Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 650
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 252(Pt 1): 118779, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38552825

RESUMEN

Numerous application of pyrethroid insecticides has led to their accumulation in the environment, threatening ecological environment and human health. Its fate in the presence of iron-bearing minerals and natural organic matter under light irradiation is still unknown. We found that goethite (Gt) and humic acid (HA) could improve the photodegradation of bifenthrin (BF) in proper concentration under light irradiation. The interaction between Gt and HA may further enhance BF degradation. On one hand, the adsorption of HA on Gt may decrease the photocatalytic activity of HA through decreasing HA content in solution and sequestering the functional groups related with the production of reactive species. On the other hand, HA could improve the photocatalytic activity of Gt through extending light absorption, lowing of bandgap energy, hindering the recombination of photo-generated charges, and promoting the oxidation and reduction reaction on Gt surface. The increased oxygen vacancies on Gt surface along with the reduction of trivalent iron and the nucleophilic attack of hole to surface hydroxyl group contributed to the increasing photocatalytic activity of Gt. Electron paramagnetic resonance and quenching studies demonstrated that both oxidation species, such as hydroxyl radical (•OH) and singlet oxygen (1O2), and reducing species, such as hydrogen atoms (H•) and superoxide anion radical (O2•-), contributed to BF degradation in UV-Gt-HA system. Mass spectrometry, ion chromatography, and toxicity assessment indicated that less toxic C23H22ClF3O3 (OH-BF), C9H10ClF3O (TFP), C14H14O2 (OH-MBP), C14H12O2 (MBP acid), C14H12O3 (OH-MBP acid), and chloride ions were the main degradation products. The production of OH-BF, MPB, and TFP acid through oxidation and the production of MPB and TFP via reduction were the two primary pathways of BF degradation.


Asunto(s)
Sustancias Húmicas , Compuestos de Hierro , Minerales , Oxidación-Reducción , Piretrinas , Sustancias Húmicas/análisis , Minerales/química , Compuestos de Hierro/química , Piretrinas/química , Fotólisis , Insecticidas/química
2.
PLoS Genet ; 17(7): e1009677, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34237075

RESUMEN

Pyrethrum extract from dry flowers of Tanacetum cinerariifolium (formally Chrysanthemum cinerariifolium) has been used globally as a popular insect repellent against arthropod pests for thousands of years. However, the mechanistic basis of pyrethrum repellency remains unknown. In this study, we found that pyrethrum spatially repels and activates olfactory responses in Drosophila melanogaster, a genetically tractable model insect, and the closely-related D. suzukii which is a serious invasive fruit crop pest. The discovery of spatial pyrethrum repellency and olfactory response to pyrethrum in D. melanogaster facilitated our identification of four odorant receptors, Or7a, Or42b, Or59b and Or98a that are responsive to pyrethrum. Further analysis showed that the first three Ors are activated by pyrethrins, the major insecticidal components in pyrethrum, whereas Or98a is activated by (E)-ß-farnesene (EBF), a sesquiterpene and a minor component in pyrethrum. Importantly, knockout of Or7a, Or59b or Or98a individually abolished fly avoidance to pyrethrum, while knockout of Or42b had no effect, demonstrating that simultaneous activation of Or7a, Or59b and Or98a is required for pyrethrum repellency in D. melanogaster. Our study provides insights into the molecular basis of repellency of one of the most ancient and globally used insect repellents. Identification of pyrethrum-responsive Ors opens the door to develop new synthetic insect repellent mixtures that are highly effective and broad-spectrum.


Asunto(s)
Chrysanthemum cinerariifolium/metabolismo , Repelentes de Insectos/química , Receptores Odorantes/metabolismo , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Flores , Repelentes de Insectos/metabolismo , Insecticidas/química , Odorantes/análisis , Piretrinas/química , Piretrinas/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/fisiología , Sesquiterpenos/química
3.
Molecules ; 29(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38792172

RESUMEN

Pyrethroid pesticides (PYRs) have found widespread application in agriculture for the protection of fruit and vegetable crops. Nonetheless, excessive usage or improper application may allow the residues to exceed the safe limits and pose a threat to consumer safety. Thus, there is an urgent need to develop efficient technologies for the elimination or trace detection of PYRs from vegetables. Here, a simple and efficient magnetic solid-phase extraction (MSPE) strategy was developed for the simultaneous purification and enrichment of five PYRs in vegetables, employing the magnetic covalent organic framework nanomaterial COF-SiO2@Fe3O4 as an adsorbent. COF-SiO2@Fe3O4 was prepared by a straightforward solvothermal method, using Fe3O4 as a magnetic core and benzidine and 3,3,5,5-tetraaldehyde biphenyl as the two building units. COF-SiO2@Fe3O4 could effectively capture the targeted PYRs by virtue of its abundant π-electron system and hydroxyl groups. The impact of various experimental parameters on the extraction efficiency was investigated to optimize the MSPE conditions, including the adsorbent amount, extraction time, elution solvent type and elution time. Subsequently, method validation was conducted under the optimal conditions in conjunction with gas chromatography-mass spectrometry (GC-MS). Within the range of 5.00-100 µg·kg-1 (1.00-100 µg·kg-1 for bifenthrin and 2.5-100 µg·kg-1 for fenpropathrin), the five PYRs exhibited a strong linear relationship, with determination coefficients ranging from 0.9990 to 0.9997. The limits of detection (LODs) were 0.3-1.5 µg·kg-1, and the limits of quantification (LOQs) were 0.9-4.5 µg·kg-1. The recoveries were 80.2-116.7% with relative standard deviations (RSDs) below 7.0%. Finally, COF-SiO2@Fe3O4, NH2-SiO2@Fe3O4 and Fe3O4 were compared as MSPE adsorbents for PYRs. The results indicated that COF-SiO2@Fe3O4 was an efficient and rapid selective adsorbent for PYRs. This method holds promise for the determination of PYRs in real samples.


Asunto(s)
Plaguicidas , Piretrinas , Dióxido de Silicio , Extracción en Fase Sólida , Verduras , Extracción en Fase Sólida/métodos , Dióxido de Silicio/química , Verduras/química , Piretrinas/aislamiento & purificación , Piretrinas/análisis , Piretrinas/química , Plaguicidas/aislamiento & purificación , Plaguicidas/química , Plaguicidas/análisis , Cromatografía de Gases y Espectrometría de Masas , Adsorción , Contaminación de Alimentos/análisis , Límite de Detección , Residuos de Plaguicidas/análisis , Residuos de Plaguicidas/aislamiento & purificación , Compuestos Férricos/química , Cobalto
4.
Anal Chem ; 95(13): 5678-5686, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36952638

RESUMEN

Sensing systems based on cholinesterase and carboxylesterase coupled with different transduction technologies have emerged for pesticide screening owing to their simple operation, fast response, and suitability for on-site analysis. However, the broad spectrum and specificity screening of pyrethroids over organophosphates and carbamates remains an unmet challenge for current enzymatic sensors. Human serum albumin (HSA), a multifunctional protein, can promote various chemical transformations and show a high affinity for pyrethroids, which offer a route for specific and broad-spectrum pyrethroid screening. Herein, for the first time, we evaluated the catalytic hydrolysis function of human serum albumin (HSA) on the coumarin lactone bond and revealed that HSA can act as an enzyme to catalyze the hydrolysis of the coumarin lactone bond. Molecular docking and chemical modifications indicate that lysine 199 and tyrosine 411 serve as the catalytic general base and contribute to most of the catalytic activity. Utilizing this enzymatic activity, a broad specific ratiometric fluorescence pyrethroids sensing system was developed. The binding energetics and binding constants of pesticides and HSA show that pyrethroids bind to HSA more easily than organophosphates and carbamates, which is responsible for the specificity of the sensing system. This study provides a general sensor platform and strategy for screening pesticides and reveals the catalytic activity of HSA on the hydrolysis of the coumarin lactone bond, which may open innovative horizons for the chemical sensing and biomedical applications of HSA.


Asunto(s)
Plaguicidas , Piretrinas , Humanos , Albúmina Sérica Humana/metabolismo , Hidrólisis , Piretrinas/química , Simulación del Acoplamiento Molecular , Cumarinas/química , Carbamatos , Organofosfatos , Lactonas , Unión Proteica , Espectrometría de Fluorescencia
5.
J Appl Microbiol ; 134(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37197912

RESUMEN

The unrestricted utilization of xenobiotic compounds has sparked widespread concern by the world's growing population. A synthetic pyrethroid called cypermethrin (CP) is commonly utilized as an insecticide in horticulture, agriculture, and pest control. The high toxicity levels of accumulated CP have prompted environmental concerns; it damages soil fertility, and an ecosystem of essential bacteria, and causes allergic reactions and tremors in humans by affecting their nervous systems. The damage caused by CP to groundwater, food, and health makes it imperative that new effective and sustainable alternatives are investigated. Microbial degradation has been established as a reliable technique for mineralizing CP into less toxic chemicals. Among the many enzymes produced by bacteria, carboxylesterase enzymes are determined to be the most efficient in the CP breakdown process. High-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) have been reported as the best methods for determining CP and its metabolized products, with detection limits as low as ppb from diverse environmental samples. The current study describes the ecotoxicological impact of CP and innovative analytical techniques for their detection. The newly isolated CP-degrading bacterial strains have been evaluated in order to develop an efficient bioremediation strategy. The proposed pathways and the associated critical enzymes in the bacterial mineralization of CP have also been highlighted. Additionally, the strategic action to control CP toxicity has been discussed.


Asunto(s)
Insecticidas , Piretrinas , Humanos , Ecosistema , Piretrinas/química , Piretrinas/metabolismo , Insecticidas/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Biodegradación Ambiental , Bacterias/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(43): 26633-26638, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33046642

RESUMEN

Pyrethroid contact insecticides are mainstays of malaria control, but their efficacies are declining due to widespread insecticide resistance in Anopheles mosquito populations, a major public health challenge. Several strategies have been proposed to overcome this challenge, including insecticides with new modes of action. New insecticides, however, can be expensive to implement in low-income countries. Here, we report a simple and inexpensive method to improve the efficacy of deltamethrin, the most active and most commonly used pyrethroid, by more than 10 times against Anopheles mosquitoes. Upon heating for only a few minutes, the commercially available deltamethrin crystals, form I, melt and crystallize upon cooling into a polymorph, form II, which is much faster acting against fruit flies and mosquitoes. Epidemiological modeling suggests that the use of form II in indoor residual spraying in place of form I would significantly suppress malaria transmission, even in the presence of high levels of resistance. The simple preparation of form II, coupled with its kinetic stability and markedly higher efficacy, argues that form II can provide a powerful, timely, and affordable malaria control solution for low-income countries that are losing protection in the face of worldwide pyrethroid resistance.


Asunto(s)
Anopheles/efectos de los fármacos , Insecticidas/farmacología , Malaria/prevención & control , Control de Mosquitos/métodos , Nitrilos/farmacología , Piretrinas/farmacología , Animales , Cristalización , Drosophila melanogaster/efectos de los fármacos , Femenino , Humanos , Resistencia a los Insecticidas , Insecticidas/química , Modelos Biológicos , Nitrilos/química , Piretrinas/química
7.
Parasitol Res ; 122(10): 2267-2278, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37493957

RESUMEN

The current work evaluated the efficacy of 10 commercial acaricides in different pHs (4.5, 5.5, and 6.5) in laboratory (adult immersion tests (AIT), pH evaluation over time) and field assays (tick counts and efficacy). In the AIT (n=70), higher efficacies were obtained when the acaricide emulsion had a more acidic pH (4.5), mainly for two combinations of pyrethroids + organophosphate (acaricide 3 and acaricide 9). For amidine, a higher pH (6.5) showed a higher efficacy. Over time, there was a trend in the pH of these emulsions increasing. When the efficacy of chlorpyrifos + cypermethrin + piperonyl butoxide (acaricide 3) at different pHs was evaluated over time (0, 6, 12, and 24h) by AIT, the less acidic pH (6.5) showed a strongly variation in the acaricide efficacy range. The mean pH of the water samples from different regions of Brazil was 6.5. In the field, the association of pyrethroid + organophosphates (acaricide 9) with pH of 4.5 and 5.5 were more effective in tick control than the emulsion prepared with this same spray formulation at pH 6.5. The pH of the acaricide emulsions is an important point of attention and is recommended that the veterinary industry start to develop/share information regarding how the pH can affect the acaricide efficacy.


Asunto(s)
Acaricidas , Rhipicephalus , Control de Ácaros y Garrapatas , Animales , Bovinos , Concentración de Iones de Hidrógeno , Acaricidas/química , Acaricidas/farmacología , Emulsiones , Control de Ácaros y Garrapatas/métodos , Piretrinas/química , Piretrinas/farmacología , Organofosfatos/química , Organofosfatos/farmacología , Rhipicephalus/efectos de los fármacos
8.
Pestic Biochem Physiol ; 189: 105296, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36549822

RESUMEN

Microtransplantation of neurolemma tissue fragments from mammalian brain into the plasma membrane of Xenopus laevis oocytes is a tool to examine the endogenous structure and function of various ion channels and receptors associated with the central nervous system. Microtransplanted neurolemma can originate from a variety of sources, contain ion channels and receptors in their native configuration, and are applicable to examine diseases associated with different channelopathies. Here, we examined potential age-related differences in voltage-sensitive sodium channel (VSSC) expression and concentration-dependent responses to pyrethroids following the microtransplantation of juvenile or adult rat brain tissue (neurolemma) into X. laevis oocytes. Using automated western blotting, adult neurolemma exhibited a 2.5-fold higher level of expression of VSSCs compared with juvenile neurolemma. The predominant isoform expressed in both tissues was Nav1.2. However, adult neurolemma expressed 2.8-fold more Nav1.2 than juvenile and expressed Nav1.6 at a significantly higher level (2.2-fold). Microtransplanted neurolemma elicited ion currents across the plasma membrane of oocytes following membrane depolarization using two electrode voltage clamp electrophysiology. A portion of this current was sensitive to tetrodotoxin (TTX) and this TTX-sensitive current was abolished when external sodium ion was replaced by choline ion, functionally demonstrating the presence of native VSSC. Increasing concentrations of permethrin or deltamethrin exhibited concentration-dependent increases in inward TTX-sensitive current in the presence of niflumic acid from both adult and juvenile tissues following a pulsed depolarization of the oocyte plasma membrane. Concentration-dependent response curves illustrate that VSSCs associated with juvenile neurolemma were up to 2.5-fold more sensitive to deltamethrin than VSSCs in adult neurolemma. In contrast, VSSCs from juvenile neurolemma were less sensitive to permethrin than adult VSSCs at lower concentrations (0.6-0.8-fold) but were more sensitive at higher concentrations (up to 2.4-fold). Nonetheless, because the expected concentrations in human brains following realistic exposure levels are approximately 21- (deltamethrin) to 333- (permethrin) times below the threshold concentration for response in rat neurolemma-injected oocytes, age-related differences, if any, are not likely to be toxicologically relevant.


Asunto(s)
Insecticidas , Piretrinas , Ratas , Animales , Humanos , Insecticidas/toxicidad , Insecticidas/química , Permetrina/toxicidad , Canales de Sodio/metabolismo , Piretrinas/toxicidad , Piretrinas/química , Canales Iónicos/metabolismo , Oocitos/metabolismo , Encéfalo/metabolismo , Xenopus laevis/metabolismo , Mamíferos/metabolismo
9.
Transgenic Res ; 31(6): 625-635, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36006545

RESUMEN

Pyrethrins are widely accepted as natural insecticides and offers several advantages of synthetic compounds, i.e., rapidity of action, bioactivity against a wide range of insects, comparatively lesser costs and the like. A significant source of pyrethrin is Chrysanthemum cinerariaefolium; cultivated in restricted areas, as a result; natural pyrethrins are not produced in a large amount that would meet the ongoing global market demand. However, increasing its content and harnessing the desired molecule did not attract much attention. To enhance the production of pyrethrins in Tagetes erecta, the Chrysanthemyl diphosphate synthase (CDS) gene was overexpressed under the promoter CaMV35S. Hypocotyls were used as explant for transformation, and direct regeneration was achieved on MS medium with 1.5 mg L-1 BAP and 5.0 mg L-1 GA3. Putative transgenics were screened on 10 mgL-1 hygromycin. After successful regeneration, screening and rooting process, the transgenic plants were raised inside the glass house and PCR amplification of CDS and HYG-II was used to confirm the transformation. Biochemical analysis using HPLC demonstrated the expression levels of the pyrethrin, which was approx. twenty-six fold higher than the non-transformed Tagetes plant.


Asunto(s)
Chrysanthemum cinerariifolium , Insecticidas , Piretrinas , Tagetes , Piretrinas/química , Piretrinas/metabolismo , Tagetes/genética , Tagetes/metabolismo , Difosfatos/metabolismo , Chrysanthemum cinerariifolium/genética , Chrysanthemum cinerariifolium/metabolismo , Insecticidas/metabolismo
10.
Chirality ; 34(9): 1266-1275, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35778861

RESUMEN

Studies often neglect the differences between enantiomers in soil chiral contaminants, and the molecular ecological mechanisms involved in enantiomer selective degradation behaviors remain elusive. In the present study, we used the stepwise regression analysis to establish the quantitative relationships between degradation rates and genes that determine different degradation patterns and mechanisms among enantiomers; and beta-cypermethrin (BCYM) was chosen as the target analyte. Stepwise regression analysis demonstrated the relationships established for different enantiomers varied even under the same conditions, and results from path analysis showed the same functional gene exhibited different direct and indirect contributions to different enantiomer degradation rates. The genome and primary microbial communities during different enantiomer degradation rates were also analyzed based on Illumina MiSeq next-generation sequencing technology, and the results indicated the soil microbial community structure and abundance varied during different enantiomer degradation rates. Results from this study served to enhance our understanding of the molecular biological mechanisms of chiral contaminant selective degradation behaviors under the context of functional genes and degrading microorganisms.


Asunto(s)
Piretrinas , Contaminantes del Suelo , Piretrinas/química , Suelo/química , Contaminantes del Suelo/química , Estereoisomerismo
11.
Mikrochim Acta ; 188(5): 165, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33856578

RESUMEN

The construction of multifunctional sensors has attracted considerable attention due to their multifunctional properties, such as high sensitivity and rapid detection. Herein, near-infrared multifunctional fluorescent sensing materials based on core-shell upconversion nanoparticle@magnetic nanoparticle and molecularly imprinted polymers were synthesized for rapid detection of deltamethrin. The difunctional core-shell upconversion nanoparticle@magnetic nanoparticle was introduced as the optical signal and rapid separator. Firstly, the difunctional core-shell materials were prepared through solvothermal method. Then, molecularly imprinted polymers (MIPs) as recognition elements for deltamethrin were coated on the surface of upconversion nanoparticle@magnetic nanoparticle through polymerization. The structure and recognition characterizations of multifunctional fluorescent sensing materials were evaluated. Under optimal condition, the imprinting factor of sensing materials was 3.63, and the fluorescence intensity of sensing materials decreased linearly with increasing concentration of deltamethrin from 0.001 to 1 mg L-1 with a detection limit of 0.749 µg L-1, and a relative standard deviation of 3.10% was obtained with 5 mg L-1 deltamethrin. The sensing materials showed a high selectivity and were successfully utilized for the detection of deltamethrin in grapes and cabbages; the results showed that the recoveries for two samples obtained were 95.6-102% and 91.8-105%.


Asunto(s)
Colorantes Fluorescentes/química , Insecticidas/análisis , Nanopartículas de Magnetita/química , Polímeros Impresos Molecularmente/química , Nitrilos/análisis , Piretrinas/análisis , Adsorción , Brassica/química , Contaminación de Alimentos/análisis , Insecticidas/química , Límite de Detección , Nitrilos/química , Piretrinas/química , Espectrometría de Fluorescencia/métodos , Vitis/química
12.
Analyst ; 145(10): 3490-3494, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32285085

RESUMEN

The employment of type-I pyrethroids for airplane disinfection in recent years underlines the necessity to develop sensing schemes for the rapid detection of these pesticides directly at the point-of-use. Antibody-gated indicator-releasing materials were thus developed and implemented with test strips for lateral-flow assay-based analysis employing a smartphone for readout. Besides a proper matching of pore sizes and gating macromolecules, the functionalization of both the material's outer surface as well as the strips with PEG chains enhanced system performance. This simple assay allowed for the detection of permethrin as a target molecule at concentrations down to the lower ppb level in less than 5 minutes.


Asunto(s)
Técnicas Biosensibles/métodos , Piretrinas/análisis , Anticuerpos/química , Polietilenglicoles/química , Piretrinas/química , Factores de Tiempo
13.
Chirality ; 32(8): 1107-1118, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32573024

RESUMEN

Cypermethrin (CP) is widely used for controlling agricultural and indoor vermin. Previous studies have reported the stereoselective difference of CP in biological activities. However, little is known about their potential mechanisms between metabolic phenotypes and endocrine-disrupting effects. Herein, nuclear magnetic resonance (NMR)-based metabolomics combining metabolite identification and pathway analysis were applied to evaluate the stereoselective metabolic cdisorders induced by CP isomers in human adrenocortical carcinoma cells (H295R) culture medium. Then, gene expression levels related to disturbed metabolic pathways were assessed to verify according to metabolic phenotypes. Metabolomics profiles showed that [(S)-cyano(3-phenoxyphenyl)methyl](1R,3R)-3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropane-1-carboxylate [(1R,3R,αS)-CP] induced the most significant changes in metabolic phenotypes than did the other stereoisomers. There are 10 differential metabolites (isoleucine, valine, leucine, ethanol, alanine, acetate, aspartate, arginine, lactate, and glucose) as well as two significantly disturbed pathways, including "pyruvate metabolism" and "alanine, aspartate, and glutamate metabolism," that were confirmed in H295R cells culture medium of (1R,3R,αS)-CP compared with other stereoisomers. Polymerase chain reaction (PCR) array also confirmed the results of metabolomics. Our results can help to understand the potential mechanisms between the isomer selectivity in metabolic phenotypes and endocrine-disrupting effects. Data provided here not only lend authenticity to the cautions issued by the scientists and researchers but also offer a solution for the balance between environment and political regulations.


Asunto(s)
Disruptores Endocrinos/química , Disruptores Endocrinos/farmacología , Metaboloma/efectos de los fármacos , Piretrinas/química , Piretrinas/farmacología , Línea Celular Tumoral , Humanos , Fenotipo , Estereoisomerismo
14.
J Enzyme Inhib Med Chem ; 35(1): 1923-1927, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33078633

RESUMEN

Carbonic anhydrase (CA, EC 4.2.1.1) plays crucial physiological roles in many different organisms, such as in pH regulation, ion transport, and metabolic processes. CA was isolated from the European bee Apis mellifera (AmCA) spermatheca and inhibitory effects of pesticides belonging to various classes, such as carbamates, thiophosphates, and pyrethroids, were investigated herein. The inhibitory effects of methomyl, oxamyl, deltamethrin, cypermethrin, dichlorodiphenyltrichloroethane (DDT) and diazinon on AmCA were analysed. These pesticides showed effective in vitro inhibition of the enzyme, at sub-micromolar levels. The IC50 values for these pesticides ranged between of 0.0023 and 0.0385 µM. The CA inhibition mechanism with these compounds is unknown at the moment, but most of them contain ester functionalities which may be hydrolysed by the enzyme with the formation of intermediates that can either react with amino acid residues or bid to the zinc ion from the active site.


Asunto(s)
Inhibidores de Anhidrasa Carbónica/química , Anhidrasas Carbónicas/metabolismo , Plaguicidas/química , Animales , Abejas , Carbamatos/química , Carbamatos/farmacología , Inhibidores de Anhidrasa Carbónica/farmacología , Dominio Catalítico , DDT/química , DDT/farmacología , Diazinón/química , Diazinón/farmacología , Ésteres/química , Metomil/química , Metomil/farmacología , Nitrilos/química , Nitrilos/farmacología , Plaguicidas/farmacología , Fosfatos/química , Fosfatos/farmacología , Unión Proteica , Piretrinas/química , Piretrinas/farmacología , Relación Estructura-Actividad , Zinc/química
15.
Proc Natl Acad Sci U S A ; 114(49): 12922-12927, 2017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-29158414

RESUMEN

Insecticides are widely used to control pests in agriculture and insect vectors that transmit human diseases. However, these chemicals can have a negative effect on nontarget, beneficial organisms including bees. Discovery and deployment of selective insecticides is a major mission of modern toxicology and pest management. Pyrethroids exert their toxic action by acting on insect voltage-gated sodium channels. Honeybees and bumblebees are highly sensitive to most pyrethroids, but are resistant to a particular pyrethroid, tau-fluvalinate (τ-FVL). Because of its unique selectivity, τ-FVL is widely used to control not only agricultural pests but also varroa mites, the principal ectoparasite of honeybees. However, the mechanism of bee resistance to τ-FVL largely remains elusive. In this study, we functionally characterized the sodium channel BiNav1-1 from the common eastern bumblebee (Bombus impatiens) in Xenopus oocytes and found that the BiNav1-1 channel is highly sensitive to six commonly used pyrethroids, but resistant to τ-FVL. Phylogenetic and mutational analyses revealed that three residues, which are conserved in sodium channels from 12 bee species, underlie resistance to τ-FVL or sensitivity to the other pyrethroids. Further computer modeling and mutagenesis uncovered four additional residues in the pyrethroid receptor sites that contribute to the unique selectivity of the bumblebee sodium channel to τ-FVL versus other pyrethroids. Our data contribute to understanding a long-standing enigma of selective pyrethroid toxicity in bees and may be used to guide future modification of pyrethroids to achieve highly selective control of pests with minimal effects on nontarget organisms.


Asunto(s)
Abejas/efectos de los fármacos , Proteínas de Insectos/química , Insecticidas/química , Nitrilos/química , Piretrinas/química , Canales de Sodio Activados por Voltaje/química , Secuencias de Aminoácidos , Animales , Sitios de Unión , Células Cultivadas , Resistencia a los Insecticidas , Insecticidas/farmacología , Simulación del Acoplamiento Molecular , Nitrilos/farmacología , Conformación Proteica en Hélice alfa , Piretrinas/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/química , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Xenopus laevis
16.
Mikrochim Acta ; 187(11): 632, 2020 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-33128139

RESUMEN

A sensitive molecularly imprinted fluorescent nanosensor based on zeolitic imidazolate frameworks-8 (ZIF-8) and upconversion nanoparticles (UCNPs) was developed for the determination of trace alpha-cypermethrin (α-CPM) for the first time. The sensor was synthesized by a layer-by-layer self-assembly strategy. UCNPs with a maximum emission wavelength of 544.5 nm under 980 nm excitation were firstly prepared as the luminous core. Then, ZIF-8 with the large specific surface and porosity was introduced, which not only improved the mass transfer and adsorption capacity of the sensor but also increased the fluorescence intensity of UCNPs as a protective layer. Finally, molecularly imprinted polymers (UCNPs@ZIF-8@MIPs) were fabricated in mixed solutions containing UCNPs@ZIF-8 (support material), α-CPM (template), acrylamide (functional monomer), and divinylbenzene (cross-linker). Under the optimal condition, the fluorescence intensity of UCNPs@ZIF-8@MIP was linearly quenched with increasing concentration of α-CPM in the range 0.10-12 mg L-1 with a detection limit of 0.03 mg L-1 (S/N = 3). The developed UCNPs@ZIF-8@MIP probe was used to detect α-CPM in real samples; the satisfactory results obtained were consistent with those obtained by GC-MS.Graphical abstract.


Asunto(s)
Colorantes Fluorescentes/química , Estructuras Metalorgánicas/química , Impresión Molecular , Nanoestructuras/química , Piretrinas/química , Análisis de los Alimentos , Contaminación de Alimentos , Frutas/química , Insecticidas/química , Límite de Detección , Verduras/química , Difracción de Rayos X
17.
Molecules ; 25(18)2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32906783

RESUMEN

With the increase in demand, artificially planting Chinese medicinal materials (CHMs) has also increased, and the ensuing pesticide residue problems have attracted more and more attention. An optimized quick, easy, cheap, effective, rugged and safe (QuEChERS) method with multi-walled carbon nanotubes as dispersive solid-phase extraction sorbents coupled with surface-enhanced Raman spectroscopy (SERS) was first proposed for the detection of deltamethrin in complex matrix Corydalis yanhusuo. Our results demonstrate that using the optimized QuEChERS method could effectively extract the analyte and reduce background interference from Corydalis. Facile synthesized gold nanoparticles with a large diameter of 75 nm had a strong SERS enhancement for deltamethrin determination. The best prediction model was established with partial least squares regression of the SERS spectra ranges of 545~573 cm-1 and 987~1011 cm-1 with a coefficient of determination (R2) of 0.9306, a detection limit of 0.484 mg/L and a residual predictive deviation of 3.046. In summary, this article provides a new rapid and effective method for the detection of pesticide residues in CHMs.


Asunto(s)
Corydalis/química , Nanotubos de Carbono/química , Nitrilos/análisis , Residuos de Plaguicidas/análisis , Piretrinas/análisis , Espectrometría Raman , Medicamentos Herbarios Chinos/análisis , Medicamentos Herbarios Chinos/química , Modelos Moleculares , Estructura Molecular , Nanotubos de Carbono/ultraestructura , Nitrilos/química , Nitrilos/aislamiento & purificación , Residuos de Plaguicidas/química , Residuos de Plaguicidas/aislamiento & purificación , Piretrinas/química , Piretrinas/aislamiento & purificación , Reproducibilidad de los Resultados
18.
Plant Physiol ; 176(1): 524-537, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29122986

RESUMEN

Flowers of Tanacetum cinerariifolium produce a set of compounds known collectively as pyrethrins, which are commercially important pesticides that are strongly toxic to flying insects but not to most vertebrates. A pyrethrin molecule is an ester consisting of either trans-chrysanthemic acid or its modified form, pyrethric acid, and one of three alcohols, jasmolone, pyrethrolone, and cinerolone, that appear to be derived from jasmonic acid. Chrysanthemyl diphosphate synthase (CDS), the first enzyme involved in the synthesis of trans-chrysanthemic acid, was characterized previously and its gene isolated. TcCDS produces free trans-chrysanthemol in addition to trans-chrysanthemyl diphosphate, but the enzymes responsible for the conversion of trans-chrysanthemol to the corresponding aldehyde and then to the acid have not been reported. We used an RNA sequencing-based approach and coexpression correlation analysis to identify several candidate genes encoding putative trans-chrysanthemol and trans-chrysanthemal dehydrogenases. We functionally characterized the proteins encoded by these genes using a combination of in vitro biochemical assays and heterologous expression in planta to demonstrate that TcADH2 encodes an enzyme that oxidizes trans-chrysanthemol to trans-chrysanthemal, while TcALDH1 encodes an enzyme that oxidizes trans-chrysanthemal into trans-chrysanthemic acid. Transient coexpression of TcADH2 and TcALDH1 together with TcCDS in Nicotiana benthamiana leaves results in the production of trans-chrysanthemic acid as well as several other side products. The majority (58%) of trans-chrysanthemic acid was glycosylated or otherwise modified. Overall, these data identify key steps in the biosynthesis of pyrethrins and demonstrate the feasibility of metabolic engineering to produce components of these defense compounds in a heterologous host.


Asunto(s)
Vías Biosintéticas/genética , Chrysanthemum cinerariifolium/enzimología , Chrysanthemum cinerariifolium/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Insecticidas/química , Monoterpenos/metabolismo , Oxidorreductasas/metabolismo , Piretrinas/química , Chrysanthemum cinerariifolium/genética , Flores/metabolismo , Genes de Plantas , Estudios de Asociación Genética , Cinética , Oxidorreductasas/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Piretrinas/metabolismo , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Terpenos/química , Terpenos/metabolismo
19.
Drug Metab Dispos ; 47(9): 941-948, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31248885

RESUMEN

The majority of residents of the United States, Canada, and Europe are exposed to pyrethroids, the most commonly used class of insecticides. Surprisingly little is known about key aspects of their pharmacokinetics, including their mode of transport in the systemic circulation. This study tested the hypothesis that pyrethroids are transported by both plasma lipoproteins and proteins, similarly to other highly lipophilic environmental contaminants. Other aims were to characterize the binding of representative type I and II pyrethroids, and to compare their binding to rat versus human plasma. Binding of 14C-labeled cis-permethrin (CIS), trans-permethrin (TRANS) and deltamethrin (DLM) to proteins and lipoproteins was measured by sequential extraction of spiked plasma with isooctane, 2-octanol, and acetonitrile. Binding of DLM, CIS, and TRANS to plasma proteins and lipoproteins was linear from 250 to 750 nM; concentrations present in the plasma of orally dosed rats. Binding of DLM to high-density lipoprotein was twice that to low-density lipoprotein. Binding of DLM, CIS, and TRANS was ∼2-fold greater to proteins than to lipoproteins of rat and human plasma; albumin was primarily responsible for protein binding. Higher total binding of each pyrethroid to human (∼90%) than to rat (∼80%) plasma resulted from higher protein binding in human plasma. This was attributable in part to the higher albumin/protein content of human plasma. Rat albumin exhibited lower pyrethroid binding capacity than did human albumin. The results of this investigation indicate that albumin and lipoproteins play a major role in binding and transport of pyrethroids in the systemic circulation of both rats and humans.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Contaminantes Ambientales/farmacocinética , Insecticidas/farmacocinética , Lipoproteínas/metabolismo , Administración Oral , Adulto , Animales , Encéfalo/metabolismo , Contaminantes Ambientales/administración & dosificación , Contaminantes Ambientales/química , Contaminantes Ambientales/toxicidad , Humanos , Insecticidas/administración & dosificación , Insecticidas/química , Insecticidas/toxicidad , Masculino , Nitrilos/administración & dosificación , Nitrilos/química , Nitrilos/farmacocinética , Nitrilos/toxicidad , Permetrina/administración & dosificación , Permetrina/química , Permetrina/farmacocinética , Permetrina/toxicidad , Unión Proteica , Piretrinas/administración & dosificación , Piretrinas/química , Piretrinas/farmacocinética , Piretrinas/toxicidad , Ratas , Estereoisomerismo , Distribución Tisular , Pruebas de Toxicidad Aguda
20.
Arch Insect Biochem Physiol ; 100(2): e21525, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30511429

RESUMEN

Deltamethrin resistance in Laodelphax striatellus had been associated with its oxidative detoxification by overexpression of four cytochrome P450 monooxygenases like CYP353D1v2, CYP6FU1, CYP6AY3v2, and CYP439A1v3. The first three P450s have been validated for insecticide-metabolizing capability and only CYP6FU1 was found to degrade deltamethrin. In this study, an investigation was conducted to confirm the capability of CYP439A1v3 to degrade deltamethrin. The CYP439A1v3 was first expressed in Sf9 cell line and its recombinant enzyme was tested for metabolic activity against different insecticides using substrate depletion assay combined with metabolite identification. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and carbon monoxide (CO)-difference spectra analysis showed that the intact cytochrome P450 protein was successfully expressed. Tests with probe substrates proved its enzyme activity, as p-nitroanisole, ethoxycoumarin, and ethoxyresorufin were preferentially metabolized (specific activity 7.767 ± 1.22, 1.325 ± 0.37, and 0.355 ± 0.37 nmol/min per mg of protein, respectively) while only luciferin-HEGE was not. In vitro incubation of the recombinant CYP439A1v3 protein with deltamethrin revealed hydroxylation by producing hydroxydeltamethrin. On the contrary, no metabolite/metabolism was seen with nonpyrethroid insecticide, including imidacloprid, buprofezin, chlorpyrifos, and fipronil. To the best of our knowledge, this is the first study to link a CYP450 from family 439 to confer pyrethroid resistance to L. striatellus. This finding should help in the design of appropriate insecticide resistance management for control of this strain of L. striatellus.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Hemípteros/efectos de los fármacos , Hemípteros/genética , Proteínas de Insectos/metabolismo , Nitrilos/farmacología , Piretrinas/farmacología , Animales , Sistema Enzimático del Citocromo P-450/genética , Proteínas de Insectos/genética , Resistencia a los Insecticidas/genética , Estructura Molecular , Nitrilos/química , Nitrilos/metabolismo , Piretrinas/química , Piretrinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA