Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 158(5): 1212-1212.e1, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25171418

RESUMEN

Ectodermal appendages such as feathers, hair, mammary glands, salivary glands, and sweat glands form branches, allowing much-increased surface for functional differentiation and secretion. Here, the principles of branching morphogenesis are exemplified by the mammary gland and feathers.


Asunto(s)
Plumas/crecimiento & desarrollo , Glándulas Mamarias Humanas/crecimiento & desarrollo , Morfogénesis , Transducción de Señal , Animales , Aves/crecimiento & desarrollo , Aves/metabolismo , Plumas/citología , Femenino , Humanos , Masculino , Mamíferos/crecimiento & desarrollo , Mamíferos/metabolismo , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Humanas/citología
2.
PLoS Biol ; 22(5): e3002636, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38743770

RESUMEN

Periodic patterning requires coordinated cell-cell interactions at the tissue level. Turing showed, using mathematical modeling, how spatial patterns could arise from the reactions of a diffusive activator-inhibitor pair in an initially homogeneous 2D field. Most activators and inhibitors studied in biological systems are proteins, and the roles of cell-cell interaction, ions, bioelectricity, etc. are only now being identified. Gap junctions (GJs) mediate direct exchanges of ions or small molecules between cells, enabling rapid long-distance communications in a cell collective. They are therefore good candidates for propagating nonprotein-based patterning signals that may act according to the Turing principles. Here, we explore the possible roles of GJs in Turing-type patterning using feather pattern formation as a model. We found 7 of the 12 investigated GJ isoforms are highly dynamically expressed in the developing chicken skin. In ovo functional perturbations of the GJ isoform, connexin 30, by siRNA and the dominant-negative mutant applied before placode development led to disrupted primary feather bud formation. Interestingly, inhibition of gap junctional intercellular communication (GJIC) in the ex vivo skin explant culture allowed the sequential emergence of new feather buds at specific spatial locations relative to the existing primary buds. The results suggest that GJIC may facilitate the propagation of long-distance inhibitory signals. Thus, inhibition of GJs may stimulate Turing-type periodic feather pattern formation during chick skin development, and the removal of GJ activity would enable the emergence of new feather buds if the local environment were competent and the threshold to form buds was reached. We further propose Turing-based computational simulations that can predict the sequential appearance of these ectopic buds. Our models demonstrate how a Turing activator-inhibitor system can continue to generate patterns in the competent morphogenetic field when the level of intercellular communication at the tissue scale is modulated.


Asunto(s)
Comunicación Celular , Plumas , Uniones Comunicantes , Animales , Uniones Comunicantes/metabolismo , Plumas/crecimiento & desarrollo , Plumas/metabolismo , Embrión de Pollo , Conexinas/metabolismo , Conexinas/genética , Tipificación del Cuerpo/fisiología , Pollos , Piel/metabolismo , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética
3.
BMC Genomics ; 25(1): 505, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778258

RESUMEN

BACKGROUND: In day-old Hungarian white goose goslings, there is a noticeable difference in dorsal down coloration between males and females, with females having darker dorsal plumage and males having lighter plumage. The ability to autosex day-old goslings based on their dorsal down coloration is important for managing them efficiently and planning their nutrition in the poultry industry. The aim of this study was to determine the biological and genetic factors underlying this difference in dorsal down colorationthrough histological analysis, biochemical assays, transcriptomic profiling, and q‒PCR analysis. RESULTS: Tissue analysis and biochemical assays revealed that compared with males, 17-day-old embryos and day-old goslings of female geese exhibited a greater density of melanin-containing feather follicles and a greater melanin concentration in these follicles during development. Both female and male goslings had lower melanin concentrations in their dorsal skin compared to 17-day-old embryos. Transcriptome analysis identified a set of differentially expressed genes (DEGs) (MC1R, TYR, TYRP1, DCT and MITF) associated with melanogenesis pathways that were downregulated or silenced specifically in the dorsal skin of day-old goslings compared to 17-day-old embryos, affecting melanin synthesis in feather follicles. Additionally, two key genes (MC1R and MITF) associated with feather coloration showed differences between males and females, with females having higher expression levels correlated with increased melanin synthesis and darker plumage. CONCLUSION: The expression of multiple melanogenesis genes determines melanin synthesis in goose feather follicles. The dorsal down coloration of day-old Hungarian white goose goslings shows sexual dimorphism, likely due to differences in the expression of the MC1R and MITF genes between males and females. These results could help us better understand why male and female goslings exhibit different plumage patterns.


Asunto(s)
Gansos , Perfilación de la Expresión Génica , Melaninas , Pigmentación , Caracteres Sexuales , Animales , Femenino , Masculino , Gansos/genética , Gansos/metabolismo , Melaninas/metabolismo , Pigmentación/genética , Plumas/metabolismo , Plumas/crecimiento & desarrollo , Transcriptoma
4.
J Sci Food Agric ; 104(9): 5176-5185, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38284560

RESUMEN

BACKGROUND: The present study was conducted to investigate the effects of dietary novel alkaline protease from Bacillus licheniformis on the growth performance, meat quality, antioxidant status and intestinal morphology of broilers. In total, 4000 broilers were randomly assigned into five groups and treated with normal control, normal control + 100 mg kg-1 protease, normal control + 200 mg kg-1 protease, normal control + 300 mg kg-1 protease and normal control + 400 mg kg-1 protease. RESULTS: Supplementing protease impacted final body weight (linear, P = 0.003; quadratic, P = 0.006) and decreased feed conversion rate (linear, P = 0.036) in broilers. Moreover, dietary protease significantly increased breast muscle rate (linear, P = 0.005; quadratic, P = 0.021) and decreased drip loss (linear, P < 0.001; quadratic, P < 0.001). In addition, dietary protease notably increased protein digestibility (linear, P = 0.001; quadratic, P = 0.006) and trypsin activity (linear, P = 0.002; quadratic, P = 0.009) in jejunum. Light microscopy revealed that the jejunum villi in the 300 mg kg-1 and 400 mg kg-1 groups exhibited greater height and a denser arrangement compared to those in the control group. The addition of protease decreased malondialdehyde content (linear, P < 0.001; quadratic, P < 0.001) and increased total antioxidant capacity (linear, P = 0.001; quadratic, P < 0.001) in pectoral muscles. CONCLUSION: The results of the present study suggest that dietary novel alkaline protease from B. licheniformis improved growth performance by affecting trypsin activity, protein digestibility, antioxidant capacity and intestinal health. © 2024 Society of Chemical Industry.


Asunto(s)
Alimentación Animal , Antioxidantes , Bacillus licheniformis , Proteínas Bacterianas , Pollos , Endopeptidasas , Intestinos , Carne , Animales , Pollos/crecimiento & desarrollo , Pollos/metabolismo , Bacillus licheniformis/enzimología , Bacillus licheniformis/crecimiento & desarrollo , Bacillus licheniformis/metabolismo , Antioxidantes/metabolismo , Endopeptidasas/metabolismo , Endopeptidasas/química , Alimentación Animal/análisis , Carne/análisis , Intestinos/crecimiento & desarrollo , Proteínas Bacterianas/metabolismo , Masculino , Suplementos Dietéticos/análisis , Plumas/química , Plumas/metabolismo , Plumas/crecimiento & desarrollo , Dieta/veterinaria , Digestión
5.
PLoS Biol ; 17(10): e3000448, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31577791

RESUMEN

The development of an organism involves the formation of patterns from initially homogeneous surfaces in a reproducible manner. Simulations of various theoretical models recapitulate final states of natural patterns, yet drawing testable hypotheses from those often remains difficult. Consequently, little is known about pattern-forming events. Here, we surveyed plumage patterns and their emergence in Galliformes, ratites, passerines, and penguins, together representing the three major taxa of the avian phylogeny, and built a unified model that not only reproduces final patterns but also intrinsically generates shared and varying directionality, sequence, and duration of patterning. We used in vivo and ex vivo experiments to test its parameter-based predictions. We showed that directional and sequential pattern progression depends on a species-specific prepattern: an initial break in surface symmetry launches a travelling front of sharply defined, oriented domains with self-organising capacity. This front propagates through the timely transfer of increased cell density mediated by cell proliferation, which controls overall patterning duration. These results show that universal mechanisms combining prepatterning and self-organisation govern the timely emergence of the plumage pattern in birds.


Asunto(s)
Galliformes/genética , Modelos Estadísticos , Paleognatos/genética , Passeriformes/genética , Pigmentación/genética , Spheniscidae/genética , Animales , Color , Embrión no Mamífero , Plumas/citología , Plumas/crecimiento & desarrollo , Plumas/metabolismo , Galliformes/anatomía & histología , Galliformes/clasificación , Galliformes/crecimiento & desarrollo , Patrón de Herencia , Morfogénesis/genética , Paleognatos/anatomía & histología , Paleognatos/clasificación , Paleognatos/crecimiento & desarrollo , Passeriformes/anatomía & histología , Passeriformes/clasificación , Passeriformes/crecimiento & desarrollo , Filogenia , Piel/citología , Piel/crecimiento & desarrollo , Piel/metabolismo , Spheniscidae/anatomía & histología , Spheniscidae/clasificación , Spheniscidae/crecimiento & desarrollo
6.
Anim Genet ; 53(1): 101-107, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34904261

RESUMEN

Bird feathers are the product of interactions between natural and artificial selection. Feather-related traits are important for chicken selection and breeding. Frizzle feather is characterized by the abnormally development of feathers in chickens. In the current study, frizzle feather characteristics were observed in a local breed called Xiushui Yellow Chicken in Jiangxi, China. To determine the molecular mechanisms that underlie frizzle feather in Xiushui Yellow Chicken, four populations of three breeds (Xiushui Yellow Chicken with frizzle feathers, Xiushui Yellow Chicken with normal feathers, Guangfeng White-Ear Yellow Chicken, and Ningdu Yellow Chicken) were selected for whole-genome resequencing. Using a comparative genome strategy and genome-wide association study, a missense mutation (g.5281494A>G) and a 15-bp deletion (g.5285437-5285451delGATGCCGGCAGGACG) in KRT75L4 were identified as candidate mutations associated with frizzle feather in Xiushui Yellow Chicken. Based on genotyping performed in a large Xiushui Yellow Chicken population, the g.5285437-5285451delGATGCCGGCAGGACG mutation in KRT75L4 was confirmed as the putative causative mutation of frizzle feather. These results deepen the understanding of the molecular mechanisms responsible for frizzle feather, as well as facilitating the molecular detection and selection of the feather phenotype in Xiushui Yellow Chickens.


Asunto(s)
Pollos/fisiología , Plumas/anatomía & histología , Eliminación de Gen , Estudio de Asociación del Genoma Completo/veterinaria , Mutación Missense/fisiología , Animales , Pollos/genética , Plumas/crecimiento & desarrollo
7.
Proc Natl Acad Sci U S A ; 116(22): 10858-10867, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31072931

RESUMEN

Networked structures integrate numerous elements into one functional unit, while providing a balance between efficiency, robustness, and flexibility. Understanding how biological networks self-assemble will provide insights into how these features arise. Here, we demonstrate how nature forms exquisite muscle networks that can repair, regenerate, and adapt to external perturbations using the feather muscle network in chicken embryos as a paradigm. The self-assembled muscle networks arise through the implementation of a few simple rules. Muscle fibers extend outward from feather buds in every direction, but only those muscle fibers able to connect to neighboring buds are eventually stabilized. After forming such a nearest-neighbor configuration, the network can be reconfigured, adapting to perturbed bud arrangement or mechanical cues. Our computational model provides a bioinspired algorithm for network self-assembly, with intrinsic or extrinsic cues necessary and sufficient to guide the formation of these regenerative networks. These robust principles may serve as a useful guide for assembling adaptive networks in other contexts.


Asunto(s)
Aves/crecimiento & desarrollo , Tipificación del Cuerpo/fisiología , Plumas/crecimiento & desarrollo , Modelos Biológicos , Desarrollo de Músculos/fisiología , Algoritmos , Animales , Regeneración/fisiología , Piel/crecimiento & desarrollo
8.
Mol Biol Evol ; 37(9): 2477-2486, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32344431

RESUMEN

Feathered leg is a trait in domestic chickens that has undergone intense selection by fancy breeders. Previous studies have shown that two major loci controlling feathered leg are located on chromosomes 13 and 15. Here, we present genetic evidence for the identification of candidate causal mutations at these loci. This was accomplished by combining classical linkage mapping using an experimental cross segregating for feathered leg and high-resolution identical-by-descent mapping using whole-genome sequence data from 167 samples of chicken with or without feathered legs. The first predicted causal mutation is a single-base change located 25 kb upstream of the gene for the forelimb-specific transcription factor TBX5 on chromosome 15. The second is a 17.7-kb deletion located ∼200 kb upstream of the gene for the hindlimb-specific transcription factor PITX1 on chromosome 13. These mutations are predicted to activate TBX5 and repress PITX1 expression, respectively. The study reveals a remarkable convergence in the evolution of the feathered-leg phenotype in domestic chickens and domestic pigeons, as this phenotype is caused by noncoding mutations upstream of the same two genes. Furthermore, the PITX1 causal variants are large overlapping deletions, 17.7 kb in chicken and 44 kb in pigeons. The results of the present study are consistent with the previously proposed model for pigeon that feathered leg is caused by reduced PITX1 expression and ectopic expression of TBX5 in hindlimb buds resulting in a shift of limb identity from hindlimb to more forelimb-like identity.


Asunto(s)
Pollos/genética , Plumas/crecimiento & desarrollo , Factores de Transcripción Paired Box/genética , Proteínas de Dominio T Box/genética , Animales , Pollos/crecimiento & desarrollo , Mapeo Cromosómico , Femenino , Eliminación de Gen , Extremidad Inferior , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple
9.
Mol Biol Evol ; 37(9): 2465-2476, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32344429

RESUMEN

Understanding the genetic basis of similar phenotypes shared between lineages is a long-lasting research interest. Even though animal evolution offers many examples of parallelism, for many phenotypes little is known about the underlying genes and mutations. We here use a combination of whole-genome sequencing, expression analyses, and comparative genomics to study the parallel genetic origin of ptilopody (Pti) in chicken. Ptilopody (or foot feathering) is a polygenic trait that can be observed in domesticated and wild avian species and is characterized by the partial or complete development of feathers on the ankle and feet. In domesticated birds, ptilopody is easily selected to fixation, though extensive variation in the type and level of feather development is often observed. By means of a genome-wide association analysis, we identified two genomic regions associated with ptilopody. At one of the loci, we identified a 17-kb deletion affecting PITX1 expression, a gene known to encode a transcription regulator of hindlimb identity and development. Similarly to pigeon, at the second loci, we observed ectopic expression of TBX5, a gene involved in forelimb identity and a key determinant of foot feather development. We also observed that the trait evolved only once as foot-feathered birds share the same haplotype upstream TBX5. Our findings indicate that in chicken and pigeon ptilopody is determined by the same set of genes that affect similar molecular pathways. Our study confirms that ptilopody has evolved through parallel evolution in chicken and pigeon.


Asunto(s)
Evolución Biológica , Pollos/genética , Plumas/crecimiento & desarrollo , Factores de Transcripción Paired Box/genética , Proteínas de Dominio T Box/genética , Animales , Pollos/crecimiento & desarrollo , Pollos/metabolismo , Columbidae/genética , Pie , Haplotipos , Herencia Multifactorial , Factores de Transcripción Paired Box/metabolismo , Proteínas de Dominio T Box/metabolismo , Secuenciación Completa del Genoma
10.
Proc Natl Acad Sci U S A ; 115(4): E648-E657, 2018 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-29311304

RESUMEN

Anthropogenic noise is a pervasive pollutant that decreases environmental quality by disrupting a suite of behaviors vital to perception and communication. However, even within populations of noise-sensitive species, individuals still select breeding sites located within areas exposed to high noise levels, with largely unknown physiological and fitness consequences. We use a study system in the natural gas fields of northern New Mexico to test the prediction that exposure to noise causes glucocorticoid-signaling dysfunction and decreases fitness in a community of secondary cavity-nesting birds. In accordance with these predictions, and across all species, we find strong support for noise exposure decreasing baseline corticosterone in adults and nestlings and, conversely, increasing acute stressor-induced corticosterone in nestlings. We also document fitness consequences with increased noise in the form of reduced hatching success in the western bluebird (Sialia mexicana), the species most likely to nest in noisiest environments. Nestlings of all three species exhibited accelerated growth of both feathers and body size at intermediate noise amplitudes compared with lower or higher amplitudes. Our results are consistent with recent experimental laboratory studies and show that noise functions as a chronic, inescapable stressor. Anthropogenic noise likely impairs environmental risk perception by species relying on acoustic cues and ultimately leads to impacts on fitness. Our work, when taken together with recent efforts to document noise across the landscape, implies potential widespread, noise-induced chronic stress coupled with reduced fitness for many species reliant on acoustic cues.


Asunto(s)
Corticosterona/sangre , Aptitud Genética , Comportamiento de Nidificación , Ruido/efectos adversos , Pájaros Cantores/sangre , Animales , Tamaño Corporal , Plumas/crecimiento & desarrollo , Femenino
11.
Trop Anim Health Prod ; 53(1): 95, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33415443

RESUMEN

Chicken is a homeothermic animal; consequently, regardless of fluctuation in weather conditions, it maintains constant body temperature. However, in hot regions and seasons, chickens suffer from heat stress. To dissipate excess heat, besides modifying the environment, which is costly, however, chickens with efficient heat dissipation capacity might be utilized. Naked neck chickens have a higher capacity for heat loss attributable to reduced feather mass. The naked neck mutation (Na) was originated from a large insertion (~ 180 bp) integrated ~ 260-kb downstream of a protein-coding gene-GDF7 (Growth Differentiation Factor 7). Na possesses a cis-regulatory function and upregulates the expression of GDF7-a gene that exhibits a tissue-specific effect by the sensitizing action of retinoic acid. Na suppresses the development of feathers in the neck and vent. Na shows autosomal incomplete dominance and regulates several developmental processes. Na usually segregates at low frequency, which might be attributed to limited socio-cultural preferences. Specifically, in hot and humid regions, although to a varying extent, Na enhances performance, immunocompetence, and resilience to disease both in the homozygous and heterozygous state. Occasionally, naked neck chickens (especially the homozygous ones) lose comparative advantage in cool environments. Homozygous Na also results in high embryo death and reduced hatchability and diminishes floating and flying capacity. Nevertheless, selective breeding of naked neck chickens for fertility traits enhances the performance and welfare of chickens in hot and humid regions. The comparative advantage of Na needs to be studied not only from a temperature perspective and under controlled experiment but also from humidity, body weight, feed intake (absolute and relative to body weight), age, agroecology insights, and under field condition. Due to the incomplete dominant expression pattern of Na, studies need to separately report their findings for homozygous and heterozygous naked neck chicken.


Asunto(s)
Proteínas Aviares/genética , Regulación de la Temperatura Corporal/fisiología , Pollos/fisiología , Plumas/crecimiento & desarrollo , Animales , Proteínas Aviares/metabolismo , Regulación de la Temperatura Corporal/genética , Pollos/genética , Pollos/crecimiento & desarrollo , Femenino , Masculino , Mutación
12.
Horm Behav ; 118: 104642, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31765655

RESUMEN

Level of corticosterone (CORT), which is a predominant glucocorticoid in birds, has become the main indicator for assessing the stress level of birds in ecological studies. Feather corticosterone (CORTf) provides information about corticosterone levels during feather growth, however, the underlying causes of individual variation of CORTf between individuals and individual persistency of CORTf are not yet fully understood. Therefore, this study addresses individual consistency in CORTf and the association of variation in CORTf with behaviour that results in damage to tail feathers. We studied relations between CORTf, plasma CORT, and behaviour in wild-caught male greenfinches in captivity. CORTf in wild-grown feathers correlated positively with CORTf in lab-grown feathers. CORTf levels were about 20% lower in lab-grown feathers than in those grown in the wild. Four birds that died in captivity had significantly higher average CORTf levels in wild-grown feathers than the survivors. Plasma CORT levels of two measurements taken in the lab seven days apart correlated positively, however, no correlations between plasma CORT and CORTf were found. In order to study the link between CORTf and behaviour, the extent of tail damage from flapping against cage bar was assessed. Contrary to our prediction, birds with higher CORTf had less tail damage. This study adds to the evidence that CORTf levels can be considered as informative markers of some persistent component of individual phenotypic quality that can predict survival under standardized laboratory conditions.


Asunto(s)
Adaptación Fisiológica/fisiología , Corticosterona/análisis , Plumas/química , Pinzones/fisiología , Estrés Psicológico/mortalidad , Animales , Animales de Laboratorio , Animales Salvajes , Conducta Animal/fisiología , Corticosterona/sangre , Corticosterona/metabolismo , Plumas/crecimiento & desarrollo , Plumas/metabolismo , Vivienda para Animales , Masculino , Pronóstico , Estrés Psicológico/diagnóstico , Estrés Psicológico/metabolismo
13.
PLoS Biol ; 15(12): e2004412, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29261650

RESUMEN

Sixty-five years after Turing first revealed the potential of systems with local activation and long-range inhibition to generate pattern, we have only recently begun to identify the biological elements that operate at many scales to generate periodic patterns in nature. In this Primer, we first review the theoretical framework provided by Turing, Meinhardt, and others that suggests how periodic patterns could self-organize in developing animals. This Primer was developed to provide context for recent studies that reveal how diverse molecular, cellular, and physical mechanisms contribute to the establishment of the periodic pattern of hair or feather buds in the developing skin. From an initial emphasis on trying to disambiguate which specific mechanism plays a primary role in hair or feather bud development, we are beginning to discover that multiple mechanisms may, in at least some contexts, operate together. While the emergence of the diverse mechanisms underlying pattern formation in specific biological contexts probably reflects the contingencies of evolutionary history, an intriguing possibility is that these mechanisms interact and reinforce each other, producing emergent systems that are more robust.


Asunto(s)
Tipificación del Cuerpo/fisiología , Plumas/citología , Cabello/citología , Modelos Biológicos , Animales , Plumas/anatomía & histología , Plumas/crecimiento & desarrollo , Cabello/anatomía & histología , Cabello/crecimiento & desarrollo , Transducción de Señal , Piel/anatomía & histología , Piel/citología , Piel/crecimiento & desarrollo
14.
PLoS Genet ; 13(4): e1006665, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28388616

RESUMEN

Sex-linked barring is a fascinating plumage pattern in chickens recently shown to be associated with two non-coding and two missense mutations affecting the ARF transcript at the CDKN2A tumor suppressor locus. It however remained a mystery whether all four mutations are indeed causative and how they contribute to the barring phenotype. Here, we show that Sex-linked barring is genetically heterogeneous, and that the mutations form three functionally different variant alleles. The B0 allele carries only the two non-coding changes and is associated with the most dilute barring pattern, whereas the B1 and B2 alleles carry both the two non-coding changes and one each of the two missense mutations causing the Sex-linked barring and Sex-linked dilution phenotypes, respectively. The data are consistent with evolution of alleles where the non-coding changes occurred first followed by the two missense mutations that resulted in a phenotype more appealing to humans. We show that one or both of the non-coding changes are cis-regulatory mutations causing a higher CDKN2A expression, whereas the missense mutations reduce the ability of ARF to interact with MDM2. Caspase assays for all genotypes revealed no apoptotic events and our results are consistent with a recent study indicating that the loss of melanocyte progenitors in Sex-linked barring in chicken is caused by premature differentiation and not apoptosis. Our results show that CDKN2A is a major locus driving the differentiation of avian melanocytes in a temporal and spatial manner.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Evolución Molecular , Ligamiento Genético , Pigmentación/genética , Alelos , Animales , Diferenciación Celular/genética , Pollos , Plumas/crecimiento & desarrollo , Plumas/metabolismo , Femenino , Genotipo , Mutación , Fenotipo
15.
Anim Biotechnol ; 31(3): 203-208, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30950314

RESUMEN

The dietary requirement for cysteine is not determined in poultry since it is not an essential amino acid. The cysteine need is expected to be met through the transsulfuration pathway where homocysteine, a precursor of methionine, is converted to cysteine. Cysteine is a major component of plumage, and the degree to which cysteine is involved in plumage and other keratized proteins are unknown. We randomly assigned chicks to control and treatment (deficient in cysteine) diets for 49 d. The thickness of the skin layers, feather follicle length, and thickness were measured at days 10, 24, 34, and 49. We also measured the hepatic mRNA expressions of cystathionine beta synthase (CBS), cystathionine γ-lyase (CTL), cysteine dioxygenase (CDO), and glutathione synthetase (GSS). Chickens fed the treatment diet had reduced epidermis thickness and shorter feather follicles compared with the controls. The chicken fed the treatment diet also had increased mRNA expression of CBS and CTL indicating a disruption of the transsulfuration pathway. The treatment chickens also had a decreased hepatic CDO and increased GSS mRNA expressions which are in concordance with the homeostatic regulation of cysteine. Compromised cysteine metabolism could affect thermoregulation and subsequently affect feed efficiency and welfare of the birds.


Asunto(s)
Cisteína , Dieta/veterinaria , Plumas , Glutatión/metabolismo , Piel , Animales , Pollos , Cisteína/metabolismo , Cisteína/farmacología , Plumas/química , Plumas/efectos de los fármacos , Plumas/crecimiento & desarrollo , Plumas/metabolismo , Masculino , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Piel/química , Piel/efectos de los fármacos , Piel/crecimiento & desarrollo , Piel/metabolismo , Azufre/metabolismo
16.
Am Nat ; 193(5): 717-724, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31002573

RESUMEN

High predation risk can favor rapid offspring development at the expense of offspring quality. Impacts of rapid development on phenotypic quality should be most readily expressed in traits that minimize fitness costs. We hypothesize that ephemeral traits that are replaced or repaired after a short period of life might express trade-offs in quality as a result of rapid development more strongly than traits used throughout life. We explored this idea for plumage quality in nestling body feathers, an ephemeral trait. We found a strong trade-off whereby nestlings that spend less time in the nest produced lower-quality plumage with less dense barbs relative to adults across 123 temperate and tropical species. For a subset of these species ( n=67 ), we found that variation in the risk of nest predation explained additional variation in plumage quality beyond development time. Ultimately, the fitness costs of a poor-quality ephemeral trait, such as nestling body feathers, may be outweighed by the fitness benefits of shorter development times that reduce predation risk. At the same time, reduced resource allocation to traits with small fitness costs, such as ephemeral traits, may ameliorate resource constraints from rapid development on traits with larger fitness impacts.


Asunto(s)
Aves/crecimiento & desarrollo , Plumas/crecimiento & desarrollo , Aptitud Genética , Conducta Predatoria , Animales , Evolución Biológica , Femenino , Masculino
17.
Dev Growth Differ ; 61(2): 141-149, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30675906

RESUMEN

Selective cell death by apoptosis plays important roles in organogenesis. Apoptotic cells are observed in the developmental and homeostatic processes of several ectodermal organs, such as hairs, feathers, and mammary glands. In chick feather development, apoptotic events have been observed during feather morphogenesis, but have not been investigated during early feather bud formation. Previously, we have reported a method for generating feather buds on a bioengineered skin from dissociated skin epithelial and mesenchymal cells in three-dimensional culture. During the development of the bioengineered skin, epithelial cavity formation by apoptosis was observed in the epithelial tissue. In this study, we examined the selective epithelial cell death during the bioengineered skin development. Histological analyses suggest that the selective epithelial cell death in the bioengineered skin was induced by caspase-3-related apoptosis. The formation of feather buds of the bioengineered skin was disturbed by the treatment with a pan-caspase inhibitor. The pan-caspase inhibitor treatment suppressed the rearrangement of the epithelial layer and the formation of dermal condensation, which are thought to be essential step to form feather buds. The suppression of the formation of feather buds on the pan-caspase inhibitor-treated skin was partially compensated by the addition of a GSK-3ß inhibitor, which activates Wnt/ß-catenin signaling. These results suggest that the epithelial cell death is involved in the formation of feather buds of the bioengineered skin. These observations also suggest that caspase activities and Wnt/ß-catenin signaling may contribute to the formation of epithelial and mesenchymal components in the bioengineered skin.


Asunto(s)
Muerte Celular , Células Epiteliales/citología , Plumas/citología , Plumas/crecimiento & desarrollo , Piel/citología , Ingeniería de Tejidos , Animales , Células Cultivadas , Pollos , Piel/crecimiento & desarrollo
18.
Dev Growth Differ ; 61(1): 124-138, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30569461

RESUMEN

Many animals can change the size, shape, texture and color of their regenerated coats in response to different ages, sexes, or seasonal environmental changes. Here, we propose that the feather core branching morphogenesis module can be regulated by sex hormones or other environmental factors to change feather forms, textures or colors, thus generating a large spectrum of complexity for adaptation. We use sexual dimorphisms of the chicken to explore the role of hormones. A long-standing question is whether the sex-dependent feather morphologies are autonomously controlled by the male or female cell types, or extrinsically controlled and reversible. We have recently identified core feather branching molecular modules which control the anterior-posterior (bone morphogenetic orotein [BMP], Wnt gradient), medio-lateral (Retinoic signaling, Gremlin), and proximo-distal (Sprouty, BMP) patterning of feathers. We hypothesize that morpho-regulation, through quantitative modulation of existing parameters, can act on core branching modules to topologically tune the dimension of each parameter during morphogenesis and regeneration. Here, we explore the involvement of hormones in generating sexual dimorphisms using exogenously delivered hormones. Our strategy is to mimic male androgen levels by applying exogenous dihydrotestosterone and aromatase inhibitors to adult females and to mimic female estradiol levels by injecting exogenous estradiol to adult males. We also examine differentially expressed genes in the feathers of wildtype male and female chickens to identify potential downstream modifiers of feather morphogenesis. The data show male and female feather morphology and their color patterns can be modified extrinsically through molting and resetting the stem cell niche during regeneration.


Asunto(s)
Plumas/crecimiento & desarrollo , Plumas/metabolismo , Hormonas Esteroides Gonadales/metabolismo , Morfogénesis/genética , Animales , Pollos , Femenino , Masculino , Caracteres Sexuales
19.
J Exp Biol ; 222(Pt 20)2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31624105

RESUMEN

Like all birds, penguins undergo periodic molt, during which they replace old feathers. However, unlike other birds, penguins replace their entire plumage within a short period while fasting ashore. During molt, king penguins (Aptenodytes patagonicus) lose half of their initial body mass, most importantly their insulating subcutaneous fat and half of their pectoral muscle mass. The latter might challenge their capacity to generate and sustain a sufficient mechanical power output to swim to distant food sources and propel themselves to great depth for successful prey capture. To investigate the effects of the annual molt fast on their dive/foraging performance, we studied various dive/foraging parameters and peripheral temperature patterns in immature king penguins across two molt cycles, after birds had spent their first and second year at sea, using implanted data-loggers. We found that the dive/foraging performance of immature king penguins was significantly reduced during post-molt foraging trips. Dive and bottom duration for a given depth were shorter during post-molt and post-dive surface interval duration was longer, reducing overall dive efficiency and underwater foraging time. We attribute this decline to the severe physiological changes that birds undergo during their annual molt. Peripheral temperature patterns differed greatly between pre- and post-molt trips, indicating the loss of the insulating subcutaneous fat layer during molt. Peripheral perfusion, as inferred from peripheral temperature, was restricted to short periods at night during pre-molt but occurred throughout extended periods during post-molt, reflecting the need to rapidly deposit an insulating fat layer during the latter period.


Asunto(s)
Buceo/fisiología , Muda/fisiología , Spheniscidae/fisiología , Animales , Plumas/crecimiento & desarrollo , Conducta Alimentaria/fisiología , Femenino , Masculino , Océanos y Mares , Temperatura
20.
J Exp Biol ; 222(Pt 10)2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31085600

RESUMEN

During molt, birds replace their feathers to retain feather quality and maintain flight performance. However, wing gaps inherent of this process can also reduce flight capacities, which could be detrimental when foraging or escaping predators. Still, many bird species will not cease their normal activities when molting. In this study, we investigated whether and how birds adjust their escape flight behavior to compensate for the reduction in performance when flying with wing gaps. Using stereoscopic high-speed videography, we filmed 146 upward-directed escape flights of 19 and 22 pied flycatchers (Ficedula hypoleuca) with and without simulated molt gaps, respectively. We then reconstructed the three-dimensional body and wing movements throughout each maneuver. By comparing flights with and without gaps, we determined how wing molt gaps affected wing morphology and escape flight performance, and how the birds adjusted their flight kinematics in order to negate possible negative aerodynamic effects. Our manipulations resulted in a lower second moment of area of the wings, but flight speed and net aerodynamic force production did not differ between the two groups. We found that in manipulated birds, the size of the gap was reduced as the flight feathers adjacent to the gap had moved towards each other. Moreover, the experimental decrease in second moment of area was associated with an increase in angle of attack, whereas changes in wingbeat-induced speeds were associated with variations in aerodynamic force production. This suggests that the control of escape flight in molting birds might be modular, allowing relatively simple flight control, thus reducing the burden on the neuro-muscular flight control system.


Asunto(s)
Reacción de Fuga , Vuelo Animal , Muda , Pájaros Cantores/fisiología , Alas de Animales/anatomía & histología , Animales , Plumas/crecimiento & desarrollo , Masculino , Distribución Aleatoria , Pájaros Cantores/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA