Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.900
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 166(1): 140-51, 2016 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-27264606

RESUMEN

Caloric restriction (CR) extends the lifespan of flies, worms, and yeast by counteracting age-related oxidation of H2O2-scavenging peroxiredoxins (Prxs). Here, we show that increased dosage of the major cytosolic Prx in yeast, Tsa1, extends lifespan in an Hsp70 chaperone-dependent and CR-independent manner without increasing H2O2 scavenging or genome stability. We found that Tsa1 and Hsp70 physically interact and that hyperoxidation of Tsa1 by H2O2 is required for the recruitment of the Hsp70 chaperones and the Hsp104 disaggregase to misfolded and aggregated proteins during aging, but not heat stress. Tsa1 counteracted the accumulation of ubiquitinated aggregates during aging and the reduction of hyperoxidized Tsa1 by sulfiredoxin facilitated clearance of H2O2-generated aggregates. The data reveal a conceptually new role for H2O2 signaling in proteostasis and lifespan control and shed new light on the selective benefits endowed to eukaryotic peroxiredoxins by their reversible hyperoxidation.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Peróxido de Hidrógeno/metabolismo , Longevidad , Peroxidasas/metabolismo , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Restricción Calórica , Inestabilidad Genómica , Proteínas de Choque Térmico/metabolismo , Humanos , Oxidación-Reducción , Agregado de Proteínas , Saccharomyces cerevisiae/citología , Transducción de Señal
2.
J Biol Chem ; 300(3): 105720, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311179

RESUMEN

SET domain proteins methylate specific lysines on proteins, triggering stimulation or repression of downstream processes. Twenty-nine SET domain proteins have been identified in Leishmania donovani through sequence annotations. This study initiates the first investigation into these proteins. We find LdSET7 is predominantly cytosolic. Although not essential, set7 deletion slows down promastigote growth and hypersensitizes the parasite to hydroxyurea-induced G1/S arrest. Intriguingly, set7-nulls survive more proficiently than set7+/+ parasites within host macrophages, suggesting that LdSET7 moderates parasite response to the inhospitable intracellular environment. set7-null in vitro promastigote cultures are highly tolerant to hydrogen peroxide (H2O2)-induced stress, reflected in their growth pattern, and no detectable DNA damage at H2O2 concentrations tested. This is linked to reactive oxygen species levels remaining virtually unperturbed in set7-nulls in response to H2O2 exposure, contrasting to increased reactive oxygen species in set7+/+ cells under similar conditions. In analyzing the cell's ability to scavenge hydroperoxides, we find peroxidase activity is not upregulated in response to H2O2 exposure in set7-nulls. Rather, constitutive basal levels of peroxidase activity are significantly higher in these cells, implicating this to be a factor contributing to the parasite's high tolerance to H2O2. Higher levels of peroxidase activity in set7-nulls are coupled to upregulation of tryparedoxin peroxidase transcripts. Rescue experiments using an LdSET7 mutant suggest that LdSET7 methylation activity is critical to the modulation of the cell's response to oxidative environment. Thus, LdSET7 tunes the parasite's behavior within host cells, enabling the establishment and persistence of infection without eradicating the host cell population it needs for survival.


Asunto(s)
Leishmania donovani , Estrés Oxidativo , Peroxidasas , Proteínas Protozoarias , Animales , Peróxido de Hidrógeno/metabolismo , Leishmania donovani/genética , Leishmania donovani/metabolismo , Peroxidasas/genética , Peroxidasas/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Dominios PR-SET
3.
J Biol Chem ; 300(4): 107147, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460940

RESUMEN

Zinc is required for many critical processes, including intermediary metabolism. In Saccharomyces cerevisiae, the Zap1 activator regulates the transcription of ∼80 genes in response to Zn supply. Some Zap1-regulated genes are Zn transporters that maintain Zn homeostasis, while others mediate adaptive responses that enhance fitness. One adaptive response gene encodes the 2-cysteine peroxiredoxin Tsa1, which is critical to Zn-deficient (ZnD) growth. Depending on its redox state, Tsa1 can function as a peroxidase, a protein chaperone, or a regulatory redox sensor. In a screen for possible Tsa1 regulatory targets, we identified a mutation (cdc19S492A) that partially suppressed the tsa1Δ growth defect. The cdc19S492A mutation reduced activity of its protein product, pyruvate kinase isozyme 1 (Pyk1), implicating Tsa1 in adapting glycolysis to ZnD conditions. Glycolysis requires activity of the Zn-dependent enzyme fructose-bisphosphate aldolase 1, which was substantially decreased in ZnD cells. We hypothesized that in ZnD tsa1Δ cells, the loss of a compensatory Tsa1 regulatory function causes depletion of glycolytic intermediates and restricts dependent amino acid synthesis pathways, and that the decreased activity of Pyk1S492A counteracted this depletion by slowing the irreversible conversion of phosphoenolpyruvate to pyruvate. In support of this model, supplementing ZnD tsa1Δ cells with aromatic amino acids improved their growth. Phosphoenolpyruvate supplementation, in contrast, had a much greater effect on growth rate of WT and tsa1Δ ZnD cells, indicating that inefficient glycolysis is a major factor limiting yeast growth. Surprisingly however, this restriction was not primarily due to low fructose-bisphosphate aldolase 1 activity, but instead occurs earlier in glycolysis.


Asunto(s)
Glucólisis , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Factores de Transcripción , Zinc , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Zinc/metabolismo , Fructosa-Bifosfato Aldolasa/metabolismo , Fructosa-Bifosfato Aldolasa/genética , Peroxirredoxinas/metabolismo , Peroxirredoxinas/genética , Piruvato Quinasa/metabolismo , Piruvato Quinasa/genética , Regulación Fúngica de la Expresión Génica , Peroxidasas/metabolismo , Peroxidasas/genética , Mutación
4.
PLoS Pathog ; 19(2): e1011149, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36780872

RESUMEN

Aedes aegypti mosquitoes are the main vectors of arboviruses. The peritrophic matrix (PM) is an extracellular layer that surrounds the blood bolus. It acts as an immune barrier that prevents direct contact of bacteria with midgut epithelial cells during blood digestion. Here, we describe a heme-dependent peroxidase, hereafter referred to as heme peroxidase 1 (HPx1). HPx1 promotes PM assembly and antioxidant ability, modulating vector competence. Mechanistically, the heme presence in a blood meal induces HPx1 transcriptional activation mediated by the E75 transcription factor. HPx1 knockdown increases midgut reactive oxygen species (ROS) production by the DUOX NADPH oxidase. Elevated ROS levels reduce microbiota growth while enhancing epithelial mitosis, a response to tissue damage. However, simultaneous HPx1 and DUOX silencing was not able to rescue bacterial population growth, as explained by increased expression of antimicrobial peptides (AMPs), which occurred only after double knockdown. This result revealed hierarchical activation of ROS and AMPs to control microbiota. HPx1 knockdown produced a 100-fold decrease in Zika and dengue 2 midgut infection, demonstrating the essential role of the mosquito PM in the modulation of arbovirus vector competence. Our data show that the PM connects blood digestion to midgut immunological sensing of the microbiota and viral infections.


Asunto(s)
Aedes , Arbovirus , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/metabolismo , Peroxidasa/metabolismo , Mosquitos Vectores , Hemo/metabolismo , Peroxidasas/metabolismo , Virus Zika/metabolismo
5.
Mol Cell ; 68(5): 901-912.e3, 2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-29220655

RESUMEN

DNA double-strand breaks (DSBs) occurring within fragile zones of less than 200 base pairs account for the formation of the most common human chromosomal translocations in lymphoid malignancies, yet the mechanism of how breaks occur remains unknown. Here, we have transferred human fragile zones into S. cerevisiae in the context of a genetic assay to understand the mechanism leading to DSBs at these sites. Our findings indicate that a combination of factors is required to sensitize these regions. Foremost, DNA strand separation by transcription or increased torsional stress can expose these DNA regions to damage from either the expression of human AID or increased oxidative stress. This damage causes DNA lesions that, if not repaired quickly, are prone to nuclease cleavage, resulting in DSBs. Our results provide mechanistic insight into why human neoplastic translocation fragile DNA sequences are more prone to enzymes or agents that cause longer-lived DNA lesions.


Asunto(s)
Cromosomas Humanos/genética , Citidina Desaminasa/genética , Roturas del ADN de Doble Cadena , ADN de Hongos/genética , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/genética , Translocación Genética , Cromosomas Humanos/química , Cromosomas Humanos/metabolismo , Citidina Desaminasa/metabolismo , ADN de Hongos/química , ADN de Hongos/metabolismo , Proteínas de Unión al ADN , Endonucleasas/genética , Endonucleasas/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Humanos , Conformación de Ácido Nucleico , Peroxidasas/genética , Peroxidasas/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad , Transcripción Genética , Uracil-ADN Glicosidasa/genética , Uracil-ADN Glicosidasa/metabolismo
6.
PLoS Genet ; 18(9): e1010390, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36084128

RESUMEN

Heme (iron-protoporphyrin IX) is an essential but potentially toxic cellular cofactor. While most organisms are heme prototrophs, many microorganisms can utilize environmental heme as iron source. The pathogenic yeast Candida albicans can utilize host heme in the iron-poor host environment, using an extracellular cascade of soluble and anchored hemophores, and plasma membrane ferric reductase-like proteins. To gain additional insight into the C. albicans heme uptake pathway, we performed an unbiased genetic selection for mutants resistant to the toxic heme analog Ga3+-protoporphyrin IX at neutral pH, and a secondary screen for inability to utilize heme as iron source. Among the mutants isolated were the genes of the pH-responsive RIM pathway, and a zinc finger transcription factor related to S. cerevisiae HAP1. In the presence of hemin in the medium, C. albicans HAP1 is induced, the Hap1 protein is stabilized and Hap1-GFP localizes to the nucleus. In the hap1 mutant, cytoplasmic heme levels are elevated, while influx of extracellular heme is lower. Gene expression analysis indicated that in the presence of extracellular hemin, Hap1 activates the heme oxygenase HMX1, which breaks down excess cytoplasmic heme, while at the same time it also activates all the known heme uptake genes. These results indicate that Hap1 is a heme-responsive transcription factor that plays a role both in cytoplasmic heme homeostasis and in utilization of extracellular heme. The induction of heme uptake genes by C. albicans Hap1 under iron satiety indicates that preferential utilization of host heme can be a dietary strategy in a heme prototroph.


Asunto(s)
Hemo , Proteínas de Saccharomyces cerevisiae , Candida albicans/genética , Candida albicans/metabolismo , Hemo/genética , Hemo/metabolismo , Hemo Oxigenasa (Desciclizante)/química , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemina/metabolismo , Hemina/farmacología , Homeostasis/genética , Hierro/metabolismo , Peroxidasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Biochemistry ; 63(14): 1761-1773, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38959050

RESUMEN

Dehalperoxidase (DHP) has diverse catalytic activities depending on the substrate binding conformation, pH, and dynamics in the distal pocket above the heme. According to our hypothesis, the molecular structure of the substrate and binding orientation in DHP guide enzymatic function. Enzyme kinetic studies have shown that the catalytic activity of DHP B is significantly higher than that of DHP A despite 96% sequence homology. There are more than 30 substrate-bound structures with DHP B, each providing insight into the nature of enzymatic binding at the active site. By contrast, the only X-ray crystallographic structures of small molecules in a complex with DHP A are phenols. This study is focused on investigating substrate binding in DHP A to compare with DHP B structures. Fifteen substrates were selected that were known to bind to DHP B in the crystal to test whether soaking substrates into DHP A would yield similar structures. Five of these substrates yielded X-ray crystal structures of substrate-bound DHP A, namely, 2,4-dichlorophenol (1.48 Å, PDB: 8EJN), 2,4-dibromophenol (1.52 Å, PDB: 8VSK), 4-nitrophenol (2.03 Å, PDB: 8VKC), 4-nitrocatechol (1.40 Å, PDB: 8VKD), and 4-bromo-o-cresol (1.64 Å, PDB: 8VZR). For the remaining substrates that bind to DHP B, such as cresols, 5-bromoindole, benzimidazole, 4,4-biphenol, 4.4-ethylidenebisphenol, 2,4-dimethoxyphenol, and guaiacol, the electron density maps in DHP A are not sufficient to determine the presence of the substrates, much less their orientation. In our hands, only phenols, 4-Br-o-cresol, and 4-nitrocatechol can be soaked into crystalline DHP A. None of the larger substrates were observed to bind. A minimum of seven hanging drops were selected for soaking with more than 50 crystals screened for each substrate. The five high-quality examples of direct comparison of modes of binding in DHP A and B for the same substrate provide further support for the hypothesis that the substrate-binding conformation determines the enzyme function of DHP.


Asunto(s)
Peroxidasas , Cristalografía por Rayos X , Especificidad por Sustrato , Sitios de Unión , Peroxidasas/química , Peroxidasas/metabolismo , Dominio Catalítico , Modelos Moleculares , Conformación Proteica , Animales , Cinética
8.
J Biol Chem ; 299(9): 105094, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37507015

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) are monocopper enzymes that degrade the insoluble crystalline polysaccharides cellulose and chitin. Besides the H2O2 cosubstrate, the cleavage of glycosidic bonds by LPMOs depends on the presence of a reductant needed to bring the enzyme into its reduced, catalytically active Cu(I) state. Reduced LPMOs that are not bound to substrate catalyze reductant peroxidase reactions, which may lead to oxidative damage and irreversible inactivation of the enzyme. However, the kinetics of this reaction remain largely unknown, as do possible variations between LPMOs belonging to different families. Here, we describe the kinetic characterization of two fungal family AA9 LPMOs, TrAA9A of Trichoderma reesei and NcAA9C of Neurospora crassa, and two bacterial AA10 LPMOs, ScAA10C of Streptomyces coelicolor and SmAA10A of Serratia marcescens. We found peroxidation of ascorbic acid and methyl-hydroquinone resulted in the same probability of LPMO inactivation (pi), suggesting that inactivation is independent of the nature of the reductant. We showed the fungal enzymes were clearly more resistant toward inactivation, having pi values of less than 0.01, whereas the pi for SmAA10A was an order of magnitude higher. However, the fungal enzymes also showed higher catalytic efficiencies (kcat/KM(H2O2)) for the reductant peroxidase reaction. This inverse linear correlation between the kcat/KM(H2O2) and pi suggests that, although having different life spans in terms of the number of turnovers in the reductant peroxidase reaction, LPMOs that are not bound to substrates have similar half-lives. These findings have not only potential biological but also industrial implications.


Asunto(s)
Oxigenasas de Función Mixta , Peroxidasas , Polisacáridos , Sustancias Reductoras , Ácido Ascórbico/metabolismo , Biocatálisis , Cobre/metabolismo , Estabilidad de Enzimas , Semivida , Peróxido de Hidrógeno/metabolismo , Cinética , Oxigenasas de Función Mixta/metabolismo , Neurospora crassa/enzimología , Neurospora crassa/metabolismo , Peroxidasas/metabolismo , Polisacáridos/metabolismo , Sustancias Reductoras/metabolismo , Serratia marcescens/enzimología , Serratia marcescens/metabolismo , Streptomyces coelicolor/enzimología , Streptomyces coelicolor/metabolismo
9.
EMBO J ; 39(9): e103894, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32187732

RESUMEN

Production of reactive oxygen species (ROS) by NADPH oxidases (NOXs) impacts many processes in animals and plants, and many plant receptor pathways involve rapid, NOX-dependent increases of ROS. Yet, their general reactivity has made it challenging to pinpoint the precise role and immediate molecular action of ROS. A well-understood ROS action in plants is to provide the co-substrate for lignin peroxidases in the cell wall. Lignin can be deposited with exquisite spatial control, but the underlying mechanisms have remained elusive. Here, we establish a kinase signaling relay that exerts direct, spatial control over ROS production and lignification within the cell wall. We show that polar localization of a single kinase component is crucial for pathway function. Our data indicate that an intersection of more broadly localized components allows for micrometer-scale precision of lignification and that this system is triggered through initiation of ROS production as a critical peroxidase co-substrate.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Lignina/metabolismo , Proteínas Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regulación de la Expresión Génica de las Plantas , NADPH Oxidasas/metabolismo , Peroxidasas/metabolismo , Raíces de Plantas/metabolismo
10.
BMC Plant Biol ; 24(1): 318, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38654190

RESUMEN

BACKGROUND: Class III peroxidases (PODs) perform crucial functions in various developmental processes and responses to biotic and abiotic stresses. However, their roles in wheat seed dormancy (SD) and germination remain elusive. RESULTS: Here, we identified a wheat class III POD gene, named TaPer12-3A, based on transcriptome data and expression analysis. TaPer12-3A showed decreasing and increasing expression trends with SD acquisition and release, respectively. It was highly expressed in wheat seeds and localized in the endoplasmic reticulum and cytoplasm. Germination tests were performed using the transgenic Arabidopsis and rice lines as well as wheat mutant mutagenized with ethyl methane sulfonate (EMS) in Jing 411 (J411) background. These results indicated that TaPer12-3A negatively regulated SD and positively mediated germination. Further studies showed that TaPer12-3A maintained H2O2 homeostasis by scavenging excess H2O2 and participated in the biosynthesis and catabolism pathways of gibberellic acid and abscisic acid to regulate SD and germination. CONCLUSION: These findings not only provide new insights for future functional analysis of TaPer12-3A in regulating wheat SD and germination but also provide a target gene for breeding wheat varieties with high pre-harvest sprouting resistance by gene editing technology.


Asunto(s)
Germinación , Latencia en las Plantas , Triticum , Triticum/genética , Triticum/enzimología , Triticum/fisiología , Latencia en las Plantas/genética , Germinación/genética , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Peróxido de Hidrógeno/metabolismo , Giberelinas/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Peroxidasas/genética , Peroxidasas/metabolismo , Plantas Modificadas Genéticamente , Ácido Abscísico/metabolismo , Genes de Plantas
11.
Chembiochem ; 25(9): e202300872, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38376941

RESUMEN

Dye-decolorizing peroxidases (DyPs) are recently identified microbial enzymes that have been used in several Biotechnology applications from wastewater treatment to lignin valorization. However, their properties and mechanism of action still have many open questions. Their heme-containing active site is buried by three conserved flexible loops with a putative role in modulating substrate access and enzyme catalysis. Here, we investigated the role of a conserved glutamate residue in stabilizing interactions in loop 2 of A-type DyPs. First, we did site saturation mutagenesis of this residue, replacing it with all possible amino acids in bacterial DyPs from Bacillus subtilis (BsDyP) and from Kitasatospora aureofaciens (KaDyP1), the latter being characterized here for the first time. We screened the resulting libraries of variants for activity towards ABTS and identified variants with increased catalytic efficiency. The selected variants were purified and characterized for activity and stability. We furthermore used Molecular Dynamics simulations to rationalize the increased catalytic efficiency and found that the main reason is the electron channeling becoming easier from surface-exposed tryptophans. Based on our findings, we also propose that this glutamate could work as a pH switch in the wild-type enzyme, preventing intracellular damage.


Asunto(s)
Bacillus subtilis , Colorantes , Ácido Glutámico , Peroxidasas , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Colorantes/química , Colorantes/metabolismo , Bacillus subtilis/enzimología , Peroxidasas/química , Peroxidasas/metabolismo , Peroxidasas/genética , Simulación de Dinámica Molecular , Ingeniería de Proteínas , Mutagénesis Sitio-Dirigida
12.
Appl Environ Microbiol ; 90(2): e0175323, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38259078

RESUMEN

White-rot fungi, such as Phanerochaete chrysosporium, are the most efficient degraders of lignin, a major component of plant biomass. Enzymes produced by these fungi, such as lignin peroxidases and manganese peroxidases, break down lignin polymers into various aromatic compounds based on guaiacyl, syringyl, and hydroxyphenyl units. These intermediates are further degraded, and the aromatic ring is cleaved by 1,2,4-trihydroxybenzene dioxygenases. This study aimed to characterize homogentisate dioxygenase (HGD)-like proteins from P. chrysosporium that are strongly induced by the G-unit fragment of vanillin. We overexpressed two homologous recombinant HGDs, PcHGD1 and PcHGD2, in Escherichia coli. Both PcHGD1 and PcHGD2 catalyzed the ring cleavage in methoxyhydroquinone (MHQ) and dimethoxyhydroquinone (DMHQ). The two enzymes had the highest catalytic efficiency (kcat/Km) for MHQ, and therefore, we named PcHGD1 and PcHGD2 as MHQ dioxygenases 1 and 2 (PcMHQD1 and PcMHQD2), respectively, from P. chrysosporium. This is the first study to identify and characterize MHQ and DMHQ dioxygenase activities in members of the HGD superfamily. These findings highlight the unique and broad substrate spectra of PcHGDs, rendering them attractive candidates for biotechnological applications.IMPORTANCEThis study aimed to elucidate the properties of enzymes responsible for degrading lignin, a dominant natural polymer in terrestrial lignocellulosic biomass. We focused on two homogentisate dioxygenase (HGD) homologs from the white-rot fungus, P. chrysosporium, and investigated their roles in the degradation of lignin-derived aromatic compounds. In the P. chrysosporium genome database, PcMHQD1 and PcMHQD2 were annotated as HGDs that could cleave the aromatic rings of methoxyhydroquinone (MHQ) and dimethoxyhydroquinone (DMHQ) with a preference for MHQ. These findings suggest that MHQD1 and/or MHQD2 play important roles in the degradation of lignin-derived aromatic compounds by P. chrysosporium. The preference of PcMHQDs for MHQ and DMHQ not only highlights their potential for biotechnological applications but also underscores their critical role in understanding lignin degradation by a representative of white-rot fungus, P. chrysosporium.


Asunto(s)
Dioxigenasas , Phanerochaete , Lignina/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Phanerochaete/genética , Homogentisato 1,2-Dioxigenasa/metabolismo , Proteínas/metabolismo , Peroxidasas/genética , Peroxidasas/metabolismo
13.
Appl Environ Microbiol ; 90(4): e0204423, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38483171

RESUMEN

The ability of some white rot basidiomycetes to remove lignin selectively from wood indicates that low molecular weight oxidants have a role in ligninolysis. These oxidants are likely free radicals generated by fungal peroxidases from compounds in the biodegrading wood. Past work supports a role for manganese peroxidases (MnPs) in the production of ligninolytic oxidants from fungal membrane lipids. However, the fatty acid alkylperoxyl radicals initially formed during this process are not reactive enough to attack the major structures in lignin. Here, we evaluate the hypothesis that the peroxidation of fatty aldehydes might provide a source of more reactive acylperoxyl radicals. We found that Gelatoporia subvermispora produced trans-2-nonenal, trans-2-octenal, and n-hexanal (a likely metabolite of trans-2,4-decadienal) during the incipient decay of aspen wood. Fungal fatty aldehydes supported the in vitro oxidation by MnPs of a nonphenolic lignin model dimer, and also of the monomeric model veratryl alcohol. Experiments with the latter compound showed that the reactions were partially inhibited by oxalate, the chelator that white rot fungi employ to detach Mn3+ from the MnP active site, but nevertheless proceeded at its physiological concentration of 1 mM. The addition of catalase was inhibitory, which suggests that the standard MnP catalytic cycle is involved in the oxidation of aldehydes. MnP oxidized trans-2-nonenal quantitatively to trans-2-nonenoic acid with the consumption of one O2 equivalent. The data suggest that when Mn3+ remains associated with MnP, it can oxidize aldehydes to their acyl radicals, and the latter subsequently add O2 to become ligninolytic acylperoxyl radicals.IMPORTANCEThe biodegradation of lignin by white rot fungi is essential for the natural recycling of plant biomass and has useful applications in lignocellulose bioprocessing. Although fungal peroxidases have a key role in ligninolysis, past work indicates that biodegradation is initiated by smaller, as yet unidentified oxidants that can infiltrate the substrate. Here, we present evidence that the peroxidase-catalyzed oxidation of naturally occurring fungal aldehydes may provide a source of ligninolytic free radical oxidants.


Asunto(s)
Basidiomycota , Manganeso , Polyporales , Lignina/metabolismo , Proteínas Fúngicas/metabolismo , Basidiomycota/metabolismo , Aldehídos , Peroxidasas/metabolismo , Ácidos Grasos , Oxidantes
14.
Appl Environ Microbiol ; 90(5): e0020524, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38625022

RESUMEN

Dye-decolorizing peroxidases are heme peroxidases with a broad range of substrate specificity. Their physiological function is still largely unknown, but a role in the depolymerization of plant cell wall polymers has been widely proposed. Here, a new expression system for bacterial dye-decolorizing peroxidases as well as the activity with previously unexplored plant molecules are reported. The dye-decolorizing peroxidase from Amycolatopsis 75iv2 (DyP2) was heterologously produced in the Gram-positive bacterium Streptomyces lividans TK24 in both intracellular and extracellular forms without external heme supplementation. The enzyme was tested on a series of O-glycosides, which are plant secondary metabolites with a phenyl glycosidic linkage. O-glycosides are of great interest, both for studying the compounds themselves and as potential models for studying specific lignin-carbohydrate complexes. The primary DyP reaction products of salicin, arbutin, fraxin, naringin, rutin, and gossypin were oxidatively coupled oligomers. A cleavage of the glycone moiety upon radical polymerization was observed when using arbutin, fraxin, rutin, and gossypin as substrates. The amount of released glucose from arbutin and fraxin reached 23% and 3% of the total substrate, respectively. The proposed mechanism suggests a destabilization of the ether linkage due to the localization of the radical in the para position. In addition, DyP2 was tested on complex lignocellulosic materials such as wheat straw, spruce, willow, and purified water-soluble lignin fractions, but no remarkable changes in the carbohydrate profile were observed, despite obvious oxidative activity. The exact action of DyP2 on such lignin-carbohydrate complexes therefore remains elusive. IMPORTANCE: Peroxidases require correct incorporation of the heme cofactor for activity. Heterologous overproduction of peroxidases often results in an inactive enzyme due to insufficient heme synthesis by the host organism. Therefore, peroxidases are incubated with excess heme during or after purification to reconstitute activity. S. lividans as a production host can produce fully active peroxidases both intracellularly and extracellularly without the need for heme supplementation. This reduces the number of downstream processing steps and is beneficial for more sustainable production of industrially relevant enzymes. Moreover, this research has extended the scope of dye-decolorizing peroxidase applications by studying naturally relevant plant secondary metabolites and analyzing the formed products. A previously overlooked artifact of radical polymerization leading to the release of the glycosyl moiety was revealed, shedding light on the mechanism of DyP peroxidases. The key aspect is the continuous addition, rather than the more common approach of a single addition, of the cosubstrate, hydrogen peroxide. This continuous addition allows the peroxidase to complete a high number of turnovers without self-oxidation.


Asunto(s)
Amycolatopsis , Colorantes , Glicósidos , Colorantes/metabolismo , Colorantes/química , Glicósidos/metabolismo , Amycolatopsis/metabolismo , Amycolatopsis/genética , Amycolatopsis/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Peroxidasas/metabolismo , Peroxidasas/genética , Peroxidasa/metabolismo , Peroxidasa/química , Peroxidasa/genética , Streptomyces lividans/metabolismo , Streptomyces lividans/genética , Streptomyces lividans/enzimología , Especificidad por Sustrato
15.
Plant Physiol ; 192(1): 102-118, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36575825

RESUMEN

In planta, H2O2 is produced as a by-product of enzymatic reactions and during defense responses. Ascorbate peroxidase (APX) is a key enzyme involved in scavenging cytotoxic H2O2. Here, we report the crystal structure of cytosolic APX from sorghum (Sorghum bicolor) (Sobic.001G410200). While the overall structure of SbAPX was similar to that of other APXs, SbAPX uniquely displayed four bound ascorbates rather than one. In addition to the ɣ-heme pocket identified in other APXs, ascorbates were bound at the δ-meso and two solvent-exposed pockets. Consistent with the presence of multiple binding sites, our results indicated that the H2O2-dependent oxidation of ascorbate displayed positive cooperativity. Bound ascorbate at two surface sites established an intricate proton network with ascorbate at the ɣ-heme edge and δ-meso sites. Based on crystal structures, steady-state kinetics, and site-directed mutagenesis results, both ascorbate molecules at the ɣ-heme edge and the one at the surface are expected to participate in the oxidation reaction. We provide evidence that the H2O2-dependent oxidation of ascorbate by APX produces a C2-hydrated bicyclic hemiketal form of dehydroascorbic acid at the ɣ-heme edge, indicating two successive electron transfers from a single-bound ascorbate. In addition, the δ-meso site was shared with several organic compounds, including p-coumaric acid and other phenylpropanoids, for the potential radicalization reaction. Site-directed mutagenesis of the critical residue at the ɣ-heme edge (R172A) only partially reduced polymerization activity. Thus, APX removes stress-generated H2O2 with ascorbates, and also uses this same H2O2 to potentially fortify cell walls via oxidative polymerization of phenylpropanoids in response to stress.


Asunto(s)
Peroxidasas , Sorghum , Ascorbato Peroxidasas/genética , Ascorbato Peroxidasas/metabolismo , Peroxidasas/metabolismo , Sorghum/genética , Sorghum/metabolismo , Peróxido de Hidrógeno , Modelos Moleculares , Sitios de Unión , Ácido Ascórbico/metabolismo , Hemo
16.
Plant Physiol ; 191(4): 2551-2569, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36582183

RESUMEN

Reactive oxygen species are produced in response to pathogens and pathogen-associated molecular patterns, as exemplified by the rapid extracellular oxidative burst dependent on the NADPH oxidase isoform RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD) in Arabidopsis (Arabidopsis thaliana). We used the H2O2 biosensor roGFP2-Orp1 and the glutathione redox state biosensor GRX1-roGFP2 targeted to various organelles to reveal unsuspected oxidative events during the pattern-triggered immune response to flagellin (flg22) and after inoculation with Pseudomonas syringae. roGFP2-Orp1 was oxidized in a biphasic manner 1 and 6 h after treatment, with a more intense and faster response in the cytosol compared to chloroplasts, mitochondria, and peroxisomes. Peroxisomal and cytosolic GRX1-roGFP2 were also oxidized in a biphasic manner. Interestingly, our results suggested that bacterial effectors partially suppress the second phase of roGFP2-Orp1 oxidation in the cytosol. Pharmacological and genetic analyses indicated that the pathogen-associated molecular pattern-induced cytosolic oxidation required the BRI1-ASSOCIATED RECEPTOR KINASE (BAK1) and BOTRYTIS-INDUCED KINASE 1 (BIK1) signaling components involved in the immune response but was largely independent of NADPH oxidases RBOHD and RESPIRATORY BURST OXIDASE HOMOLOG F (RBOHF) and apoplastic peroxidases peroxidase 33 (PRX33) and peroxidase 34 (PRX34). The initial apoplastic oxidative burst measured with luminol was followed by a second oxidation burst, both of which preceded the two waves of cytosolic oxidation. In contrast to the cytosolic oxidation, these bursts were RBOHD-dependent. Our results reveal complex oxidative sources and dynamics during the pattern-triggered immune response, including that cytosolic oxidation is largely independent of the preceding extracellular oxidation events.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Peroxidasa , Peróxido de Hidrógeno , Arabidopsis/genética , NADPH Oxidasas/metabolismo , Peroxidasas/metabolismo , Inmunidad de la Planta/genética , Mitocondrias/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno , Proteínas Serina-Treonina Quinasas
17.
Plant Physiol ; 193(1): 339-355, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37249039

RESUMEN

Drought and flooding are the two most important environmental factors limiting maize (Zea mays L.) production globally. This study aimed to investigate the physiological mechanisms and accurate evaluation indicators and methods of maize germplasm involved in drought and flooding stresses. The twice replicated pot experiments with 60 varieties, combined with the field validation experiment with 3 varieties, were conducted under well-watered, drought, and flooding conditions. Most varieties exhibited stronger tolerance to drought than flooding due to higher antioxidant enzyme activities, osmotic adjustment substances, and lower reactive oxygen species. In contrast, flooding stress resulted in higher levels of reactive oxygen species (particularly O2-), ascorbate peroxidase, catalase, peroxidase, and soluble sugars but lower levels of superoxide dismutase, proline, and soluble protein compared with well-watered conditions. Superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, proline, soluble sugars, and protein contents, in addition to plant height, leaf area/plant, and stem diameter, were accurate and representative indicators for evaluating maize tolerance to drought and flooding stresses and could determine a relatively high mean forecast accuracy of 100.0% for the comprehensive evaluation value. A total of 4 principal components were extracted, in which different principal components played a vital role in resisting different water stresses. Finally, the accuracy of the 3 varieties screened by multivariate analysis was verified in the field. This study provides insights into the different physiological mechanisms and accurate evaluation methods of maize germplasm involved in drought and flooding stresses, which could be valuable for further research and breeding.


Asunto(s)
Sequías , Zea mays , Catalasa/metabolismo , Zea mays/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ascorbato Peroxidasas/genética , Ascorbato Peroxidasas/metabolismo , Estrés Fisiológico , Fitomejoramiento , Antioxidantes/metabolismo , Peroxidasas/genética , Peroxidasas/metabolismo , Peroxidasa/metabolismo , Superóxido Dismutasa/metabolismo , Agua/metabolismo , Prolina/metabolismo , Análisis Multivariante , Azúcares/metabolismo
18.
Arch Biochem Biophys ; 754: 109931, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382807

RESUMEN

Dye-decolorizing peroxidases (DyPs) have been intensively investigated for the purpose of industrial dye decolourization and lignin degradation. Unfortunately, the characterization of these peroxidases is hampered by their non-Michaelis-Menten kinetics, exemplified by substrate inhibition and/or positive cooperativity. Although often observed, the underlying mechanisms behind the unusual kinetics of DyPs are poorly understood. Here we studied the kinetics of the oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), hydroquinones, and anthraquinone dyes by DyP from the bacterium Thermobifida halotolerans (ThDyP) and solved its crystal structure. We also provide rate equations for different kinetic mechanisms explaining the complex kinetics of heme peroxidases. Kinetic studies along with the analysis of the structure of ThDyP suggest that the substrate inhibition is caused by the non-productive binding of ABTS to the enzyme resting state. Strong irreversible inactivation of ThDyP by H2O2 in the absence of ABTS suggests that the substrate inhibition by H2O2 may be caused by the non-productive binding of H2O2 to compound I. Positive cooperativity was observed only with the oxidation of ABTS but not with the two electron-donating substrates. Although the conventional mechanism of cooperativity cannot be excluded, we propose that the oxidation of ABTS assumes the simultaneous binding of two ABTS molecules to reduce compound I to the enzyme resting state, and this causes the apparent positive cooperativity.


Asunto(s)
Benzotiazoles , Peroxidasa , Ácidos Sulfónicos , Thermobifida , Peroxidasa/metabolismo , Thermobifida/metabolismo , Cinética , Peróxido de Hidrógeno , Peroxidasas/metabolismo , Colorantes/metabolismo
19.
Biotechnol Bioeng ; 121(4): 1366-1370, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38079064

RESUMEN

To improve the titre of lignin-derived pyridine-dicarboxylic acid (PDCA) products in engineered Rhodococcus jostii RHA1 strains, plasmid-based overexpression of seven endogenous and exogenous lignin-degrading genes was tested. Overexpression of endogenous multi-copper oxidases mcoA, mcoB, and mcoC was found to enhance 2,4-PDCA production by 2.5-, 1.4-, and 3.5-fold, respectively, while overexpression of dye-decolorizing peroxidase dypB was found to enhance titre by 1.4-fold, and overexpression of Streptomyces viridosporus laccase enhanced titre by 1.3-fold. The genomic context of the R. jostii mcoA gene suggests involvement in 4-hydroxybenzoate utilization, which was consistent with enhanced whole cell biotransformation of 4-hydroxybenzoate by R. jostii pTipQC2-mcoA. These data support the role of multi-copper oxidases in bacterial lignin degradation, and provide an opportunity to enhance titres of lignin-derived bioproducts.


Asunto(s)
Lignina , Parabenos , Rhodococcus , Lignina/metabolismo , Peroxidasas/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo , Piridinas/metabolismo
20.
Microb Cell Fact ; 23(1): 88, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38519954

RESUMEN

BACKGROUND: The halophilic bacterium Halomonas elongata is an industrially important strain for ectoine production, with high value and intense research focus. While existing studies primarily delve into the adaptive mechanisms of this bacterium under fixed salt concentrations, there is a notable dearth of attention regarding its response to fluctuating saline environments. Consequently, the stress response of H. elongata to salt shock remains inadequately understood. RESULTS: This study investigated the stress response mechanism of H. elongata when exposed to NaCl shock at short- and long-time scales. Results showed that NaCl shock induced two major stresses, namely osmotic stress and oxidative stress. In response to the former, within the cell's tolerable range (1-8% NaCl shock), H. elongata urgently balanced the surging osmotic pressure by uptaking sodium and potassium ions and augmenting intracellular amino acid pools, particularly glutamate and glutamine. However, ectoine content started to increase until 20 min post-shock, rapidly becoming the dominant osmoprotectant, and reaching the maximum productivity (1450 ± 99 mg/L/h). Transcriptomic data also confirmed the delayed response in ectoine biosynthesis, and we speculate that this might be attributed to an intracellular energy crisis caused by NaCl shock. In response to oxidative stress, transcription factor cysB was significantly upregulated, positively regulating the sulfur metabolism and cysteine biosynthesis. Furthermore, the upregulation of the crucial peroxidase gene (HELO_RS18165) and the simultaneous enhancement of peroxidase (POD) and catalase (CAT) activities collectively constitute the antioxidant defense in H. elongata following shock. When exceeding the tolerance threshold of H. elongata (1-13% NaCl shock), the sustained compromised energy status, resulting from the pronounced inhibition of the respiratory chain and ATP synthase, may be a crucial factor leading to the stagnation of both cell growth and ectoine biosynthesis. CONCLUSIONS: This study conducted a comprehensive analysis of H. elongata's stress response to NaCl shock at multiple scales. It extends the understanding of stress response of halophilic bacteria to NaCl shock and provides promising theoretical insights to guide future improvements in optimizing industrial ectoine production.


Asunto(s)
Aminoácidos Diaminos , Halomonas , Cloruro de Sodio/farmacología , Cloruro de Sodio/metabolismo , Halomonas/genética , Halomonas/metabolismo , Presión Osmótica , Perfilación de la Expresión Génica , Peroxidasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA