RESUMEN
Panax notoginseng (Burkill) F.H. Chen, a valuable traditional Chinese medicine, faces significant yield and quality challenges stemming from root rot primarily caused by Fusarium solani. Burkholderia arboris PN-1, isolated from the rhizosphere soil of P. notoginseng, demonstrated a remarkable ability to inhibit the growth of F. solani. This study integrates phenotypic, phylogenetic, and genomic analyses to enhance our understanding of the biocontrol mechanisms employed by B. arboris PN-1. Phenotype analysis reveals that B. arboris PN-1 effectively suppresses P. notoginseng root rot both in vitro and in vivo. The genome of B. arboris PN-1 comprises three circular chromosomes (contig 1: 3,651,544 bp, contig 2: 1,355,460 bp, and contig 3: 3,471,056 bp), with a 66.81% GC content, housing 7,550 protein-coding genes. Notably, no plasmids were detected. Phylogenetic analysis places PN-1 in close relation to B. arboris AU14372, B. arboris LMG24066, and B. arboris MEC_B345. Average nucleotide identity (ANI) values confirm the PN-1 classification as B. arboris. Comparative analysis with seven other B. arboris strains identified 4,628 core genes in B. arboris PN-1. The pan-genome of B. arboris appears open but may approach closure. Whole-genome sequencing revealed 265 carbohydrate-active enzymes and identified 9 gene clusters encoding secondary metabolites. This comprehensive investigation enhances our understanding of B. arboris genomes, paving the way for their potential as effective biocontrol agents against fungal plant pathogens in the future.
Asunto(s)
Burkholderia , Fusarium , Panax notoginseng , Panax notoginseng/genética , Panax notoginseng/metabolismo , Panax notoginseng/microbiología , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Fusarium/genética , GenómicaRESUMEN
BACKGROUND: Panax notoginseng (Burk) F. H. Chen is one of the most famous Chinese traditional medicinal plants. The taproot is the main organ producing triterpenoid saponins, and its development is directly linked to the quality and yield of the harvested P. notoginseng. However, the mechanisms underlying the dynamic metabolic changes occurring during taproot development of P. notoginseng are unknown. RESULTS: We carried out metabolomic and transcriptomic analyses to investigate metabolites and gene expression during the development of P. notoginseng taproots. The differentially accumulated metabolites included amino acids and derivatives, nucleotides and derivatives, and lipids in 1-year-old taproots, flavonoids and terpenoids in 2- and 3-year-old taproots, and phenolic acids in 3-year-old taproots. The differentially expressed genes (DEGs) are related to phenylpropanoid biosynthesis, metabolic pathway and biosynthesis of secondary metabolites at all three developmental stages. Integrative analysis revealed that the phenylpropanoid biosynthesis pathway was involved in not only the development of but also metabolic changes in P. notoginseng taproots. Moreover, significant accumulation of triterpenoid saponins in 2- and 3-year-old taproots was highly correlated with the up-regulated expression of cytochrome P450s and uridine diphosphate-dependent glycosyltransferases genes. Additionally, a gene encoding RNase-like major storage protein was identified to play a dual role in the development of P. notoginseng taproots and their triterpenoid saponins synthesis. CONCLUSIONS: These results elucidate the molecular mechanism underlying the accumulation of and change relationship between primary and secondary metabolites in P. notoginseng taproots, and provide a basis for the quality control and genetic improvement of P. notoginseng.
Asunto(s)
Panax notoginseng , Saponinas , Triterpenos , Panax notoginseng/genética , Metaboloma , Perfilación de la Expresión GénicaRESUMEN
BACKGROUND: Nitrogen (N) metabolism-related key genes and conserved amino acid sites in key enzymes play a crucial role in improving N use efficiency (NUE) under N stress. However, it is not clearly known about the molecular mechanism of N deficiency-induced improvement of NUE in the N-sensitive rhizomatous medicinal plant Panax notoginseng (Burk.) F. H. Chen. To explore the potential regulatory mechanism, the transcriptome and proteome were analyzed and the three-dimensional (3D) information and molecular docking models of key genes were compared in the roots of P. notoginseng grown under N regimes. RESULTS: Total N uptake and the proportion of N distribution to roots were significantly reduced, but the NUE, N use efficiency in biomass production (NUEb), the recovery of N fertilizer (RNF) and the proportion of N distribution to shoot were increased in the N0-treated (without N addition) plants. The expression of N uptake- and transport-related genes NPF1.2, NRT2.4, NPF8.1, NPF4.6, AVP, proteins AMT and NRT2 were obviously up-regulated in the N0-grown plants. Meanwhile, the expression of CIPK23, PLC2, NLP6, TCP20, and BT1 related to the nitrate signal-sensing and transduction were up-regulated under the N0 condition. Glutamine synthetase (GS) activity was decreased in the N-deficient plants, while the activity of glutamate dehydrogenase (GDH) increased. The expression of genes GS1-1 and GDH1, and proteins GDH1 and GDH2 were up-regulated in the N0-grown plants, there was a significantly positive correlation between the expression of protein GDH1 and of gene GDH1. Glu192, Glu199 and Glu400 in PnGS1 and PnGDH1were the key amino acid residues that affect the NUE and lead to the differences in GDH enzyme activity. The 3D structure, docking model, and residues of Solanum tuberosum and P. notoginseng was similar. CONCLUSIONS: N deficiency might promote the expression of key genes for N uptake (genes NPF8.1, NPF4.6, AMT, AVP and NRT2), transport (NPF1.2 and NRT2.4), assimilation (proteins GS1 and GDH1), signaling and transduction (genes CIPK23, PLC2, NLP6, TCP20, and BT1) to enhance NUE in the rhizomatous species. N deficiency might induce Glu192, Glu199 and Glu400 to improve the biological activity of GS1 and GDH, this has been hypothesized to be the main reason for the enhanced ability of N assimilation in N-deficient rhizomatous species. The key genes and residues involved in improving NUE provide excellent candidates for the breeding of medicinal plants.
Asunto(s)
Panax notoginseng , Plantas Medicinales , Nitrógeno/metabolismo , Plantas Medicinales/genética , Plantas Medicinales/metabolismo , Panax notoginseng/genética , Panax notoginseng/metabolismo , Simulación del Acoplamiento Molecular , Fitomejoramiento , Aminoácidos/metabolismo , Regulación de la Expresión Génica de las PlantasRESUMEN
The composition and stability of the microbial community structure of roots and root zone soils play a key role in the healthy growth of plants. We examined the distribution characteristics of phenolic acids and saponins, as well as microbial communities in the root space (root endosphere, rhizoplane soil, rhizosphere soil, and bulk soil) of healthy and root rot disease-affected Panax notoginseng. The results showed that after infection with root rot, the rhizoplane soil exhibited significant decreases in organic matter and hydrolyzable nitrogen and significant increases in available phosphorus, available potassium, and total nitrogen. The contents of phenolic acids (except benzoic acid) and ginsenoside Rg2 in the root endosphere significantly increased. Ferulic acid and p-hydroxybenzoic acid in the rhizoplane soil significantly increased. Rhodococcus increased significantly in the root endosphere, rhizoplane, and rhizosphere soil; Nitrospira decreased significantly in the rhizoplane, rhizosphere, and bulk soil; and Plectosphaerella decreased significantly in the root endosphere and rhizoplane soil. Moreover, the accumulation of most autotoxins can promote the growth of pathogens. In summary, the spatial autotoxic substances and microbial community differences in P. notoginseng roots jointly induce the occurrence of root rot.IMPORTANCEPanax notoginseng is highly susceptible to soil-borne diseases induced during planting, and root rot, which usually occurs in the root and stem parts of the plant, is the most severe. We divided the root environment of P. notoginseng into four parts (root endosphere, rhizoplane soil, rhizosphere soil, and bulk soil) and studied it with unplanted soil as the control. In this study, we examined the changes in the content of autotoxic substances in the root space of P. notoginseng, along with the interplay between these substances and microorganisms. This study revealed the mechanism underlying root rot and provided a theoretical basis for alleviating continuous cropping obstacles in P. notoginseng.
Asunto(s)
Bacterias , Microbiota , Panax notoginseng , Enfermedades de las Plantas , Raíces de Plantas , Rizosfera , Microbiología del Suelo , Panax notoginseng/microbiología , Panax notoginseng/crecimiento & desarrollo , Raíces de Plantas/microbiología , Microbiota/efectos de los fármacos , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Saponinas , Hidroxibenzoatos/análisis , Hidroxibenzoatos/metabolismoRESUMEN
The root rot mainly caused by Fusarium solani is a bottleneck in the cultivation of Panax notoginseng. In this study, we reported a gene encoding a plant cell wall structural protein, P. notoginseng proline-rich protein (PnPRPL1), whose transcription was upregulated by F. solani and induced by some hormone signals. The PnPRPL1 recombinant protein significantly inhibited the growth and conidial germination of the root rot pathogens. Downregulation of PnPRPL1 by RNA interference (RNAi) in P. notoginseng leaves increased the susceptibility to F. solani, whereas overexpression of PnPRPL1 in tobacco (Nicotiana tabacum) enhanced the resistance to F. solani. Compared with wild-type tobacco, the PnPRPL1-overexpressing transgenic tobacco had higher reactive oxygen species (ROS)-scavenging enzyme activities, lower ROS levels, and more lignin and callose deposition. The opposite results were obtained for the P. notoginseng expressing PnPRPL1 RNAi fragments. Furthermore, the PnPRPL1 promoter transcription activity was induced by several plant hormones and multiple stress stimuli. In addition, the transcription factor PnWRKY27 activated the expression of PnPRPL1 by directly binding to the promoter region. Thus, PnPRPL1, which is positively regulated by a WRKY transcription factor, encodes an antimicrobial protein that also mediates ROS homoeostasis and callose/lignin deposition during the response to F. solani infection.
Asunto(s)
Pared Celular , Fusarium , Nicotiana , Panax notoginseng , Enfermedades de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Especies Reactivas de Oxígeno , Fusarium/fisiología , Especies Reactivas de Oxígeno/metabolismo , Pared Celular/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Enfermedades de las Plantas/microbiología , Nicotiana/microbiología , Nicotiana/genética , Nicotiana/metabolismo , Panax notoginseng/microbiología , Panax notoginseng/metabolismo , Panax notoginseng/fisiología , Regulación de la Expresión Génica de las Plantas , Resistencia a la Enfermedad , Regiones Promotoras Genéticas/genéticaRESUMEN
Combination immunotherapy is being increasingly explored for cancer treatment, leading to various vector materials for the codelivery of immune agents and drugs. However, current tumor vaccines exhibit poor immunogenicity, severely compromising their therapeutic efficacy. Herein, an injectable hydrogel was developed based on dopamine (DA) and Panax notoginseng polysaccharide (PNPS) loaded with hair microparticles (HMPs) to enhance the immunogenicity of tumor vaccines. Photothermal effects of incorporated HMPs can trigger immunogenic cancer cell death and the release of abundant autologous tumor antigens, which are captured by catechol groups. Concomitant breakdown of PNPS recruits and activates dendritic cells (DCs). The macroporous structure of cryogels allows immune cell infiltration and interaction with antigens adsorbed on PNPS and DA cryogels (PD cryogels), thereby provoking potent cytotoxic T-cell responses. Hence, PD cryogels enabling cell infiltration and accelerated DC maturation may serve as a therapeutic vaccination platform against cancer.
Asunto(s)
Vacunas contra el Cáncer , Criogeles , Células Dendríticas , Panax notoginseng , Polisacáridos , Vacunas contra el Cáncer/química , Vacunas contra el Cáncer/inmunología , Criogeles/química , Criogeles/farmacología , Panax notoginseng/química , Animales , Ratones , Polisacáridos/química , Polisacáridos/farmacología , Células Dendríticas/inmunología , Humanos , Femenino , Ratones Endogámicos C57BL , Línea Celular TumoralRESUMEN
Recent research has demonstrated the immunomodulatory potential of Panax notoginseng in the treatment of chronic inflammatory diseases and cerebral hemorrhage, suggesting its significance in clinical practice. Nevertheless, the complex immune activity of various components has hindered a comprehensive understanding of the immune-regulating properties of Panax notoginseng, impeding its broader utilization. This review evaluates the effect of Panax notoginseng to various types of white blood cells, elucidates the underlying mechanisms, and compares the immunomodulatory effects of different Panax notoginseng active fractions, aiming to provide the theory basis for future immunomodulatory investigation.
Asunto(s)
Panax notoginseng , Panax notoginseng/química , Humanos , Animales , Sistema Inmunológico/efectos de los fármacos , Leucocitos/efectos de los fármacos , Leucocitos/inmunología , Agentes Inmunomoduladores/farmacología , Agentes Inmunomoduladores/uso terapéutico , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacologíaRESUMEN
A Gram-stain-positive actinomycete, designated REN17T, was isolated from fermented grains of Baijiu collected from Sichuan, PR China. It exhibited branched substrate mycelia and a sparse aerial mycelium. The optimal growth conditions for REN17T were determined to be 28â°C and pH 7, with a NaCl concentration of 0â% (w/v). ll-Diaminopimelic acid was the diagnostic amino acid of the cell-wall peptidoglycan and the polar lipids were composed of phosphatidylethanolamine, phosphatidylinositol, an unidentified phospholipid, two unidentified lipids and four unidentified glycolipids. The predominant menaquinone was MK-9 (H2), MK-9 (H4), MK-9 (H6) and MK-9 (H8). The major fatty acids were iso-C16 : 0. The 16S rRNA sequence of REN17T was most closely related to those of Streptomyces apricus SUN 51T (99.8â%), Streptomyces liliiviolaceus BH-SS-21T (99.6â%) and Streptomyces umbirnus JCM 4521T (98.9â%). The digital DNA-DNA hybridization, average nucleotide identity and average amino acid identify values between REN17T and its closest replated strain, of S. apricus SUN 51T, were 35.9, 88.9 and 87.3â%, respectively. Therefore, REN17T represents a novel species within the genus Streptomyces, for which the name Streptomyces beigongshangae sp. nov. is proposed. The type strain is REN17T (=GDMCC 4.193T=JCM 34712T). While exploring the function of the strain, REN17T was found to possess the ability to transform major ginsenosides of Panax notoginseng (Burk.) F.H. Chen (Araliaceae) into minor ginsenoside through HPLC separation, which was due to the presence of ß-glucosidase. The recombinant ß-glucosidase was constructed and purified, which could produce minor ginsenosides of Rg3 and C-K. Finally, the enzymatic properties were characterized.
Asunto(s)
Técnicas de Tipificación Bacteriana , ADN Bacteriano , Ácidos Grasos , Fermentación , Ginsenósidos , Hibridación de Ácido Nucleico , Panax notoginseng , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Streptomyces , Vitamina K 2 , ARN Ribosómico 16S/genética , Ácidos Grasos/química , Streptomyces/aislamiento & purificación , Streptomyces/genética , Streptomyces/clasificación , Vitamina K 2/análogos & derivados , ADN Bacteriano/genética , China , Panax notoginseng/microbiología , Ginsenósidos/metabolismo , Peptidoglicano , Grano Comestible/microbiología , Ácido Diaminopimélico , Fosfolípidos/química , Composición de BaseRESUMEN
BACKGROUND: Panax notoginseng saponins (PNS) are commonly used first-line drugs for treating cerebral thrombosis and stroke in China. However, the synchronized and targeted delivery of active ingredients in traditional Chinese medicine (TCM) poses a significant challenge for modern TCM formulations. METHODS: Bovine serum albumin (BSA) was modified using 2-methacryloyloxyethyl phosphorylcholine (MPC), an analog of acetylcholine, and subsequently adsorbed the major PNS onto the modified albumin to produce MPC-BSA@PNS nanoparticles (NPs). This novel delivery system facilitated efficient and synchronized transport of PNS across the blood-brain barrier (BBB) through active transport mediated by nicotinic acetylcholine receptors. RESULTS: In vitro experiments demonstrated that the transport rates of R1, Rg1, Rb1, and Rd across the BBB were relatively synchronous in MPC-BSA@PNS NPs compared to those in the PNS solution. Additionally, animal experiments revealed that the brain-targeting efficiencies of R1 + Rg1 + Rb1 in MPC-BSA@PNS NPs were 2.02 and 7.73 times higher than those in BSA@PNS NPs and the free PNS group, respectively. CONCLUSIONS: This study presents a simple and feasible approach for achieving the targeted delivery of complex active ingredient clusters in TCM.
Asunto(s)
Panax notoginseng , Saponinas , Animales , Acetilcolina , Encéfalo , AlbúminasRESUMEN
Porcine epidemic diarrhea virus (PEDV) causes severe diarrhea and high mortality in neonatal suckling piglets, leading to significant economic losses to the swine industry. Panax notoginseng saponins (PNS) are bioactive extracts derived from the P. notoginseng plant. In this study, we investigated the anti-PEDV effect of PNS by employing various methodologies to assess their impact on PEDV in Vero cells. Using a CCK-8 (Cell Counting Kit-8) assay, we found that PNS had no significant cytotoxicity below the concentration of 128 µg/mL in Vero cells. Using immunofluorescence assays (IFAs), an enzyme-linked immunosorbent assay (ELISA), and plaque formation assays, we observed a dose-dependent inhibition of PEDV infection by PNS within 24-48 hours postinfection. PNS exerts its anti-PEDV activity specifically at the genome replication stage, and mRNA-seq analysis demonstrated that treatment with PNS resulted in increased expression of various genes, including IFIT1 (interferon-induced protein with tetratricopeptide repeats 1), IFIT3 (interferon-induced protein with tetratricopeptide repeats 3), CFH (complement factor H), IGSF10 (immunoglobulin superfamily member 10), ID2 (inhibitor of DNA binding 2), SPP1 (secreted phosphoprotein 1), PLCB4 (phospholipase C beta 4), and FABP4 (fatty acid binding protein 4), but it resulted in decreased expression of IL1A (interleukin 1 alpha), TNFRSF19 (TNF receptor superfamily member 19), CDH8 (cadherin 8), DDIT3 (DNA damage inducible transcript 3), GADD45A (growth arrest and DNA damage inducible alpha), PTPRG (protein tyrosine phosphatase receptor type G), PCK2 (phosphoenolpyruvate carboxykinase 2), and ADGRA2 (adhesion G protein-coupled receptor A2). This study provides insights into the potential mechanisms underlying the antiviral effects of PNS. Taken together, the results suggest that the PNS might effectively regulate the defense response to the virus and have potential to be used in antiviral therapies.
Asunto(s)
Infecciones por Coronavirus , Panax notoginseng , Virus de la Diarrea Epidémica Porcina , Saponinas , Enfermedades de los Porcinos , Chlorocebus aethiops , Animales , Porcinos , Saponinas/farmacología , Células Vero , Virus de la Diarrea Epidémica Porcina/genética , Interferones , Antivirales/farmacología , Enfermedades de los Porcinos/tratamiento farmacológicoRESUMEN
Notoginsenosides are important bioactive compounds from Panax notoginseng (Burk.) F. H. Chen, most of which have xylose in their sugar chains. However, the xylosyltransferases involved in the generation of notoginsenosides remain poorly understood, posing a bottleneck for further study of the biosynthesis of notoginsenosides. In this work, a new xylosyltransferase gene, PnUGT57 (named UGT94BW1), was identified from P. notoginseng, which has a distinct sequence and could catalyze the 2'-O glycosylation of ginsenosides Rh1 and Rg1 to produce notoginsenosides R2 and R1, respectively. We first characterized the optimal conditions for the PnUGT57 activity and its enzymatic kinetic parameters, and then, molecular docking and site-directed mutagenesis were performed to elucidate the catalytic mechanism of PnUGT57. Combined with the results of site-directed mutagenesis, Glu26, Ser266, Glu267, Trp347, Ser348, and Glu352 in PnUGT57 were identified as the key residues involved in 2'-O glycosylation of C-6 O-Glc, and PnUGT57R175A and PnUGT57G237A could significantly improve the catalytic activity of PnUGT57. These findings not only provide a new xylosyltransferase gene for augmenting the plant xylosyltransferase database but also identify the pivotal sites and catalytic mechanism of the enzyme, which would provide reference for the modification and application of xylosyltransferases in the future.
Asunto(s)
Ginsenósidos , Panax notoginseng , Pentosiltransferasa , UDP Xilosa Proteína Xilosiltransferasa , Ginsenósidos/metabolismo , Ginsenósidos/biosíntesis , Ginsenósidos/química , Glicosilación , Pentosiltransferasa/metabolismo , Pentosiltransferasa/genética , Estructura Molecular , Mutagénesis Sitio-Dirigida , Simulación del Acoplamiento MolecularRESUMEN
In this study, the protective effects of Panax notoginseng saponins (PNS) against gamma radiation-induced DNA damage and associated physiological alterations in Swiss albino mice were investigated. Exposure to gamma radiation led to a dose-dependent increase in cytokinesis-blocked micronuclei (CBMN) double-strand DNA breaks (DSBs), dicentric aberrations (DC), formation in peripheral blood mononuclear cells. However, pretreatment with PNS at concentrations of 1, 5, and 10 µg/mL significantly attenuated the frequencies of DC and CBMN in a concentration-dependent manner. PNS administration before radiation exposure also reduced radiation-induced DSBs in BL, indicating protection against reactive oxygen species generation and DNA damage. Notably, pretreatment with PNS at 10 µg/mL prevented the overexpression of γ-H2AX, proteins associated with DNA damage response, in irradiated mice. In addition, in vivo studies showed intraperitoneal administration of PNS (25 mg/kg body weight) for 1 h before radiation exposure mitigated lipid peroxidation levels and restored antioxidant status, countering oxidative damage induced by gamma radiation. Furthermore, PNS pretreatment reversed the decrease in hemoglobin (Hb) content, white blood cell count, and red blood cell count in irradiated mice, indicating preservation of hematological parameters. Overall, PNS demonstrated an anticlastogenic effect by modulating radiation-induced DSBs and preventing oxidative damage, thus highlighting its potential as a protective agent against radiation-induced DNA damage and associated physiological alterations. Clinically, PNS will be beneficial for cancer patients undergoing radiotherapy, but their pharmacological properties and toxicity profiles need to be studied.
Asunto(s)
Rayos gamma , Panax notoginseng , Saponinas , Animales , Rayos gamma/efectos adversos , Saponinas/farmacología , Ratones , Panax notoginseng/química , Humanos , Masculino , Daño del ADN/efectos de los fármacos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/efectos de la radiación , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Protectores contra Radiación/farmacología , Roturas del ADN de Doble Cadena/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de la radiación , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Monocitos/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacologíaRESUMEN
KEY MESSAGE: PnNAC2 positively regulates saponin biosynthesis by binding the promoters of key biosynthetic genes, including PnSS, PnSE, and PnDS. PnNAC2 accelerates flowering through directly associating with the promoters of FT genes. NAC transcription factors play an important regulatory role in both terpenoid biosynthesis and flowering. Saponins with multiple pharmacological activities are recognized as the major active components of Panax notoginseng. The P. notoginseng flower is crucial for growth and used for medicinal and food purposes. However, the precise function of the P. notoginseng NAC transcription factor in the regulation of saponin biosynthesis and flowering remains largely unknown. Here, we conducted a comprehensive characterization of a specific NAC transcription factor, designated as PnNAC2, from P. notoginseng. PnNAC2 was identified as a nuclear-localized protein with transcription activator activity. The expression profile of PnNAC2 across various tissues mirrored the accumulation pattern of total saponins. Knockdown experiments of PnNAC2 in P. notoginseng calli revealed a significant reduction in saponin content and the expression level of pivotal saponin biosynthetic genes, including PnSS, PnSE, and PnDS. Subsequently, Y1H assays, dual-LUC assays, and electrophoretic mobility shift assays (EMSAs) demonstrated that PnNAC2 exhibits binding affinity to the promoters of PnSS, PnSE and PnDS, thereby activating their transcription. Additionally, an overexpression assay of PnNAC2 in Arabidopsis thaliana witnessed the acceleration of flowering and the induction of the FLOWERING LOCUS T (FT) gene expression. Furthermore, PnNAC2 demonstrated the ability to bind to the promoters of AtFT and PnFT genes, further activating their transcription. In summary, these results revealed that PnNAC2 acts as a multifunctional regulator, intricately involved in the modulation of triterpenoid saponin biosynthesis and flowering processes.
Asunto(s)
Panax notoginseng , Saponinas , Triterpenos , Panax notoginseng/genética , Panax notoginseng/química , Panax notoginseng/metabolismo , Triterpenos/metabolismo , Flores/genética , Flores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Thrombin is a crucial enzyme in the coagulation cascade, and inhibitors of thrombin have been extensively studied as potential antithrombotic agents. The objective of this study was to identify natural inhibitors of thrombin from Panax notoginseng and evaluate their biological activity in vitro and binding characteristics. A combined approach involving molecular docking, thrombin inhibition assays, surface plasmon resonance, and molecular dynamics simulation was utilized to identify natural thrombin inhibitors. The results demonstrated that panaxatriol directly inhibits thrombin, with an IC50 of 10.3 µM. Binding studies using surface plasmon resonance revealed that panaxatriol interacts with thrombin, with a KD value of 7.8 µM. Molecular dynamics analysis indicated that the thrombin-panaxatriol system reached equilibrium rapidly with minimal fluctuations, and the calculated binding free energy was - 23.8 kcal/mol. The interaction between panaxatriol and thrombin involves the amino acid residues Glu146, Glu192, Gly216, Gly219, Tyr60A, and Trp60D. This interaction provides a mechanistic basis for further optimizing panaxatriol as a thrombin inhibitor. Our study has shown that panaxatriol serves as a direct thrombin inhibitor, laying the groundwork for further research and development of novel thrombin inhibitors.
Asunto(s)
Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Panax notoginseng , Trombina , Panax notoginseng/química , Trombina/antagonistas & inhibidores , Ginsenósidos/química , Ginsenósidos/farmacología , Humanos , Antitrombinas/farmacología , Antitrombinas/química , Resonancia por Plasmón de SuperficieRESUMEN
This review highlights the increasing interest in one of the natural compounds called saponins, for their potential therapeutic applications in addressing inflammation which is a key factor in various chronic diseases. It delves into the molecular mechanisms responsible for the anti-inflammatory effects of these amphiphilic compounds, prevalent in plant-based foods and marine organisms. Their structures vary with soap-like properties influencing historical uses in traditional medicine and sparking renewed scientific interest. Recent research focuses on their potential in chronic inflammatory diseases, unveiling molecular actions such as NF-κB and MAPK pathway regulation and COX/LOX enzyme inhibition. Saponin-containing sources like Panax ginseng and soybeans suggest novel anti-inflammatory therapies. The review explores their emerging role in shaping the gut microbiome, influencing composition and activity, and contributing to anti-inflammatory effects. Specific examples, such as Panax notoginseng and Gynostemma pentaphyllum, illustrate the intricate relationship between saponins, the gut microbiome, and their collective impact on immune regulation and metabolic health. Despite promising findings, the review emphasizes the need for further research to comprehend the mechanisms behind anti-inflammatory effects and their interactions with the gut microbiome, underscoring the crucial role of a balanced gut microbiome for optimal health and positioning saponins as potential dietary interventions for managing chronic inflammatory conditions.
Asunto(s)
Panax notoginseng , Saponinas , Humanos , Saponinas/uso terapéutico , Panax notoginseng/química , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inflamación/tratamiento farmacológico , FN-kappa BRESUMEN
The Astragalus mongholicus Bunge and Panax notoginseng formula (A&P) has been clinically shown to effectively slow down the progression of chronic kidney disease (CKD) and has demonstrated significant anti-fibrosis effects in experimental CKD model. However, the specific active ingredients and underlying mechanism are still unclear. The active ingredients of A&P were analyzed by Ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-HR-MS). A mouse model of CKD was constructed by 5/6 nephrectomy. Renal function was assessed by creatinine and urea nitrogen. Real-time PCR and Western Blot were performed to detect the mRNA and protein changes in kidney and cells. An in vitro fibrotic cell model was constructed by TGF-ß induction in TCMK-1 cells. The results showed that thirteen active ingredients of A&P were identified by UPLC-HR-MS, nine of which were identified by analysis with standards, among which the relative percentage of NOB was high. We found that NOB treatment significantly improved renal function, pathological damage and reduced the expression level of fibrotic factors in CKD mice. The results also demonstrated that Lgals1 was overexpressed in the interstitial kidney of CKD mice, and NOB treatment significantly reduced its expression level, while inhibiting PI3K and AKT phosphorylation. Interestingly, overexpression of Lgals1 significantly increased fibrosis in TCMK1 cells and upregulated the activity of PI3K and AKT, which were strongly inhibited by NOB treatment. NOB is one of the main active components of A&P. The molecular mechanism by which NOB ameliorates renal fibrosis in CKD may be through the inhibition of Lgals1/PI3K/AKT signaling pathway.
Asunto(s)
Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Fibrosis , Flavonas , Riñón , Panax notoginseng , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Insuficiencia Renal Crónica , Transducción de Señal , Animales , Ratones , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Masculino , Panax notoginseng/química , Flavonas/farmacología , Flavonas/uso terapéutico , Riñón/patología , Riñón/efectos de los fármacos , Planta del Astrágalo/química , Ratones Endogámicos C57BL , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta PresiónRESUMEN
COPD is an inflammatory lung disease that limits airflow and remodels the pulmonary vascular system. This study delves into the therapeutic potential and mechanistic underpinnings of Panax notoginseng Saponins (PNS) in alleviating inflammation and pulmonary vascular remodeling in a COPD rat model. Symmap and ETCM databases provided Panax notoginseng-related target genes, and the CTD and DisGeNET databases provided COPD-related genes. Intersection genes were subjected to protein-protein interaction analysis and pathway enrichment to identify downstream pathways. A COPD rat model was established, with groups receiving varying doses of PNS and a Roxithromycin control. The pathological changes in lung tissue and vasculature were examined using histological staining, while molecular alterations were explored through ELISA, RT-PCR, and Western blot. Network pharmacology research suggested PNS may affect the TLR4/NF-κB pathway linked to COPD development. The study revealed that, in contrast to the control group, the COPD model exhibited a significant increase in inflammatory markers and pathway components such as TLR4, NF-κB, HIF-1α, VEGF, ICAM-1, SELE mRNA, and serum TNF-α, IL-8, and IL-1ß. Treatment with PNS notably decreased these markers and mitigated inflammation around the bronchi and vessels. Taken together, the study underscores the potential of PNS in reducing lung inflammation and vascular remodeling in COPD rats, primarily via modulation of the TLR4/NF-κB/HIF-1α/VEGF pathway. This research offers valuable insights for developing new therapeutic strategies for managing and preventing COPD.
Asunto(s)
Panax notoginseng , Enfermedad Pulmonar Obstructiva Crónica , Saponinas , Ratas , Animales , Saponinas/farmacología , Saponinas/uso terapéutico , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , FN-kappa B/metabolismo , Panax notoginseng/metabolismo , Receptor Toll-Like 4/genética , Factor A de Crecimiento Endotelial Vascular/genética , Remodelación Vascular , Pulmón , Inflamación/tratamiento farmacológicoRESUMEN
Panax notoginseng is a highly valued perennial medicinal herb in China and is widely used in clinical treatments. The main purpose of this study was to elucidate the changes in the composition of P. notoginseng saponins (PNSs), which are the main bioactive substances, triggered by arbuscular mycorrhizal fungi (AMF) via ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS). A total of 202 putative terpenoid metabolites were detected, of which 150 triterpene glycosides were identified, accounting for 74.26% of the total. Correlation analysis, principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) of the metabolites revealed that the samples treated with AMF (group Ce) could be clearly separated from the CK samples. In total, 49 differential terpene metabolites were identified between the Ce and CK groups, of which 38 and 11 metabolites were upregulated and downregulated, respectively, and most of the upregulated differentially abundant metabolites were mainly triterpene glycosides. The relative abundances of the two major notoginsenosides (MNs), ginsenosides Rd and Re, and 13 rare notoginsenosides (RNs), significantly increased. The differential saponins, especially RNs, were more easily clustered into one branch and had a high positive correlation. It could be concluded that the biosynthesis and accumulation of some RNs share the same pathways as those triggered by AMF. This study provides a new way to obtain more notoginsenoside resources, particularly RNs, and sheds new light on the scientization and rationalization of the use of AMF agents in the ecological planting of medicinal plants.
Asunto(s)
Metabolómica , Micorrizas , Panax notoginseng , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Triterpenos , Panax notoginseng/microbiología , Panax notoginseng/química , Triterpenos/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Micorrizas/metabolismo , Metabolómica/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Saponinas/metabolismo , Saponinas/química , Análisis de Componente Principal , MetabolomaRESUMEN
BACKGROUND: Red Panax notoginseng (RPN) is one of the major processed products of P. notoginseng (PN), with more effective biological activities. However, the traditional processing method of RPN has some disadvantages, such as low conversion rate of ginsenosides and long processing time. RESULTS: In this work, we developed a green, safe, and efficient approach for RPN processing by aspartic acid impregnation pretreatment. Our results showed that the optimized temperature, steaming time, and concentration of aspartic acid were 120 °C, 1 h, and 3% respectively. The original ginsenosides in PN treated by aspartic acid (Asp-PN) were completely converted to rare saponins at 120 °C within just 1 h. The concentration of the rare ginsenosides in Asp-PN was two times higher than that in untreated RPN. In addition, we examined the protective effect of RPN and Asp-PN on acetaminophen-induced liver injury in a mouse model. The results showed that Asp-PN has significantly more potent hepatoprotective action than the RPN. The hepatoprotection of Asp-PN in acetaminophen-induced hepatotoxicity may be due to its anti-oxidative stress, anti-apoptotic, and anti-inflammatory activities. CONCLUSION: These results indicated that aspartic acid impregnation pretreatment may provide an effective method to shorten the steaming time, improve the conversion rate of ginsenosides, and enhance hepatoprotective activity of RPN. © 2024 Society of Chemical Industry.
Asunto(s)
Ácido Aspártico , Enfermedad Hepática Inducida por Sustancias y Drogas , Ginsenósidos , Hígado , Panax notoginseng , Sustancias Protectoras , Animales , Panax notoginseng/química , Ratones , Ácido Aspártico/química , Ginsenósidos/química , Ginsenósidos/farmacología , Masculino , Hígado/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Sustancias Protectoras/farmacología , Sustancias Protectoras/química , Sustancias Protectoras/administración & dosificación , Humanos , Estrés Oxidativo/efectos de los fármacos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Saponinas/química , Saponinas/farmacología , AcetaminofénRESUMEN
This study aims to investigate the therapeutic effect and mechanism of Panax notoginseng saponins(PNS) on diabetic kidney disease(DKD) based on network pharmacology, molecular docking, animal experiments. Network pharmacology was employed to screen the potential targets, and STRING was employed to build the protein-protein interaction network. Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were carried out for the core targets screened out, and a â³components-targets-pathwaysâ³ visualization network was constructed to predict the potential mechanism of PNS in treating DKD. Five active ingredients were screened from PNS, the core targets of which for treating DKD were AKT1, STAT3, ESR1, HSP90AA1, MTOR, et al. The KEGG enrichment analysis showed that the pathways related to PNS for treating DKD included the pathway in cancer, chemical carcinogenesis-receptor activation, and PI3K-AKT signaling pathway. GO analysis revealed that protein binding, homologous protein binding, enzyme binding, and ATP binding were the main biological processes involved in the treatment of DKD with PNS. Male 6-week-old db/db mice were randomized into model, dapagliflozin, and low-dose and high-dose PNS groups, with 10 mice in each group. Ten 6-week-old db/m mice were used as the control group. Mice were administrated with corresponding drugs or distilled water(control and model groups) by gavage once a day for 8 weeks. The body weight, fasting blood glucose, kidney index, microalbuminuria, creatinine, microalbuminuria/creatinine ratio, and urea nitrogen content in the urine of mice were determined. Hematoxylin-eosin(HE) staining, periodic acid-Schiff(PAS) staining, and Masson staining were performed to observe the protective effect of PNS on the renal tissues in db/db mice. The results showed that PNS could significantly reduce the fasting blood glucose level and improve the renal damage in db/db mice. Western blot results showed that PNS down-regulated the protein levels of p-AKT1 and p-STAT3 and decreased the p-AKT1/AKT1 and p-STAT3/STAT3 ratios. In addition, high-dose PNS down-regulated the protein level of PIK3CA. In conclusion, PNS may exert the kidney-protecting effects in DKD by inhibiting STAT3 via the PI3K-AKT signaling pathway.