Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 323
Filtrar
Más filtros

Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 765, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107708

RESUMEN

Macrobrachium nipponense is an important commercial freshwater species in China. However, the ability of alkali tolerance of M. nipponense is insufficient to culture in the major saline-alkali water source in China. Thus, it is urgently needed to perform the genetic improvement of alkali tolerance in this species. In the present study, we aimed to analyse the effects of alkali treatment on gills in this species after 96 h alkalinity exposure under the alkali concentrations of 0 mmol/L, 4 mmol/L, 8 mmol/L, and 12 mmol/L through performing the histological observations, measurement of antioxidant enzymes, metabolic profiling analysis, and transcriptome profiling analysis. The results of the present study revealed that alkali treatment stimulated the contents of malondialdehyde, glutathione, glutathione peroxidase in gills, indicating these antioxidant enzymes plays essential roles in the protection of body from the damage, caused by the alkali treatment. In addition, high concentration of alkali treatment (> 8 mmol/L) resulted in the damage of gill membrane and haemolymph vessel, affecting the normal respiratory function of gill. Metabolic profiling analysis revealed that Metabolic pathways, Biosynthesis of secondary metabolites, Biosynthesis of plant secondary metabolites, Microbial metabolism in diverse environments, Biosynthesis of amino acids were identified as the main enriched metabolic pathways of differentially expressed metabolites, which are consistent with the previous publications, treated by the various environmental factors. Transcriptome profiling analyses revealed that the alkali concentration of 12 mmol/L has more regulatory effects on the changes of gene expression than the other alkali concentrations. KEGG analysis revealed that Phagosome, Lysosome, Glycolysis/Gluconeogenesis, Purine Metabolism, Amino sugar and nucleotide sugar metabolism, and Endocytosis were identified as the main enriched metabolic pathways in the present study, predicting these metabolic pathways may be involved in the adaption of alkali treatment in M. nipponense. Phagosome, Lysosome, Purine Metabolism, and Endocytosis are immune-related metabolic pathways, while Glycolysis/Gluconeogenesis, and Amino sugar and nucleotide sugar metabolism are energy metabolism-related metabolic pathways. Quantitative PCR analyses of differentially expressed genes (DEGs) verified the accuracy of the RNA-Seq. Alkali treatment significantly stimulated the expressions of DEGs from the metabolic pathways of Phagosome and Lysosome, suggesting Phagosome and Lysosome play essential roles in the regulation of alkali tolerance in this species, as well as the genes from these metabolic pathways. The present study identified the effects of alkali treatment on gills, providing valuable evidences for the genetic improvement of alkali tolerance in M. nipponense.


Asunto(s)
Álcalis , Branquias , Palaemonidae , Animales , Branquias/metabolismo , Branquias/efectos de los fármacos , Palaemonidae/genética , Palaemonidae/efectos de los fármacos , Palaemonidae/metabolismo , Perfilación de la Expresión Génica , Transcriptoma/efectos de los fármacos , Redes y Vías Metabólicas/efectos de los fármacos
2.
Dev Genes Evol ; 234(1): 21-32, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38616194

RESUMEN

Dmrt (doublesex and mab-3 related transcription factor) is a protein family of transcription factors implicated in sexual regulation. Dmrt proteins are widely conserved and known for their involvement in sex determination and differentiation across species, from invertebrates to humans. In this study, we identified a novel gene with a DM (doublesex/Mab-3)-domain gene in the river prawn, Macrobrachium nipponense, which we named MniDmrt1B due to its similarities and close phylogenetic relationship with Dmrt1B in Macrobrachium rosenbergii. Through amino acid alignments and structural predictions, we observed conservation and identified putative active sites within the DM domain. qRT-PCR analysis revealed that MniDmrt1B exhibited high expression levels in the testis, with consistently higher expression in males compared to females during development. Additionally, similar to other sex-regulated genes, the MniDmrt1B gene exhibited high expression levels during the sex differentiation-sensitive periods in M. nipponense. These results strongly indicated that MniDmrt1B probably plays an important role in testis development and sex differentiation in M. nipponense.


Asunto(s)
Proteínas de Artrópodos , Palaemonidae , Factores de Transcripción , Animales , Femenino , Masculino , Secuencia de Aminoácidos , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Proteínas de Artrópodos/química , Regulación del Desarrollo de la Expresión Génica , Palaemonidae/genética , Palaemonidae/crecimiento & desarrollo , Palaemonidae/metabolismo , Filogenia , Alineación de Secuencia , Diferenciación Sexual/genética , Testículo/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/química
3.
Cell Tissue Res ; 397(2): 125-146, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38878176

RESUMEN

In this study, the complex organization of the AnG in the giant freshwater prawn Macrobrachium rosenbergii was revealed using various techniques, including conventional histology, histochemistry, scanning electron microscopy, and X-ray tomography. The results showed the diversity of cells in the AnG and the detailed organization of the labyrinth's tubule into four radiated areas from the central to peripheral zones. The study also demonstrated the expression of some vertebrate kidney-associated homolog genes, aquaporin (AQP), solute carrier family 22 (SLC-22), nephrin, and uromodulin, in the AnG by qPCR. The result of in situ hybridization further showed the localization of SLC-22 and AQP transcript in the bladder and labyrinth's epithelium, specifically in regions 2, 3, and 4. Additionally, the study revealed neuropeptide expressions in the AnG by qPCR and in situ hybridization, i.e., crustacean hyperglycemic hormone (CHH) and molt inhibiting hormone (MIH), implying that the AnG may have a role in hormone production. Moreover, male and female prawns exhibited different levels of AQP, SLC-22, nephrin, and CHH expressions during the premolt and intermolt stages, suggesting a crucial role relevant to the molting stages. In conclusion, this study clarified the complex structure of the AnG in M. rosenbergii and demonstrated for the first time the expression of vertebrate kidney-associated genes and the possible endocrine role of the AnG. Further investigation is needed to clarify the role of these genes, particularly during ecdysis. The implications of these findings could significantly advance our understanding of the AnG in decapod crustaceans.


Asunto(s)
Palaemonidae , Animales , Palaemonidae/metabolismo , Palaemonidae/genética , Masculino , Femenino , Agua Dulce , Proteínas de Artrópodos/metabolismo , Proteínas de Artrópodos/genética , Acuaporinas/metabolismo , Acuaporinas/genética
4.
Cell Tissue Res ; 397(1): 13-36, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38592496

RESUMEN

Neuropeptide F is a key hormone that controls feeding in invertebrates, including decapod crustaceans. We investigated the differential expression of Macrobrachium rosenbergii neuropeptide F (MrNPF) in the digestive organs of female prawns, M. rosenbergii, during the ovarian cycle. By using RT-qPCR, the expression of MrNPF mRNA in the esophagus (ESO), cardia (CD), and pylorus (PY) of the foregut (FG) gradually increased from stage II and peaked at stage III. In the midgut (MG), hindgut (HG), and hepatopancreas (HP), MrNPF mRNA increased from stage I, reaching a maximal level at stage II, and declined by about half at stages III and IV (P < 0.05). In the ESO, CD, and PY, strong MrNPF-immunoreactivities were seen in the epithelium, muscle, and lamina propria. Intense MrNPF-ir was found in the MG cells and the muscular layer. In the HG, MrNPF-ir was detected in the epithelium of the villi and gland regions, while MrNPF-ir was also more intense in the F-, R-, and B-cells in the HP. However, we found little colocalization between the MrNPF and PGP9.5/ChAT in digestive tissues, implying that most of the positive cells might not be neurons but could be digestive tract-associated endocrine cells that produce and secrete MrNPF to control digestive organ functions in feeding and utilizing feed. Taken together, our first findings indicated that MrNPF was differentially expressed in digestive organs in correlation with the ovarian cycle, suggesting an important link between MrNPF, the physiology of various digestive organs in feeding, and possibly ovarian maturation in female M. rosenbergii.


Asunto(s)
Neuropéptidos , Ovario , Palaemonidae , Animales , Femenino , Palaemonidae/metabolismo , Neuropéptidos/metabolismo , Neuropéptidos/genética , Ovario/metabolismo , Sistema Digestivo/metabolismo , Agua Dulce , ARN Mensajero/metabolismo , ARN Mensajero/genética , Tracto Gastrointestinal/metabolismo
5.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38279207

RESUMEN

Macrobrachium nipponense is gonochoristic and sexually dimorphic. The male prawn grows faster and usually has a larger size than the female. Therefore, a higher male proportion in stock usually results in higher yield. To investigate the impact of temperature on sexual differentiation in M. nipponense, two temperature treatments (26 °C and 31 °C) were conducted. The results showed that compared to the 31 °C treatment (3.20 ± 0.12), the 26 °C treatment displayed a lower female/male ratio (2.20 ± 0.11), which implied that a lower temperature could induce masculinization in M. nipponense. The temperature-sensitive sex differentiation phase was 25-35 days post hatching (DPH) at 26 °C while 15-20 DPH at 31 °C. Transcriptome and qPCR analysis revealed that a lower temperature up-regulated the expression of genes related to androgen secretion, and down-regulated the expressions of genes related to oogonia differentiation. Thirty-one temperature-regulated sex-differentiation genes were identified and the molecular mechanism of temperature-regulated sex differentiation was suggested. The finding of this study indicates that temperature regulation can be proposed as an innovative strategy for improving the culture yield of M. nipponense.


Asunto(s)
Palaemonidae , Penaeidae , Animales , Masculino , Femenino , Palaemonidae/genética , Palaemonidae/metabolismo , Diferenciación Sexual/genética , Temperatura , Transcriptoma , Penaeidae/genética , Proteínas de Artrópodos/genética
6.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928514

RESUMEN

Macrobrachium rosenbergii is an essential species for freshwater economic aquaculture in China, but in the larval process, their salinity requirement is high, which leads to salinity stress in the water. In order to elucidate the mechanisms regulating the response of M. rosenbergii to acute low-salinity exposure, we conducted a comprehensive study of the response of M. rosenbergii exposed to different salinities' (0‱, 6‱, and 12‱) data for 120 h. The activities of catalase, superoxide dismutase, and glutathione peroxidase were found to be significantly inhibited in the hepatopancreas and muscle following low-salinity exposure, resulting in oxidative damage and immune deficits in M. rosenbergii. Differential gene enrichment in transcriptomics indicated that low-salinity stress induced metabolic differences and immune and inflammatory dysfunction in M. rosenbergii. The differential expressions of MIH, JHEH, and EcR genes indicated the inhibition of growth, development, and molting ability of M. rosenbergii. At the proteomic level, low salinity induced metabolic differences and affected biological and cellular regulation, as well as the immune response. Tyramine, trans-1,2-Cyclohexanediol, sorbitol, acetylcholine chloride, and chloroquine were screened by metabolomics as differential metabolic markers. In addition, combined multi-omics analysis revealed that metabolite chloroquine was highly correlated with low-salt stress.


Asunto(s)
Larva , Palaemonidae , Estrés Salino , Animales , Palaemonidae/genética , Palaemonidae/metabolismo , Palaemonidae/crecimiento & desarrollo , Larva/metabolismo , Transcriptoma , Proteómica/métodos , Salinidad , Perfilación de la Expresión Génica , Metabolómica/métodos , Estrés Oxidativo , Multiómica
7.
Int J Mol Sci ; 25(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38892237

RESUMEN

NPC intracellular cholesterol transporter 1 (NPC1) plays an important role in sterol metabolism and transport processes and has been studied in many vertebrates and some insects, but rarely in crustaceans. In this study, we characterized NPC1 from Macrobrachium nipponense (Mn-NPC1) and evaluated its functions. Its total cDNA length was 4283 bp, encoding for 1344 amino acids. It contained three conserved domains typical of the NPC family (NPC1_N, SSD, and PTC). In contrast to its role in insects, Mn-NPC1 was mainly expressed in the adult female hepatopancreas, with moderate expression in the ovary and heart. No expression was found in the embryo (stages CS-ZS) and only weak expression in the larval stages from hatching to the post-larval stage (L1-PL15). Mn-NPC1 expression was positively correlated with ovarian maturation. In situ hybridization showed that it was mainly located in the cytoplasmic membrane and nucleus of oocytes. A 25-day RNA interference experiment was employed to illustrate the Mn-NPC1 function in ovary maturation. Experimental knockdown of Mn-NPC1 using dsRNA resulted in a marked reduction in the gonadosomatic index and ecdysone content of M. nipponense females. The experimental group showed a significant delay in ovarian maturation and a reduction in the frequency of molting. These results expand our understanding of NPC1 in crustaceans and of the regulatory mechanism of ovarian maturation in M. nipponense.


Asunto(s)
Proteínas de Artrópodos , Muda , Palaemonidae , Animales , Femenino , Secuencia de Aminoácidos , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ovario/metabolismo , Ovario/crecimiento & desarrollo , Palaemonidae/genética , Palaemonidae/crecimiento & desarrollo , Palaemonidae/metabolismo , Filogenia , Interferencia de ARN
8.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338678

RESUMEN

This study investigates the role of lysosomal acid lipase (LIPA) in sex hormone regulation and gonadal development in Macrobrachium nipponense. The full-length Mn-LIPA cDNA was cloned, and its expression patterns were analyzed using quantitative real-time PCR (qPCR) in various tissues and developmental stages. Higher expression levels were observed in the hepatopancreas, cerebral ganglion, and testes, indicating the potential involvement of Mn-LIPA in sex differentiation and gonadal development. In situ hybridization experiments revealed strong Mn-LIPA signaling in the spermatheca and hepatopancreas, suggesting their potential role in steroid synthesis (such as cholesterol, fatty acids, cholesteryl ester, and triglycerides) and sperm maturation. Increased expression levels of male-specific genes, such as insulin-like androgenic gland hormone (IAG), sperm gelatinase (SG), and mab-3-related transcription factor (Dmrt11E), were observed after dsMn-LIPA (double-stranded LIPA) injection, and significant inhibition of sperm development and maturation was observed histologically. Additionally, the relationship between Mn-LIPA and sex-related genes (IAG, SG, and Dmrt11E) and hormones (17ß-estradiol and 17α-methyltestosterone) was explored by administering sex hormones to male prawns, indicating that Mn-LIPA does not directly control the production of sex hormones but rather utilizes the property of hydrolyzing triglycerides and cholesterol to provide energy while influencing the synthesis and secretion of self-sex hormones. These findings provide valuable insights into the function of Mn-LIPA in M. nipponense and its potential implications for understanding sex differentiation and gonadal development in crustaceans. It provides an important theoretical basis for the realization of a monosex culture of M. nipponense.


Asunto(s)
Palaemonidae , Animales , Masculino , Palaemonidae/metabolismo , Semen/metabolismo , Hormonas Esteroides Gonadales/metabolismo , Colesterol/metabolismo , Triglicéridos/metabolismo , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo
9.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39000423

RESUMEN

Methyl farnesoate epoxidase (MFE) is a gene encoding an enzyme related to the last step of juvenile hormone biosynthesis. Mn-MFE cDNA has a total length of 1695 bp and an open reading frame (ORF) length of 1482 bp, encoding 493 amino acids. Sequence analysis showed that its amino acid sequence has a PPGP hinge, an FGCG structural domain, and other structural domains specific to the P450 family of enzymes. Mn-MFE was most highly expressed in the hepatopancreas, followed by the ovary and gill, weakly expressed in heart and muscle tissue, and barely expressed in the eyestalk and cranial ganglion. Mn-MFE expression remained stable during the larval period, during which it mainly played a critical role in gonadal differentiation. Expression in the ovary was positively correlated and expression in the hepatopancreas was negatively correlated with ovarian development. In situ hybridization (ISH) showed that the signal was expressed in the oocyte, nucleus, cell membrane and follicular cells, and the intensity of expression was strongest at stage O-IV. The knockdown of Mn-MFE resulted in a significantly lower gonadosomatic index and percentage of ovaries past stage O-III compared to the control group. However, no differences were found in the cumulative frequency of molting between the experimental and control groups. Moreover, the analysis of ovarian tissue sections at the end of the experiment showed differences between groups in development speed but not in subcellular structure. These results demonstrate that Mn-MFE promotes the ovarian development of Macrobrachium nipponense adults but has no effect on molting.


Asunto(s)
Ovario , Palaemonidae , Animales , Ovario/metabolismo , Ovario/crecimiento & desarrollo , Femenino , Palaemonidae/genética , Palaemonidae/crecimiento & desarrollo , Palaemonidae/enzimología , Palaemonidae/metabolismo , Regulación del Desarrollo de la Expresión Génica , Secuencia de Aminoácidos , Filogenia , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Hepatopáncreas/metabolismo , Hepatopáncreas/crecimiento & desarrollo , Ácidos Grasos Insaturados
10.
Fish Shellfish Immunol ; 140: 108945, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37451525

RESUMEN

Tumor necrosis factor receptor-associated factor 6 (TRAF6) is an adapter protein that triggers downstream cascades mediated by both TNFR and the interleukin-1 receptor/Toll-like receptor (IL-1R/TLR) superfamily. TRAF6 is involved in various biological processes, including innate and adaptive immunity. In the present study, a homolog of TRAF6 from Macrobrachium rosenbergii (MrTRAF6) was identified and characterized. The full-length cDNA of MrTRAF6 consisted of 2,114 nucleotides with an open reading frame (ORF) of 1,695 nucleotides encoding a 564-amino acid protein that contained a conserved TRAF family motif including two RING-type zinc fingers and a C-terminal meprin and TRAF homology (MATH) domain. The putative amino sequence of MrTRAF6 shared 45.5-97.3% identity with TRAF6s from other crustacean species with the highest identity to Macrobrachium nipponense TRAF6. Phylogenetic analysis revealed that MrTRAF6 was closely related to TRAF6 of invertebrates and clustered with crustaceans. According to gene expression analysis, the MrTRAF6 transcript demonstrated broad expression in all tissues tested, with the highest expression level in gill and the lowest in muscle tissues. Upon immune challenge with Aeromonas hydrophila, significant upregulation of MrTRAF6 expression was found in the gill, hepatopancreas, hemocyte, and muscle. Furthermore, an RNA interference assay showed that silencing MrTRAF6 by dsRNA could reduce the expression of mannose-binding lectin (MBL) and crustin, but no significant change was detected in anti-lipopolysaccharide factor 5 (ALF5) levels. In addition, the cumulative mortality rate of MrTRAF6-silenced M. rosenbergii was significantly increased after A. hydrophila infection. These findings indicated that MrTRAF6 is involved in antibacterial activity and plays a critical role in the innate immune response of M. rosenbergii.


Asunto(s)
Palaemonidae , Factor 6 Asociado a Receptor de TNF , Animales , Secuencia de Bases , Aeromonas hydrophila/genética , Secuencia de Aminoácidos , Filogenia , Nucleótidos/metabolismo , Palaemonidae/genética , Palaemonidae/metabolismo , Inmunidad Innata/genética
11.
Fish Shellfish Immunol ; 139: 108871, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37295736

RESUMEN

Crustins represent one type of antimicrobial peptides (AMPs) that are key components of the innate immune process of crustaceans. This study successfully identified a novel crustin-like peptide, EcCrustin2, in ridgetail white prawn, Palaemon carinicauda (formerly Exopalaemon carinicauda). EcCrustin2 was found to be 1082 bp in length, with a 378 bp open reading frame (ORF) encoding 125 amino acids. The deduced amino acid sequence of EcCrustin2 exhibited characteristics of crustins in crustacean, including a Cys-rich region at the N-terminus as well as a whey acidic protein domain at the C-terminus. Phylogenetic analysis revealed that the EcCrustin2 was first clustered with Type I crustins, then with other crustins. Expression of EcCrustin2 was mainly detected in immune tissues, including hemocytes, gill and stomach. The expression level of EcCrustin2 was also significantly up-regulated after being exposed to lipopolysaccharide (LPS), lipoteichoic acid (LTA), Vibrio parahaemolyticus and Staphylococcus aureus. EHP infection could also induce EcCrustin2 expression in P. carinicauda. Knockdown of EcCrustin2 with siRNA increased the mortality of V. parahaemolyticus challenged shrimp. Finally, the recombinant EcCrustin2 protein was obtained and demonstrated a wide spectrum of antibacterial activity in vitro. These results indicated that EcCrustin2 takes part in the immune response against bacteria and EHP infection.


Asunto(s)
Palaemonidae , Vibrio parahaemolyticus , Animales , Filogenia , Palaemonidae/genética , Palaemonidae/metabolismo , Clonación Molecular , Secuencia de Bases , Péptidos Catiónicos Antimicrobianos/química , Vibrio parahaemolyticus/fisiología , Proteínas Recombinantes/genética , Inmunidad , Proteínas de Artrópodos/química
12.
Gen Comp Endocrinol ; 340: 114306, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37150420

RESUMEN

Vitellogenin (Vg) is the precursor of vitellin, which is an important female-specific protein stored in oocytes as the major nutrient and energy sources for embryogenesis in oviparous animals. In this study, we performed comprehensive genome-wide analysis of Vg gene family in the prawn Macrobrachium rosenbergii, and eight Vg genes designated as MrVg1a, MrVg1b and MrVg2-7 were identified. MrVg1a clusters with the previously described MrVg1b near the end of chromosome 46 and MrVg2 is on the chromosome 42 while MrVg3-7 cluster on the chromosome 23. All the putative MrVg proteins are characterized by the presence of three conserved functional domains: LPD-N, DUF1943 and vWD. Phylogenetic analysis revealed that MrVg1a shares 93% identity with MrVg1b and groups together into a branch while MrVg2-7 group into another branch, suggesting that MrVg1a, 1b and MrVg2-7 might diversify from a common ancestral gene. All the corresponding MrVg transcripts especially for MrVg1 exhibit high expression in the female hepatopancreas at late vitellogensis stage but extremely low in the ovaries except MrVg5, indicating that hepatopancreas is the major site of MrVgs synthesis. In the male, interestingly, MrVg5 and MrVg6 are also highly expressed in the testis, suggesting their potential involvement in testicular development. Bilateral ablation of eyestalk significantly upregulate all the MrVgs mRNA in the female hepatopancreas and the MrVg1 in ovary, but have no effect on the expression of MrVg2-7 in the ovary, demonstrating that eyestalk hormones could promote the ovarian development mostly by inducing the synthesis of MrVgs in the hepatopancreas but rarely in the ovary. Our results provide new insights into the prawn MrVgs family and improve our understanding of the potential role for each member of the family in the gonadal development of M. rosenbergii.


Asunto(s)
Decápodos , Palaemonidae , Animales , Femenino , Masculino , Vitelogeninas/genética , Vitelogeninas/metabolismo , Palaemonidae/genética , Palaemonidae/metabolismo , Filogenia , Decápodos/metabolismo , Proteínas/metabolismo , Agua Dulce
13.
Ecotoxicol Environ Saf ; 268: 115723, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37992642

RESUMEN

High carbonate alkalinity is one of the major stress factors for survival of aquatic animals in saline-alkaline water. Exopalaemon carinicauda is a good model for studying the saline-alkaline adaption mechanism in crustacean because of its great adaptive capacity to alkalinity stress. In this study, non-targeted liquid chromatography-mass spectrometry (LC-MS) metabolomics analyses based on high-throughput RNA sequencing (RNA-Seq) were used to study the metabolomic responses of hepatopancreas in E. carinicauda at 12 h and 36 h after acute carbonate alkalinity stress. The results revealed that most of the significantly differential metabolites were related to the lipid metabolism. In particular, the sphingolipid metabolism was observed at 12 h, the glycerophospholipid metabolism was detected at 36 h, and the linoleic acid metabolic pathway was significantly enriched at both 12 h and 36 h. The combined transcriptome and metabolome analysis showed that energy consumption increased at 12 h, resulting in significant enrichment of AMPK signaling pathways, which contributed to maintain energy homeostasis. Subsequently, the hepatopancreas provided sufficient energy supply through cAMP signaling pathway and glycerophosphate metabolism to maintain normal metabolic function at 36 h. These findings might help to understand the molecular mechanisms of the E. carinicauda under carbonate alkalinity stress, thereby promote the research and development of saline-alkaline resistant shrimp.


Asunto(s)
Palaemonidae , Transcriptoma , Animales , Hepatopáncreas , Palaemonidae/genética , Palaemonidae/metabolismo , Carbonatos/metabolismo
14.
Ecotoxicol Environ Saf ; 249: 114393, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36508808

RESUMEN

Semicarbazide (SEM), the metabolite of antibiotic nitrofurazone, is often used as the biomarker to determine the use of nitrofurazone. Frequent false-positive events of SEM have brought great trouble to the aquatic industry in international trade. In this paper, the situation of endogenous SEM in aquatic products was investigated, and the possible mechanism of amino acid conversion into SEM was studied by establishing a simulated oxidation system and a urea system. The results revealed the presence of endogenous SEM in the muscle tissue of shrimps, and the content of SEM ranged from 0.56 to 5.28 ng/g, which presented as Macrobrachium nipponense>Macrobrachium rosenbergii>Procambarus clarkii. The increase in SEM production of control lysine under natural oxidation conditions suggests that oxidation has an effect on the conversion of SEM. Under the action of the simulated oxidation system, the SEM of Arginine, Lysine, Citrulline and Glutamine among the 21 amino acids were increased, and the polymer azine was formed. In combination with the structure of four amino acids, it was presumed that the group of amide is a key intermediate structure for the formation of endogenous SEM. In addition, under the urea system, the content of SEM produced by amino acids increased after the addition of urea, and the concentration of urea had a significant correlation with the content of SEM. Taken together, the production of endogenous SEM in shrimps is related to amino acids and urea, and the urea cycle and other substances containing amide structures should also be considered in future explorations.


Asunto(s)
Nitrofurazona , Palaemonidae , Animales , Aminoácidos , Lisina , Comercio , Internacionalidad , Semicarbacidas/metabolismo , Urea/química , Palaemonidae/metabolismo
15.
Environ Toxicol ; 38(3): 545-554, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36288433

RESUMEN

Ammonia is one of the common stress factors in aquaculture. However, the effect of chronic ammonia exposure in juvenile oriental river prawn (Macrobrachium nipponense) is currently unexplored. This study explored the effects of chronic ammonia on juvenile healthy oriental river prawns. Fifty prawns (0.123 ± 0.003 g) were exposed to 0, 5, and 15 mg/L total ammonia nitrogen (TAN) in triplicates for 28 days. The effects of chronic ammonia challenge were evaluated on growth, antioxidant capacity, hepatopancreas and gill morphology, and glucose and ammonia metabolism. The results showed that, the chronic ammonia exposure reduced significantly survival rate and weight gain of prawns. The prawns exposed to 15 mg/L ammonia had induced oxidative stress. However, the prawn exposed to 15 mg/L ammonia had significantly lower aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and acid phosphatase activities in the serum. Furthermore, exposure of prawns to 15 mg/L ammonia increased the activities of hexokinase, pyruvate kinase, pyruvate and lactic acid content, and glutamine synthase activity. However, the prawns exposed to 15 mg/L ammonia, reduced succinic dehydrogenase, 6-phosphogluconic dehydrogenase, phosphoenolpyruvate carboxykinase, glutamate synthase, and glutamate dehydrogenase activities but increased ammonia content in serum. The exposure of ammonia deformed lumen, damaged basement membrane and decreased secretory cells in the hepatopancreas, disordered gill epithelial and pillar cells, and caused gill filament base vacuolation. Our study indicates that chronic ammonia stress impairs growth performance, tissue morphology, induces oxidative stress, and alters glucose and ammonia metabolism in juvenile oriental river prawns.


Asunto(s)
Palaemonidae , Animales , Palaemonidae/metabolismo , Amoníaco/toxicidad , Glucosa/metabolismo , Antioxidantes/metabolismo , Estrés Oxidativo
16.
Int J Mol Sci ; 24(24)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38139271

RESUMEN

Sexual manipulation in the giant freshwater prawn Macrobrachium rosenbergii has proven successful in generating monosex (both all-male and all-female) populations for aquaculture using a crustacean-specific endocrine gland, the androgenic gland (AG), which serves as a key masculinizing factor by producing and secreting an insulin-like AG hormone (IAG). Here, we provide a summary of the advancements from the discovery of the AG and IAG in decapods through to the development of monosex populations in M. rosenbergii. We discuss the broader sexual development pathway, which is highly divergent across decapods, and provide our future perspective on the utility of novel genetic and genomic tools in promoting refined approaches towards monosex biotechnology. Finally, the future potential benefits of deploying monosex prawn populations for environmental management are discussed.


Asunto(s)
Palaemonidae , Animales , Masculino , Femenino , Palaemonidae/genética , Palaemonidae/metabolismo , Andrógenos/metabolismo , Insulina/metabolismo , Desarrollo Sexual , Agua Dulce
17.
Int J Mol Sci ; 24(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37239827

RESUMEN

Sex reversal induced by 17ß-estradiol (E2) has shown the potential possibility for monoculture technology development. The present study aimed to determine whether dietary supplementation with different concentrations of E2 could induce sex reversal in M. nipponense, and select the sex-related genes by performing the gonadal transcriptome analysis of normal male (M), normal female (FM), sex-reversed male prawns (RM), and unreversed male prawns (NRM). Histology, transcriptome analysis, and qPCR were performed to compare differences in gonad development, key metabolic pathways, and genes. Compared with the control, after 40 days, feeding E2 with 200 mg/kg at PL25 (PL: post-larvae developmental stage) resulted in the highest sex ratio (female: male) of 2.22:1. Histological observations demonstrated the co-existence of testis and ovaries in the same prawn. Male prawns from the NRM group exhibited slower testis development without mature sperm. RNA sequencing revealed 3702 differentially expressed genes (DEGs) between M vs. FM, 3111 between M vs. RM, and 4978 between FM vs. NRM. Retinol metabolism and nucleotide excision repair pathways were identified as the key pathways for sex reversal and sperm maturation, respectively. Sperm gelatinase (SG) was not screened in M vs. NRM, corroborating the results of the slice D. In M vs. RM, reproduction-related genes such as cathepsin C (CatC), heat shock protein cognate (HSP), double-sex (Dsx), and gonadotropin-releasing hormone receptor (GnRH) were expressed differently from the other two groups, indicating that these are involved in the process of sex reversal. Exogenous E2 can induce sex reversal, providing valuable evidence for the establishment of monoculture in this species.


Asunto(s)
Palaemonidae , Animales , Masculino , Femenino , Palaemonidae/metabolismo , Semen , Perfilación de la Expresión Génica/métodos , Estradiol/farmacología , Estradiol/metabolismo , Ovario/metabolismo , Transcriptoma
18.
J Exp Zool B Mol Dev Evol ; 338(5): 292-300, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35037742

RESUMEN

Hox genes encode transcription factors that specify the body segment identity during development, including crustaceans, such as amphipods and decapods, that possess a remarkable diversity of segments and specialized appendages. In amphipods, alterations of specialized appendages have been obtained using knockout experiment of Hox genes, which suggests that these genes are involved in the evolution of morphology within crustaceans. However, studies of Hox genes in crustaceans have been limited to a few species. Here, we identified the homeodomain of nine Hox genes: labial (lab), proboscipedia (pb), Deformed (Dfd), Sex combs reduced (Scr), fushi tarazu (ftz), Antennapedia (Antp), Ultrabithorax (Ubx), abdominal-A (abdA), and Abdominal-B (AbdB), and evaluated their expression by RT-qPCR and RT-PCR in the ovary, during embryonic development, and at the first larval stage (Zoea I) of the decapod Macrobrachium olfersii. The transcript levels of lab, Dfd, and ftz decreased and transcripts of pb, Scr, Antp, Ubx, abdA, and AbdB increased during embryonic development. Hox genes were expressed in mature ovaries and Zoea I larval stages, except Scr and ftz, respectively. In addition, isoforms of Dfd, Scr, Ubx, and abdA, which have been scarcely reported in crustaceans, were described. New partial sequences of 87 Hox genes from other crustaceans were identified from the GenBank database. Our results are interesting for future studies to determine the specific function of Hox genes and their isoforms in the freshwater prawn M. olfersii and to contribute to the understanding of the diversity and evolution of body plans and appendages in Crustaceans.


Asunto(s)
Proteínas de Drosophila , Palaemonidae , Animales , Proteínas de Drosophila/genética , Desarrollo Embrionario , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Palaemonidae/genética , Palaemonidae/metabolismo
19.
Fish Shellfish Immunol ; 131: 454-469, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36257556

RESUMEN

Molting is a basic physiological behavior of the Oriental river prawn (Macrobrachium nipponense), however, the gene expression patterns and immune mechanisms during the molting process of Oriental river prawn are unclear. In the current study, the gene expression levels of the hepatopancreas of the Oriental river prawn at different molting stages (pre-molting, Prm; mid-molting, Mm; and post-molting, Pom) were detected by mRNA sequencing. A total of 1721, 551, and 1054 differentially expressed genes (DEGs) were identified between the Prm hepatopancreas (PrmHe) and Mm hepatopancreas (MmHe), MmHe and Pom hepatopancreas (PomHe) and PrmHe and PomHe, respectively. The results showed that a total of 1151 DEGs were annotated into 316 signaling pathways, and the significantly enriched immune-related pathways were "Lysosome", "Hippo signaling pathway", "Apoptosis", "Autophagy-animal", and "Endocytosis". The qRT-PCR verification results of 30 randomly selected DEGs were consistent with RNA-seq. The expression patterns of eight immune related genes in different molting stages of the Oriental river prawn were analyzed by qRT-PCR. The function of Caspase-1 (CASP1) was further investigated by bioinformatics, qRT-PCR, and RNAi analysis. CASP1 has two identical conserved domains: histidine active site and pentapeptide motif, and the expression of CASP1 is the highest in ovary. The expression levels of triosephosphate isomerase (TPI), Cathepsin B (CTSB) and Hexokinase (HXK) were evaluated after knockdown of CASP1. This research provides a valuable basis to improve our understanding the immune mechanisms of Oriental river prawns at different molting stages. The identification of immune-related genes is of great significance for enhancing the immunity of the Oriental river prawn, or other crustaceans, by transgenic methods in the future.


Asunto(s)
Palaemonidae , Femenino , Animales , Palaemonidae/metabolismo , Muda/genética , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Hepatopáncreas/metabolismo , Perfilación de la Expresión Génica , Transcriptoma
20.
Fish Shellfish Immunol ; 127: 948-955, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35661815

RESUMEN

Crustins are a kind of antibacterial peptides (AMP) existing in crustaceans, and their antibacterial abilities are considered to be related to the conserved WAP domain. In this study, a novel type I Crustin gene was identified in Exopalaemon carinicauda, named EcCru. The deduced amino acid sequence revealed that the conserved cysteine at position 7 in the WAP domain was replaced by aspartic acid. The gene is 405 bp in length, encoding 134 amino acids, and is mainly distributed in gills and hepatopancreas. After Vibrio parahaemolyticus and Aeromonas hydrophila stimulation, the expression of EcCru was significantly up-regulated within 12 h, and then returned to normal levels. The recombinant protein was obtained using the Pichia pastoris expression system, and the recombinant protein had neither antibacterial activity against gram-positive or gram-negative bacteria. But the antibacterial ability emerged when Asp101 was mutated to Cys. Notably, we also obtained a mutant that had a deletion at the 6 th conserved Cys in the WAP domain, and this mutant had antibacterial ability against gram-positive bacteria Bacillus subtilis and B. cereus. This indicates that the conserved cysteine with different positions in WAP domain can have different effects on the antibacterial ability of Crustins.


Asunto(s)
Antiinfecciosos , Palaemonidae , Animales , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos , Proteínas de Artrópodos/química , Secuencia de Bases , Cisteína , Inmunidad Innata/genética , Palaemonidae/genética , Palaemonidae/metabolismo , Filogenia , Proteínas Recombinantes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA