation was observed using Oil Red O staining. Western blotting evaluated the cellular levels of lipogenesis marker peroxisome proliferator activated receptor gamma (PPARγ) and adiponectin, C1Q and collagen domain containing (AdipoQ). Differentiated adipocytes were incubated with exosomes, and phosphate hormone sensitive lipase (P-HSL), adipose triglyceride lipase (ATGL) and glycerol were detected in adipocytes, in addition to uncoupling protein 1 (UCP1) and leptin levels. A mouse model of cancer cachexia was established where cancer exosomes were injected intravenously. The changes in body weight and tumor-free body weights were recorded and serum glycerol levels and lipid accumulation in adipose tissues were determined. Also, the relationship between miR-155 and UBQLN1 was predicted and verified. BC exosome treatment reduced PPARγ and AdipoQ protein levels, promoted the levels of P-HSL and ATGL proteins, facilitated glycerol release, increased UCP1 expression and lowered leptin expression in adipocytes. Exosomal miR-155 inhibited lipogenesis in preadipocytes and boosted the browning of white adipose tissues. miR-155 downregulation alleviated cancer exosome-induced browning of white adipose tissues and fat loss. Mechanistically, miR-155 targeted UBQLN1, and UBQLN1 upregulation reversed the impacts of cancer exosomes. miR-155 loaded by BC cell-derived exosomes significantly affects white adipose browning and inhibition of cancer-derived exosomes.


Asunto(s)
Exosomas , MicroARNs , Neoplasias , Ratones , Animales , Leptina/metabolismo , Caquexia/genética , Caquexia/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Exosomas/genética , Exosomas/metabolismo , Glicerol/metabolismo , Adipocitos/metabolismo , Esterol Esterasa/metabolismo , Neoplasias/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
15.
FASEB J ; 38(8): e23613, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38661048

RESUMEN

The unpredictable survival rate of autologous fat grafting (AFG) seriously affects its clinical application. Improving the survival rate of AFG has become an unresolved issue in plastic surgery. Peroxisome proliferator-activated receptor-γ (PPAR-γ) regulates the adipogenic differentiation of adipocytes, but the functional mechanism in AFG remains unclear. In this study, we established an animal model of AFG and demonstrated the superior therapeutic effect of PPAR-γ regulation in the process of AFG. From day 3 after fat grafting, the PPAR-γ agonist rosiglitazone group consistently showed better adipose integrity, fewer oil cysts, and fibrosis. Massive macrophage infiltration was observed after 7 days. At the same time, M2 macrophages begin to appear. At day 14, M2 macrophages gradually became the dominant cell population, which suppressed inflammation and promoted revascularization and fat regeneration. In addition, transcriptome sequencing showed that the differentially expressed genes in the Rosiglitazone group were associated with the pathways of adipose regeneration, differentiation, and angiogenesis; these results provide new ideas for clinical treatment.


Asunto(s)
Tejido Adiposo , Macrófagos , PPAR gamma , Rosiglitazona , Trasplante Autólogo , Animales , PPAR gamma/metabolismo , PPAR gamma/genética , Macrófagos/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/citología , Rosiglitazona/farmacología , Masculino , Diferenciación Celular , Adipogénesis , Adipocitos/metabolismo , Ratones , Ratas
16.
FASEB J ; 38(16): e70014, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39183544

RESUMEN

End-ischemic normothermic mechanical perfusion (NMP) could provide a curative treatment to reduce cholestatic liver injury from donation after circulatory death (DCD) in donors. However, the underlying mechanism remains elusive. Our previous study demonstrated that air-ventilated NMP could improve functional recovery of DCD in a preclinical NMP rat model. Here, metabolomics analysis revealed that air-ventilated NMP alleviated DCD- and cold preservation-induced cholestatic liver injury, as shown by the elevated release of alanine aminotransferase (ALT), aspartate aminotransferase (AST), bilirubin, and γ-glutamyl transferase (GGT) in the perfusate (p < .05) and the reduction in the levels of bile acid metabolites, including ω-muricholic acid, glycohyodeoxycholic acid, glycocholic acid, and glycochenodeoxycholate (GCDC) in the perfused livers (p < .05). In addition, the expression of the key bile acid metabolism enzyme UDP-glucuronosyltransferase 1A1 (UGT1A1), which is predominantly expressed in hepatocytes, was substantially elevated in the DCD rat liver, followed by air-ventilated NMP (p < .05), and in vitro, this increase was induced by decreased GCDC and hypoxia-reoxygenation in the hepatic cells HepG2 and L02 (p < .05). Knockdown of UGT1A1 in hepatic cells by siRNA aggravated hepatic injury caused by GCDC and hypoxia-reoxygenation, as indicated by the ALT and AST levels in the supernatant. Mechanistically, UGT1A1 is transcriptionally regulated by peroxisome proliferator-activator receptor-γ (PPAR-γ) under hypoxia-physoxia. Taken together, our data revealed that air-ventilated NMP could alleviate DCD- and cold preservation-induced cholestatic liver injury through PPAR-γ/UGT1A1 axis. Based on the results from this study, air-ventilated NMP confers a promising approach for predicting and alleviating cholestatic liver injury through PPAR-γ/UGT1A1 axis.


Asunto(s)
PPAR gamma , Animales , Ratas , PPAR gamma/metabolismo , PPAR gamma/genética , Masculino , Humanos , Glucuronosiltransferasa/metabolismo , Glucuronosiltransferasa/genética , Hígado/metabolismo , Hígado/patología , Colestasis/metabolismo , Perfusión , Ratas Sprague-Dawley , Preservación de Órganos/métodos , Trasplante de Hígado
17.
Immunity ; 44(2): 287-302, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26872696

RESUMEN

The failure of apoptotic cell clearance is linked to autoimmune diseases, nonresolving inflammation, and developmental abnormalities; however, pathways that regulate phagocytes for efficient apoptotic cell clearance remain poorly known. Apoptotic cells release find-me signals to recruit phagocytes to initiate their clearance. Here we found that find-me signal sphingosine 1-phosphate (S1P) activated macrophage erythropoietin (EPO) signaling promoted apoptotic cell clearance and immune tolerance. Dying cell-released S1P activated macrophage EPO signaling. Erythropoietin receptor (EPOR)-deficient macrophages exhibited impaired apoptotic cell phagocytosis. EPO enhanced apoptotic cell clearance through peroxisome proliferator activated receptor-γ (PPARγ). Moreover, macrophage-specific Epor(-/-) mice developed lupus-like symptoms, and interference in EPO signaling ameliorated the disease progression in lupus-like mice. Thus, we have identified a pathway that regulates macrophages to clear dying cells, uncovered the priming function of find-me signal S1P, and found a role of the erythropoiesis regulator EPO in apoptotic cell disposal, with implications for harnessing dying cell clearance.


Asunto(s)
Eritropoyetina/metabolismo , Lupus Eritematoso Sistémico/inmunología , Lisofosfolípidos/metabolismo , Macrófagos/fisiología , Receptores de Eritropoyetina/metabolismo , Esfingosina/análogos & derivados , Animales , Apoptosis , Línea Celular , Femenino , Tolerancia Inmunológica/genética , Lisofosfolípidos/genética , Activación de Macrófagos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , PPAR gamma/genética , PPAR gamma/metabolismo , Comunicación Paracrina , Fagocitosis/genética , Receptores de Eritropoyetina/genética , Transducción de Señal , Esfingosina/genética , Esfingosina/metabolismo
18.
PLoS Biol ; 20(12): e3001900, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36469503

RESUMEN

How progenitor cells can attain a distinct differentiated cell identity is a challenging problem given the fluctuating signaling environment in which cells exist and that critical transcription factors are often not unique to a differentiation process. Here, we test the hypothesis that a unique differentiated cell identity can result from a core component of the differentiated state doubling up as a signaling protein that also drives differentiation. Using live single-cell imaging in the adipocyte differentiation system, we show that progenitor fat cells (preadipocytes) can only commit to terminally differentiate after up-regulating FABP4, a lipid buffer that is highly enriched in mature adipocytes. Upon induction of adipogenesis in mouse preadipocyte cells, we show that after a long delay, cells first abruptly start to engage a positive feedback between CEBPA and PPARG before then engaging, after a second delay, a positive feedback between FABP4 and PPARG. These sequential positive feedbacks both need to engage in order to drive PPARG levels past the threshold for irreversible differentiation. In the last step before commitment, PPARG transcriptionally increases FABP4 expression while fatty acid-loaded FABP4 increases PPARG activity. Together, our study suggests a control principle for robust cell identity whereby a core component of the differentiated state also promotes differentiation from its own progenitor state.


Asunto(s)
Adipogénesis , PPAR gamma , Ratones , Animales , PPAR gamma/genética , PPAR gamma/metabolismo , Diferenciación Celular/fisiología , Adipocitos/metabolismo , Factores de Transcripción/metabolismo
19.
PLoS Biol ; 20(1): e3001522, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35061665

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) affects approximately a quarter of the population worldwide, and persistent overnutrition is one of the major causes. However, the underlying molecular basis has not been fully elucidated, and no specific drug has been approved for this disease. Here, we identify a regulatory mechanism that reveals a novel function of Rab2A in the progression of NAFLD based on energy status and PPARγ. The mechanistic analysis shows that nutrition repletion suppresses the phosphorylation of AMPK-TBC1D1 signaling, augments the level of GTP-bound Rab2A, and then increases the protein stability of PPARγ, which ultimately promotes the hepatic accumulation of lipids in vitro and in vivo. Furthermore, we found that blocking the AMPK-TBC1D1 pathway in TBC1D1S231A-knock-in (KI) mice led to a markedly increased GTP-bound Rab2A and subsequent fatty liver in aged mice. Our studies also showed that inhibition of Rab2A expression alleviated hepatic lipid deposition in western diet-induced obesity (DIO) mice by reducing the protein level of PPARγ and the expression of PPARγ target genes. Our findings not only reveal a new molecular mechanism regulating the progression of NAFLD during persistent overnutrition but also have potential implications for drug discovery to combat this disease.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Proteínas de Unión al GTP rab/metabolismo , Envejecimiento , Animales , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Células Hep G2 , Humanos , Metabolismo de los Lípidos/fisiología , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Proteínas de Unión al GTP rab/genética
20.
Proc Natl Acad Sci U S A ; 119(33): e2204470119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35939672

RESUMEN

Most mammalian cells have an intrinsic circadian clock that coordinates metabolic activity with the daily rest and wake cycle. The circadian clock is known to regulate cell differentiation, but how continuous daily oscillations of the internal clock can control a much longer, multiday differentiation process is not known. Here, we simultaneously monitor circadian clock and adipocyte-differentiation progression live in single cells. Strikingly, we find a bursting behavior in the cell population whereby individual preadipocytes commit to differentiate primarily during a 12-h window each day, corresponding to the time of rest. Daily gating occurs because cells irreversibly commit to differentiate within only a few hours, which is much faster than the rest phase and the overall multiday differentiation process. The daily bursts in differentiation commitment result from a differentiation-stimulus driven variable and slow increase in expression of PPARG, the master regulator of adipogenesis, overlaid with circadian boosts in PPARG expression driven by fast, clock-driven PPARG regulators such as CEBPA. Our finding of daily bursts in cell differentiation only during the circadian cycle phase corresponding to evening in humans is broadly relevant, given that most differentiating somatic cells are regulated by the circadian clock. Having a restricted time each day when differentiation occurs may open therapeutic strategies to use timed treatment relative to the clock to promote tissue regeneration.


Asunto(s)
Adipocitos , Adipogénesis , Relojes Circadianos , Ritmo Circadiano , PPAR gamma , Adipocitos/citología , Adipocitos/fisiología , Adipogénesis/genética , Adipogénesis/fisiología , Animales , Relojes Circadianos/genética , Relojes Circadianos/fisiología , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Humanos , Ratones , PPAR gamma/genética , PPAR gamma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA