Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.924
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 166(1): 140-51, 2016 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-27264606

RESUMEN

Caloric restriction (CR) extends the lifespan of flies, worms, and yeast by counteracting age-related oxidation of H2O2-scavenging peroxiredoxins (Prxs). Here, we show that increased dosage of the major cytosolic Prx in yeast, Tsa1, extends lifespan in an Hsp70 chaperone-dependent and CR-independent manner without increasing H2O2 scavenging or genome stability. We found that Tsa1 and Hsp70 physically interact and that hyperoxidation of Tsa1 by H2O2 is required for the recruitment of the Hsp70 chaperones and the Hsp104 disaggregase to misfolded and aggregated proteins during aging, but not heat stress. Tsa1 counteracted the accumulation of ubiquitinated aggregates during aging and the reduction of hyperoxidized Tsa1 by sulfiredoxin facilitated clearance of H2O2-generated aggregates. The data reveal a conceptually new role for H2O2 signaling in proteostasis and lifespan control and shed new light on the selective benefits endowed to eukaryotic peroxiredoxins by their reversible hyperoxidation.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Peróxido de Hidrógeno/metabolismo , Longevidad , Peroxidasas/metabolismo , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Restricción Calórica , Inestabilidad Genómica , Proteínas de Choque Térmico/metabolismo , Humanos , Oxidación-Reducción , Agregado de Proteínas , Saccharomyces cerevisiae/citología , Transducción de Señal
2.
Mol Cell ; 83(23): 4352-4369.e8, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38016474

RESUMEN

Ferroptosis is a non-apoptotic form of regulated cell death. Glutathione (GSH) peroxidase 4 (GPX4) and GSH-independent ferroptosis suppressor protein 1 (FSP1) have been identified as major defenses. Here, we uncover a protective mechanism mediated by GSH S-transferase P1 (GSTP1) by monitoring proteinomic dynamics during ferroptosis. Dramatic downregulation of GSTP1 is caused by SMURF2-mediated GSTP1 ubiquitination and degradation at early stages of ferroptosis. Intriguingly, GSTP1 acts in GPX4- and FSP1-independent manners by catalyzing GSH conjugation of 4-hydroxynonenal and detoxifying lipid hydroperoxides via selenium-independent GSH peroxidase activity. Genetic modulation of the SMURF2/GSTP1 axis or the pharmacological inhibition of GSTP1's catalytic activity sensitized tumor responses to Food and Drug Administration (FDA)-approved ferroptosis-inducing drugs both in vitro and in vivo. GSTP1 expression also confers resistance to immune checkpoint inhibitors by blunting ferroptosis. Collectively, these findings demonstrate a GPX4/FSP1-independent cellular defense mechanism against ferroptosis and suggest that targeting SMURF2/GSTP1 to sensitize cancer cells to ferroptosis has potential as an anticancer therapy.


Asunto(s)
Ferroptosis , Neoplasias , Estados Unidos , Ferroptosis/genética , Ubiquitinación , Regulación hacia Abajo , Glutatión , Peroxidasas , Neoplasias/genética
3.
Cell ; 159(1): 122-133, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25259925

RESUMEN

Mechanistic target of rapamycin complex 1 (mTORC1) integrates diverse environmental signals to control cellular growth and organismal homeostasis. In response to nutrients, Rag GTPases recruit mTORC1 to the lysosome to be activated, but how Rags are regulated remains incompletely understood. Here, we show that Sestrins bind to the heterodimeric RagA/B-RagC/D GTPases, and function as guanine nucleotide dissociation inhibitors (GDIs) for RagA/B. Sestrin overexpression inhibits amino-acid-induced Rag guanine nucleotide exchange and mTORC1 translocation to the lysosome. Mutation of the conserved GDI motif creates a dominant-negative form of Sestrin that renders mTORC1 activation insensitive to amino acid deprivation, whereas a cell-permeable peptide containing the GDI motif inhibits mTORC1 signaling. Mice deficient in all Sestrins exhibit reduced postnatal survival associated with defective mTORC1 inactivation in multiple organs during neonatal fasting. These findings reveal a nonredundant mechanism by which the Sestrin family of GDIs regulates the nutrient-sensing Rag GTPases to control mTORC1 signaling.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Choque Térmico/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Animales , Animales Recién Nacidos , Proteínas de Ciclo Celular/genética , Embrión de Mamíferos/citología , Femenino , Fibroblastos/metabolismo , Técnicas de Sustitución del Gen , Proteínas de Choque Térmico/genética , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas Nucleares/genética , Peroxidasas , Embarazo , Alineación de Secuencia , Inanición/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(44): e2411976121, 2024 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-39453743

RESUMEN

It is broadly recognized that intramolecular electric fields, produced by the protein scaffold and acting on the active site, facilitate enzymatic catalysis. This field effect can be described by several theoretical models, each of which is intuitive to varying degrees. In this contribution, we show that a fundamental effect of electric fields is to generate electrostatic potentials that facilitate the energetic alignment of reactant frontier orbitals. We apply this model to demystify the impact of electric fields on high-valent iron-oxo heme proteins: catalases, peroxidases, and peroxygenases/monooxygenases. Specifically, we show that this model easily accounts for the observed field-induced changes to the spin distribution within peroxidase active sites and explains the transition between epoxidation and hydroxylation pathways seen in Cytochrome P450 active site models. Thus, for the intuitive interpretation of the chemical effect of the field, the strategy involves analyzing the response of the orbitals of active site fragments, and their energetic alignment. We note that the energy difference between fragment orbitals involved in charge redistribution acts as a measure for the chemical hardness/softness of the reactive complex. This measure, and its sensitivity to electric fields, offers a single parameter model from which to quantitatively assess the effects of electric fields on reactivity and selectivity. Thus, the model provides an additional perspective to describe electrostatic preorganization and offers ways for its manipulation.


Asunto(s)
Dominio Catalítico , Electricidad Estática , Electricidad , Modelos Moleculares , Peroxidasas/metabolismo , Peroxidasas/química , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/metabolismo
5.
Development ; 150(20)2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37306387

RESUMEN

Lipid droplets (LDs), crucial regulators of lipid metabolism, accumulate during oocyte development. However, their roles in fertility remain largely unknown. During Drosophila oogenesis, LD accumulation coincides with the actin remodeling necessary for follicle development. Loss of the LD-associated Adipose Triglyceride Lipase (ATGL) disrupts both actin bundle formation and cortical actin integrity, an unusual phenotype also seen when the prostaglandin (PG) synthase Pxt is missing. Dominant genetic interactions and PG treatment of follicles indicate that ATGL acts upstream of Pxt to regulate actin remodeling. Our data suggest that ATGL releases arachidonic acid (AA) from LDs to serve as the substrate for PG synthesis. Lipidomic analysis detects AA-containing triglycerides in ovaries, and these are increased when ATGL is lost. High levels of exogenous AA block follicle development; this is enhanced by impairing LD formation and suppressed by reducing ATGL. Together, these data support the model that AA stored in LD triglycerides is released by ATGL to drive the production of PGs, which promote the actin remodeling necessary for follicle development. We speculate that this pathway is conserved across organisms to regulate oocyte development and promote fertility.


Asunto(s)
Proteínas de Drosophila , Prostaglandinas , Animales , Gotas Lipídicas , Actinas , Adipogénesis , Drosophila , Lipasa , Peroxidasas , Proteínas de Drosophila/genética
6.
Proc Natl Acad Sci U S A ; 120(39): e2221553120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37722055

RESUMEN

Accumulating evidence has demonstrated the presence of intertissue-communication regulating systemic aging, but the underlying molecular network has not been fully explored. We and others previously showed that two basic helix-loop-helix transcription factors, MML-1 and HLH-30, are required for lifespan extension in several longevity paradigms, including germlineless Caenorhabditis elegans. However, it is unknown what tissues these factors target to promote longevity. Here, using tissue-specific knockdown experiments, we found that MML-1 and its heterodimer partners MXL-2 and HLH-30 act primarily in neurons to extend longevity in germlineless animals. Interestingly, however, the downstream cascades of MML-1 in neurons were distinct from those of HLH-30. Neuronal RNA interference (RNAi)-based transcriptome analysis revealed that the glutamate transporter GLT-5 is a downstream target of MML-1 but not HLH-30. Furthermore, the MML-1-GTL-5 axis in neurons is critical to prevent an age-dependent collapse of proteostasis and increased oxidative stress through autophagy and peroxidase MLT-7, respectively, in long-lived animals. Collectively, our study revealed that systemic aging is regulated by a molecular network involving neuronal MML-1 function in both neural and peripheral tissues.


Asunto(s)
Envejecimiento , Neuronas , Animales , Envejecimiento/genética , Sistema de Transporte de Aminoácidos X-AG , Autofagia/genética , Caenorhabditis elegans/genética , Peroxidasas , Proteínas de Caenorhabditis elegans/genética
7.
Q Rev Biophys ; 56: e1, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36628454

RESUMEN

Ferric heme b (= ferric protoporphyrin IX = hemin) is an important prosthetic group of different types of enzymes, including the intensively investigated and widely applied horseradish peroxidase (HRP). In HRP, hemin is present in monomeric form in a hydrophobic pocket containing among other amino acid side chains the two imidazoyl groups of His170 and His42. Both amino acids are important for the peroxidase activity of HRP as an axial ligand of hemin (proximal His170) and as an acid/base catalyst (distal His42). A key feature of the peroxidase mechanism of HRP is the initial formation of compound I under heterolytic cleavage of added hydrogen peroxide as a terminal oxidant. Investigations of free hemin dispersed in aqueous solution showed that different types of hemin dimers can form, depending on the experimental conditions, possibly resulting in hemin crystallization. Although it has been recognized already in the 1970s that hemin aggregation can be prevented in aqueous solution by using micelle-forming amphiphiles, it remains a challenge to prepare hemin-containing micellar and vesicular systems with peroxidase-like activities. Such systems are of interest as cheap HRP-mimicking catalysts for analytical and synthetic applications. Some of the key concepts on which research in this fascinating and interdisciplinary field is based are summarized, along with major accomplishments and possible directions for further improvement. A systematic analysis of the physico-chemical properties of hemin in aqueous micellar solutions and vesicular dispersions must be combined with a reliable evaluation of its catalytic activity. Future studies should show how well the molecular complexity around hemin in HRP can be mimicked by using micelles or vesicles. Because of the importance of heme b in virtually all biological systems and the fact that porphyrins and hemes can be obtained under potentially prebiotic conditions, ideas exist about the possible role of heme-containing micellar and vesicular systems in prebiotic times.


Asunto(s)
Hemo , Hemina , Hemo/química , Hemo/metabolismo , Hemina/química , Micelas , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Peroxidasas , Hierro , Hierro de la Dieta , Aminoácidos
8.
J Biol Chem ; 300(3): 105720, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311179

RESUMEN

SET domain proteins methylate specific lysines on proteins, triggering stimulation or repression of downstream processes. Twenty-nine SET domain proteins have been identified in Leishmania donovani through sequence annotations. This study initiates the first investigation into these proteins. We find LdSET7 is predominantly cytosolic. Although not essential, set7 deletion slows down promastigote growth and hypersensitizes the parasite to hydroxyurea-induced G1/S arrest. Intriguingly, set7-nulls survive more proficiently than set7+/+ parasites within host macrophages, suggesting that LdSET7 moderates parasite response to the inhospitable intracellular environment. set7-null in vitro promastigote cultures are highly tolerant to hydrogen peroxide (H2O2)-induced stress, reflected in their growth pattern, and no detectable DNA damage at H2O2 concentrations tested. This is linked to reactive oxygen species levels remaining virtually unperturbed in set7-nulls in response to H2O2 exposure, contrasting to increased reactive oxygen species in set7+/+ cells under similar conditions. In analyzing the cell's ability to scavenge hydroperoxides, we find peroxidase activity is not upregulated in response to H2O2 exposure in set7-nulls. Rather, constitutive basal levels of peroxidase activity are significantly higher in these cells, implicating this to be a factor contributing to the parasite's high tolerance to H2O2. Higher levels of peroxidase activity in set7-nulls are coupled to upregulation of tryparedoxin peroxidase transcripts. Rescue experiments using an LdSET7 mutant suggest that LdSET7 methylation activity is critical to the modulation of the cell's response to oxidative environment. Thus, LdSET7 tunes the parasite's behavior within host cells, enabling the establishment and persistence of infection without eradicating the host cell population it needs for survival.


Asunto(s)
Leishmania donovani , Estrés Oxidativo , Peroxidasas , Proteínas Protozoarias , Animales , Peróxido de Hidrógeno/metabolismo , Leishmania donovani/genética , Leishmania donovani/metabolismo , Peroxidasas/genética , Peroxidasas/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Dominios PR-SET
9.
J Biol Chem ; 300(4): 107147, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460940

RESUMEN

Zinc is required for many critical processes, including intermediary metabolism. In Saccharomyces cerevisiae, the Zap1 activator regulates the transcription of ∼80 genes in response to Zn supply. Some Zap1-regulated genes are Zn transporters that maintain Zn homeostasis, while others mediate adaptive responses that enhance fitness. One adaptive response gene encodes the 2-cysteine peroxiredoxin Tsa1, which is critical to Zn-deficient (ZnD) growth. Depending on its redox state, Tsa1 can function as a peroxidase, a protein chaperone, or a regulatory redox sensor. In a screen for possible Tsa1 regulatory targets, we identified a mutation (cdc19S492A) that partially suppressed the tsa1Δ growth defect. The cdc19S492A mutation reduced activity of its protein product, pyruvate kinase isozyme 1 (Pyk1), implicating Tsa1 in adapting glycolysis to ZnD conditions. Glycolysis requires activity of the Zn-dependent enzyme fructose-bisphosphate aldolase 1, which was substantially decreased in ZnD cells. We hypothesized that in ZnD tsa1Δ cells, the loss of a compensatory Tsa1 regulatory function causes depletion of glycolytic intermediates and restricts dependent amino acid synthesis pathways, and that the decreased activity of Pyk1S492A counteracted this depletion by slowing the irreversible conversion of phosphoenolpyruvate to pyruvate. In support of this model, supplementing ZnD tsa1Δ cells with aromatic amino acids improved their growth. Phosphoenolpyruvate supplementation, in contrast, had a much greater effect on growth rate of WT and tsa1Δ ZnD cells, indicating that inefficient glycolysis is a major factor limiting yeast growth. Surprisingly however, this restriction was not primarily due to low fructose-bisphosphate aldolase 1 activity, but instead occurs earlier in glycolysis.


Asunto(s)
Glucólisis , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Factores de Transcripción , Zinc , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Zinc/metabolismo , Fructosa-Bifosfato Aldolasa/metabolismo , Fructosa-Bifosfato Aldolasa/genética , Peroxirredoxinas/metabolismo , Peroxirredoxinas/genética , Piruvato Quinasa/metabolismo , Piruvato Quinasa/genética , Regulación Fúngica de la Expresión Génica , Peroxidasas/metabolismo , Peroxidasas/genética , Mutación
10.
PLoS Pathog ; 19(2): e1011149, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36780872

RESUMEN

Aedes aegypti mosquitoes are the main vectors of arboviruses. The peritrophic matrix (PM) is an extracellular layer that surrounds the blood bolus. It acts as an immune barrier that prevents direct contact of bacteria with midgut epithelial cells during blood digestion. Here, we describe a heme-dependent peroxidase, hereafter referred to as heme peroxidase 1 (HPx1). HPx1 promotes PM assembly and antioxidant ability, modulating vector competence. Mechanistically, the heme presence in a blood meal induces HPx1 transcriptional activation mediated by the E75 transcription factor. HPx1 knockdown increases midgut reactive oxygen species (ROS) production by the DUOX NADPH oxidase. Elevated ROS levels reduce microbiota growth while enhancing epithelial mitosis, a response to tissue damage. However, simultaneous HPx1 and DUOX silencing was not able to rescue bacterial population growth, as explained by increased expression of antimicrobial peptides (AMPs), which occurred only after double knockdown. This result revealed hierarchical activation of ROS and AMPs to control microbiota. HPx1 knockdown produced a 100-fold decrease in Zika and dengue 2 midgut infection, demonstrating the essential role of the mosquito PM in the modulation of arbovirus vector competence. Our data show that the PM connects blood digestion to midgut immunological sensing of the microbiota and viral infections.


Asunto(s)
Aedes , Arbovirus , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/metabolismo , Peroxidasa/metabolismo , Mosquitos Vectores , Hemo/metabolismo , Peroxidasas/metabolismo , Virus Zika/metabolismo
11.
Mol Cell ; 68(5): 901-912.e3, 2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-29220655

RESUMEN

DNA double-strand breaks (DSBs) occurring within fragile zones of less than 200 base pairs account for the formation of the most common human chromosomal translocations in lymphoid malignancies, yet the mechanism of how breaks occur remains unknown. Here, we have transferred human fragile zones into S. cerevisiae in the context of a genetic assay to understand the mechanism leading to DSBs at these sites. Our findings indicate that a combination of factors is required to sensitize these regions. Foremost, DNA strand separation by transcription or increased torsional stress can expose these DNA regions to damage from either the expression of human AID or increased oxidative stress. This damage causes DNA lesions that, if not repaired quickly, are prone to nuclease cleavage, resulting in DSBs. Our results provide mechanistic insight into why human neoplastic translocation fragile DNA sequences are more prone to enzymes or agents that cause longer-lived DNA lesions.


Asunto(s)
Cromosomas Humanos/genética , Citidina Desaminasa/genética , Roturas del ADN de Doble Cadena , ADN de Hongos/genética , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/genética , Translocación Genética , Cromosomas Humanos/química , Cromosomas Humanos/metabolismo , Citidina Desaminasa/metabolismo , ADN de Hongos/química , ADN de Hongos/metabolismo , Proteínas de Unión al ADN , Endonucleasas/genética , Endonucleasas/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Humanos , Conformación de Ácido Nucleico , Peroxidasas/genética , Peroxidasas/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad , Transcripción Genética , Uracil-ADN Glicosidasa/genética , Uracil-ADN Glicosidasa/metabolismo
12.
PLoS Genet ; 18(9): e1010390, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36084128

RESUMEN

Heme (iron-protoporphyrin IX) is an essential but potentially toxic cellular cofactor. While most organisms are heme prototrophs, many microorganisms can utilize environmental heme as iron source. The pathogenic yeast Candida albicans can utilize host heme in the iron-poor host environment, using an extracellular cascade of soluble and anchored hemophores, and plasma membrane ferric reductase-like proteins. To gain additional insight into the C. albicans heme uptake pathway, we performed an unbiased genetic selection for mutants resistant to the toxic heme analog Ga3+-protoporphyrin IX at neutral pH, and a secondary screen for inability to utilize heme as iron source. Among the mutants isolated were the genes of the pH-responsive RIM pathway, and a zinc finger transcription factor related to S. cerevisiae HAP1. In the presence of hemin in the medium, C. albicans HAP1 is induced, the Hap1 protein is stabilized and Hap1-GFP localizes to the nucleus. In the hap1 mutant, cytoplasmic heme levels are elevated, while influx of extracellular heme is lower. Gene expression analysis indicated that in the presence of extracellular hemin, Hap1 activates the heme oxygenase HMX1, which breaks down excess cytoplasmic heme, while at the same time it also activates all the known heme uptake genes. These results indicate that Hap1 is a heme-responsive transcription factor that plays a role both in cytoplasmic heme homeostasis and in utilization of extracellular heme. The induction of heme uptake genes by C. albicans Hap1 under iron satiety indicates that preferential utilization of host heme can be a dietary strategy in a heme prototroph.


Asunto(s)
Hemo , Proteínas de Saccharomyces cerevisiae , Candida albicans/genética , Candida albicans/metabolismo , Hemo/genética , Hemo/metabolismo , Hemo Oxigenasa (Desciclizante)/química , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemina/metabolismo , Hemina/farmacología , Homeostasis/genética , Hierro/metabolismo , Peroxidasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Nano Lett ; 24(9): 2912-2920, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38391386

RESUMEN

Nanozymes with peroxidase-like activity have been extensively studied for colorimetric biosensing. However, their catalytic activity and specificity still lag far behind those of natural enzymes, which significantly affects the accuracy and sensitivity of colorimetric biosensing. To address this issue, we design PdSn nanozymes with selectively enhanced peroxidase-like activity, which improves the sensitivity and accuracy of a colorimetric immunoassay. The peroxidase-like activity of PdSn nanozymes is significantly higher than that of Pd nanozymes. Theoretical calculations reveal that the p-d orbital hybridization of Pd and Sn not only results in an upward shift of the d-band center to enhance hydrogen peroxide (H2O2) adsorption but also regulates the O-O bonding strength of H2O2 to achieve selective H2O2 activation. Ultimately, the nanozyme-linked immunosorbent assay has been successfully developed to sensitively and accurately detect the prostate-specific antigen (PSA), achieving a low detection limit of 1.696 pg mL-1. This work demonstrates a promising approach for detecting PSA in a clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , Peróxido de Hidrógeno , Masculino , Humanos , Antígeno Prostático Específico , Inmunoensayo/métodos , Antioxidantes , Peroxidasas , Colorimetría/métodos , Técnicas Biosensibles/métodos
14.
Biochemistry ; 63(14): 1761-1773, 2024 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-38959050

RESUMEN

Dehalperoxidase (DHP) has diverse catalytic activities depending on the substrate binding conformation, pH, and dynamics in the distal pocket above the heme. According to our hypothesis, the molecular structure of the substrate and binding orientation in DHP guide enzymatic function. Enzyme kinetic studies have shown that the catalytic activity of DHP B is significantly higher than that of DHP A despite 96% sequence homology. There are more than 30 substrate-bound structures with DHP B, each providing insight into the nature of enzymatic binding at the active site. By contrast, the only X-ray crystallographic structures of small molecules in a complex with DHP A are phenols. This study is focused on investigating substrate binding in DHP A to compare with DHP B structures. Fifteen substrates were selected that were known to bind to DHP B in the crystal to test whether soaking substrates into DHP A would yield similar structures. Five of these substrates yielded X-ray crystal structures of substrate-bound DHP A, namely, 2,4-dichlorophenol (1.48 Å, PDB: 8EJN), 2,4-dibromophenol (1.52 Å, PDB: 8VSK), 4-nitrophenol (2.03 Å, PDB: 8VKC), 4-nitrocatechol (1.40 Å, PDB: 8VKD), and 4-bromo-o-cresol (1.64 Å, PDB: 8VZR). For the remaining substrates that bind to DHP B, such as cresols, 5-bromoindole, benzimidazole, 4,4-biphenol, 4.4-ethylidenebisphenol, 2,4-dimethoxyphenol, and guaiacol, the electron density maps in DHP A are not sufficient to determine the presence of the substrates, much less their orientation. In our hands, only phenols, 4-Br-o-cresol, and 4-nitrocatechol can be soaked into crystalline DHP A. None of the larger substrates were observed to bind. A minimum of seven hanging drops were selected for soaking with more than 50 crystals screened for each substrate. The five high-quality examples of direct comparison of modes of binding in DHP A and B for the same substrate provide further support for the hypothesis that the substrate-binding conformation determines the enzyme function of DHP.


Asunto(s)
Peroxidasas , Cristalografía por Rayos X , Especificidad por Sustrato , Sitios de Unión , Peroxidasas/química , Peroxidasas/metabolismo , Dominio Catalítico , Modelos Moleculares , Conformación Proteica , Animales , Cinética
15.
J Biol Chem ; 299(9): 105094, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37507015

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) are monocopper enzymes that degrade the insoluble crystalline polysaccharides cellulose and chitin. Besides the H2O2 cosubstrate, the cleavage of glycosidic bonds by LPMOs depends on the presence of a reductant needed to bring the enzyme into its reduced, catalytically active Cu(I) state. Reduced LPMOs that are not bound to substrate catalyze reductant peroxidase reactions, which may lead to oxidative damage and irreversible inactivation of the enzyme. However, the kinetics of this reaction remain largely unknown, as do possible variations between LPMOs belonging to different families. Here, we describe the kinetic characterization of two fungal family AA9 LPMOs, TrAA9A of Trichoderma reesei and NcAA9C of Neurospora crassa, and two bacterial AA10 LPMOs, ScAA10C of Streptomyces coelicolor and SmAA10A of Serratia marcescens. We found peroxidation of ascorbic acid and methyl-hydroquinone resulted in the same probability of LPMO inactivation (pi), suggesting that inactivation is independent of the nature of the reductant. We showed the fungal enzymes were clearly more resistant toward inactivation, having pi values of less than 0.01, whereas the pi for SmAA10A was an order of magnitude higher. However, the fungal enzymes also showed higher catalytic efficiencies (kcat/KM(H2O2)) for the reductant peroxidase reaction. This inverse linear correlation between the kcat/KM(H2O2) and pi suggests that, although having different life spans in terms of the number of turnovers in the reductant peroxidase reaction, LPMOs that are not bound to substrates have similar half-lives. These findings have not only potential biological but also industrial implications.


Asunto(s)
Oxigenasas de Función Mixta , Peroxidasas , Polisacáridos , Sustancias Reductoras , Ácido Ascórbico/metabolismo , Biocatálisis , Cobre/metabolismo , Estabilidad de Enzimas , Semivida , Peróxido de Hidrógeno/metabolismo , Cinética , Oxigenasas de Función Mixta/metabolismo , Neurospora crassa/enzimología , Neurospora crassa/metabolismo , Peroxidasas/metabolismo , Polisacáridos/metabolismo , Sustancias Reductoras/metabolismo , Serratia marcescens/enzimología , Serratia marcescens/metabolismo , Streptomyces coelicolor/enzimología , Streptomyces coelicolor/metabolismo
16.
Mol Microbiol ; 119(3): 302-311, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36718113

RESUMEN

The pseudohypohalous acid hypothiocyanite/hypothiocyanous acid (OSCN- /HOSCN) has been known to play an antimicrobial role in mammalian immunity for decades. It is a potent oxidant that kills bacteria but is non-toxic to human cells. Produced from thiocyanate (SCN- ) and hydrogen peroxide (H2 O2 ) in a variety of body sites by peroxidase enzymes, HOSCN has been explored as an agent of food preservation, pathogen killing, and even improved toothpaste. However, despite the well-recognized antibacterial role HOSCN plays in host-pathogen interactions, little is known about how bacteria sense and respond to this oxidant. In this work, we will summarize what is known and unknown about HOSCN in innate immunity and recent advances in understanding the responses that both pathogenic and non-pathogenic bacteria mount against this antimicrobial agent, highlighting studies done with three model organisms, Escherichia coli, Streptococcus spp., and Pseudomonas aeruginosa.


Asunto(s)
Interacciones Microbiota-Huesped , Tiocianatos , Humanos , Animales , Tiocianatos/farmacología , Peroxidasas , Oxidantes , Mamíferos
17.
EMBO J ; 39(9): e103894, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32187732

RESUMEN

Production of reactive oxygen species (ROS) by NADPH oxidases (NOXs) impacts many processes in animals and plants, and many plant receptor pathways involve rapid, NOX-dependent increases of ROS. Yet, their general reactivity has made it challenging to pinpoint the precise role and immediate molecular action of ROS. A well-understood ROS action in plants is to provide the co-substrate for lignin peroxidases in the cell wall. Lignin can be deposited with exquisite spatial control, but the underlying mechanisms have remained elusive. Here, we establish a kinase signaling relay that exerts direct, spatial control over ROS production and lignification within the cell wall. We show that polar localization of a single kinase component is crucial for pathway function. Our data indicate that an intersection of more broadly localized components allows for micrometer-scale precision of lignification and that this system is triggered through initiation of ROS production as a critical peroxidase co-substrate.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Lignina/metabolismo , Proteínas Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regulación de la Expresión Génica de las Plantas , NADPH Oxidasas/metabolismo , Peroxidasas/metabolismo , Raíces de Plantas/metabolismo
18.
Anal Chem ; 96(11): 4673-4681, 2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38451931

RESUMEN

Perfluorooctanesulfonic acid potassium salt (PFOS) residues in ecosystems over long periods are of increasing concern and require a selective and stable optical probe for monitoring. Herein, two functional groups (-F and -NH2) with opposite electronic modulation ability were introduced into Fe/Zn-BDC (denoted as Fe/Zn-BDC-F4 and Fe/Zn-BDC-NH2, respectively) to tailor the coordination environment of the Fe metal center, further regulating the nanozyme activity efficiently. Notably, the peroxidase-like activity is related to the coordination environment of the nanozymes and obeys the following order Fe/Zn-BDC-F4 > Fe/Zn-BDC > Fe/Zn-BDC-NH2. Based on the excellent peroxidase-like activity of Fe/Zn-BDC-F4 and the characteristics of being rich in F atoms, a rapid, selective, and visible colorimetric method was developed for detecting PFOS with a detection limit of 100 nM. The detection mechanism was attributed to various interaction forces between Fe/Zn-BDC-F4 and PFOS, including electrostatic interactions, Fe-S interactions, Fe-F bonds, and halogen bonds. This work not only offers new insights into the atomic-scale rational design of highly active nanozymes but also presents a novel approach to detecting PFOS in environmental samples.


Asunto(s)
Ecosistema , Potasio , Colorimetría , Peroxidasas , Zinc
19.
Anal Chem ; 96(10): 4299-4307, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38414258

RESUMEN

To boost the enzyme-like activity, biological compatibility, and antiaggregation effect of noble-metal-based nanozymes, folic-acid-strengthened Ag-Ir quantum dots (FA@Ag-Ir QDs) were developed. Not only did FA@Ag-Ir QDs exhibit excellent synergistic-enhancement peroxidase-like activity, high stability, and low toxicity, but they could also promote the lateral root propagation of Arabidopsis thaliana. Especially, ultratrace cysteine or Hg2+ could exclusively strengthen or deteriorate the inherent fluorescence property with an obvious "turn-on" or "turn-off" effect, and dopamine could alter the peroxidase-like activity with a clear hypochromic effect from blue to colorless. Under optimized conditions, FA@Ag-Ir QDs were successfully applied for the turn-on fluorescence imaging of cysteine or the stress response in cells and plant roots, the turn-off fluorescence monitoring of toxic Hg2+, or the visual detection of dopamine in aqueous, beverage, serum, or medical samples with low detection limits and satisfactory recoveries. The selective recognition mechanisms for FA@Ag-Ir QDs toward cysteine, Hg2+, and dopamine were illustrated. This work will offer insights into constructing some efficient nanozyme sensors for multichannel environmental analyses, especially for the prediagnosis of cysteine-related diseases or stress responses in organisms.


Asunto(s)
Mercurio , Puntos Cuánticos , Puntos Cuánticos/toxicidad , Cisteína , Dopamina , Ácido Fólico , Imagen Óptica , Peroxidasas , Raíces de Plantas
20.
BMC Plant Biol ; 24(1): 318, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38654190

RESUMEN

BACKGROUND: Class III peroxidases (PODs) perform crucial functions in various developmental processes and responses to biotic and abiotic stresses. However, their roles in wheat seed dormancy (SD) and germination remain elusive. RESULTS: Here, we identified a wheat class III POD gene, named TaPer12-3A, based on transcriptome data and expression analysis. TaPer12-3A showed decreasing and increasing expression trends with SD acquisition and release, respectively. It was highly expressed in wheat seeds and localized in the endoplasmic reticulum and cytoplasm. Germination tests were performed using the transgenic Arabidopsis and rice lines as well as wheat mutant mutagenized with ethyl methane sulfonate (EMS) in Jing 411 (J411) background. These results indicated that TaPer12-3A negatively regulated SD and positively mediated germination. Further studies showed that TaPer12-3A maintained H2O2 homeostasis by scavenging excess H2O2 and participated in the biosynthesis and catabolism pathways of gibberellic acid and abscisic acid to regulate SD and germination. CONCLUSION: These findings not only provide new insights for future functional analysis of TaPer12-3A in regulating wheat SD and germination but also provide a target gene for breeding wheat varieties with high pre-harvest sprouting resistance by gene editing technology.


Asunto(s)
Germinación , Latencia en las Plantas , Triticum , Triticum/genética , Triticum/enzimología , Triticum/fisiología , Latencia en las Plantas/genética , Germinación/genética , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Peróxido de Hidrógeno/metabolismo , Giberelinas/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Peroxidasas/genética , Peroxidasas/metabolismo , Plantas Modificadas Genéticamente , Ácido Abscísico/metabolismo , Genes de Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA